Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = planar lipid bilayer technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9435 KiB  
Review
Comprehensive Insights into the Cholesterol-Mediated Modulation of Membrane Function Through Molecular Dynamics Simulations
by Ehsaneh Khodadadi, Ehsan Khodadadi, Parth Chaturvedi and Mahmoud Moradi
Membranes 2025, 15(6), 173; https://doi.org/10.3390/membranes15060173 - 8 Jun 2025
Viewed by 2111
Abstract
Cholesterol plays an essential role in biological membranes and is crucial for maintaining their stability and functionality. In addition to biological membranes, cholesterol is also used in various synthetic lipid-based structures such as liposomes, proteoliposomes, and nanodiscs. Cholesterol regulates membrane properties by influencing [...] Read more.
Cholesterol plays an essential role in biological membranes and is crucial for maintaining their stability and functionality. In addition to biological membranes, cholesterol is also used in various synthetic lipid-based structures such as liposomes, proteoliposomes, and nanodiscs. Cholesterol regulates membrane properties by influencing the density of lipids, phase separation into liquid-ordered (Lo) and liquid-disordered (Ld) areas, and stability of protein–membrane interactions. For planar bilayers, cholesterol thickens the membrane, decreases permeability, and brings lipids into well-ordered domains, thereby increasing membrane rigidity by condensing lipid packing, while maintaining lateral lipid mobility in disordered regions to preserve overall membrane fluidity. It modulates membrane curvature in curved bilayers and vesicles, and stabilizes low-curvature regions, which are important for structural integrity. In liposomes, cholesterol facilitates drug encapsulation and release by controlling bilayer flexibility and stability. In nanodiscs, cholesterol enhances structural integrity and protein compatibility, which enables the investigation of protein–lipid interactions under physiological conditions. In proteoliposomes, cholesterol regulates the conformational stability of embedded proteins that have implications for protein–lipid interaction. Developments in molecular dynamics (MD) techniques, from coarse-grained to all-atom simulations, have shown how cholesterol modulates lipid tail ordering, membrane curvature, and flip-flop behavior in response to concentration. Such simulations provide insights into the mechanisms underlying membrane-associated diseases, aiding in the design of efficient drug delivery systems. In this review, we combine results from MD simulations to provide a synoptic explanation of cholesterol’s complex function in regulating membrane behavior. This synthesis combines fundamental biophysical information with practical membrane engineering, underscoring cholesterol’s important role in membrane structure, dynamics, and performance, and paving the way for rational design of stable and functional lipid-based systems to be used in medicine. In this review, we gather evidence from MD simulations to provide an overview of cholesterol’s complex function regulating membrane behavior. This synthesis connects the fundamental biophysical science with practical membrane engineering, which highlights cholesterol’s important role in membrane structure, dynamics, and function and helps us rationally design stable and functional lipid-based systems for therapeutic purposes. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

14 pages, 4371 KiB  
Article
Antibiotic Loaded Phytosomes as a Way to Develop Innovative Lipid Formulations of Polyene Macrolides
by Svetlana S. Efimova and Olga S. Ostroumova
Pharmaceutics 2024, 16(5), 665; https://doi.org/10.3390/pharmaceutics16050665 - 16 May 2024
Cited by 1 | Viewed by 4572
Abstract
Background: The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. Objective: The aim of this study was to determine how the [...] Read more.
Background: The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. Objective: The aim of this study was to determine how the sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers that mimic the membranes of mammalian and fungal cells. Methods: To monitor the membrane permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the electrophysiological technique based on planar lipid bilayers were used. Key results: The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes. The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target fungi. IV characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in the antibiotic threshold concentration. Conclusions and Perspectives: The therapeutic window of polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations. Full article
(This article belongs to the Special Issue Emerging Pharmaceutical Strategies against Infectious Diseases)
Show Figures

Figure 1

23 pages, 2923 KiB  
Review
Electric Fields at the Lipid Membrane Interface
by Yury A. Ermakov
Membranes 2023, 13(11), 883; https://doi.org/10.3390/membranes13110883 - 16 Nov 2023
Cited by 11 | Viewed by 3246
Abstract
This review presents a comprehensive analysis of electric field distribution at the water–lipid membrane interface in the context of its relationship to various biochemical problems. The main attention is paid to the methodological aspects of bioelectrochemical techniques and quantitative analysis of electrical phenomena [...] Read more.
This review presents a comprehensive analysis of electric field distribution at the water–lipid membrane interface in the context of its relationship to various biochemical problems. The main attention is paid to the methodological aspects of bioelectrochemical techniques and quantitative analysis of electrical phenomena caused by the ionization and hydration of the membrane–water interface associated with the phase state of lipids. One of the objectives is to show the unique possibility of controlling changes in the structure of the lipid bilayer initiated by various membrane-active agents that results in electrostatic phenomena at the surface of lipid models of biomembranes—liposomes, planar lipid bilayer membranes (BLMs) and monolayers. A set of complicated experimental facts revealed in different years is analyzed here in order of increasing complexity: from the adsorption of biologically significant inorganic ions and phase rearrangements in the presence of multivalent cations to the adsorption and incorporation of pharmacologically significant compounds into the lipid bilayer, and formation of the layers of macromolecules of different types. Full article
Show Figures

Graphical abstract

13 pages, 2008 KiB  
Article
Sensing Hydration of Biomimetic Cell Membranes
by Madhurima Chattopadhyay, Hanna Orlikowska, Emilia Krok and Lukasz Piatkowski
Biosensors 2021, 11(7), 241; https://doi.org/10.3390/bios11070241 - 16 Jul 2021
Cited by 3 | Viewed by 3505
Abstract
Biological membranes play a vital role in cell functioning, providing structural integrity, controlling signal transduction, and controlling the transport of various chemical species. Owing to the complex nature of biomembranes, the self-assembly of lipids in aqueous media has been utilized to develop model [...] Read more.
Biological membranes play a vital role in cell functioning, providing structural integrity, controlling signal transduction, and controlling the transport of various chemical species. Owing to the complex nature of biomembranes, the self-assembly of lipids in aqueous media has been utilized to develop model systems mimicking the lipid bilayer structure, paving the way to elucidate the mechanisms underlying various biological processes, as well as to develop a number of biomedical and technical applications. The hydration properties of lipid bilayers are crucial for their activity in various cellular processes. Of particular interest is the local membrane dehydration, which occurs in membrane fusion events, including neurotransmission, fertilization, and viral entry. The lack of universal technique to evaluate the local hydration state of the membrane components hampers understanding of the molecular-level mechanisms of these processes. Here, we present a new approach to quantify the hydration state of lipid bilayers. It takes advantage of the change in the lateral diffusion of lipids that depends on the number of water molecules hydrating them. Using fluorescence recovery after photobleaching technique, we applied this approach to planar single and multicomponent supported lipid bilayers. The method enables the determination of the hydration level of a biomimetic membrane down to a few water molecules per lipid. Full article
Show Figures

Figure 1

13 pages, 5323 KiB  
Article
Improving the Sensory Properties of Layered Phospholipid-Graphene Films Due to the Curvature of Graphene Layers
by Michael M. Slepchenkov and Olga E. Glukhova
Polymers 2020, 12(8), 1710; https://doi.org/10.3390/polym12081710 - 30 Jul 2020
Cited by 1 | Viewed by 2914
Abstract
This article is devoted to the in silico study of the sensory properties of mono- and bilayer phospholipid-graphene films with planar and curved graphene sheets. The DPPC (dipalmitoylphosphatidylcholine) molecules are considered as phospholipid structures. These molecules are part of lipid bilayers, liposomes and [...] Read more.
This article is devoted to the in silico study of the sensory properties of mono- and bilayer phospholipid-graphene films with planar and curved graphene sheets. The DPPC (dipalmitoylphosphatidylcholine) molecules are considered as phospholipid structures. These molecules are part of lipid bilayers, liposomes and cell membranes. To find a way to improve the sensory properties of phospholipid-graphene films, we studied the effect of the curvature of the graphene sheet on the charge transfer and electrical conductivity of the films. The distribution of the electron charge density over the film atoms was calculated using the self-consistent-charge density-functional tight-binding method (SCC-DFTB). The calculation of the current through phospholipid-graphene films was carried out within the framework of the Landauer–Buttiker formalism using the Keldysh nonequilibrium Green function technique. As a result of the calculations, the optimal configuration of the arrangement of DPPC molecules between two graphene layers was established. This configuration provides the maximum possible increase in current to 1 μA at low voltages of ~0.2 V and is achieved for curved graphene with a radius of curvature of ~2.7 nm at individual points of graphene atomic network. Full article
Show Figures

Graphical abstract

12 pages, 4373 KiB  
Article
Microfluidic Formation of Double-Stacked Planar Bilayer Lipid Membranes by Controlling the Water-Oil Interface
by Kan Shoji and Ryuji Kawano
Micromachines 2018, 9(5), 253; https://doi.org/10.3390/mi9050253 - 22 May 2018
Cited by 9 | Viewed by 6904
Abstract
This study reports double-stacked planar bilayer lipid membranes (pBLMs) formed using a droplet contact method (DCM) for microfluidic formation with five-layered microchannels that have four micro guide pillars. pBLMs are valuable for analyzing membrane proteins and modeling cell membranes. Furthermore, multiple-pBLM systems have [...] Read more.
This study reports double-stacked planar bilayer lipid membranes (pBLMs) formed using a droplet contact method (DCM) for microfluidic formation with five-layered microchannels that have four micro guide pillars. pBLMs are valuable for analyzing membrane proteins and modeling cell membranes. Furthermore, multiple-pBLM systems have broadened the field of application such as electronic components, light-sensors, and batteries because of electrical characteristics of pBLMs and membrane proteins. Although multiple-stacked pBLMs have potential, the formation of multiple-pBLMs on a micrometer scale still faces challenges. In this study, we applied a DCM strategy to pBLM formation using microfluidic techniques and attempted to form double-stacked pBLMs in micro-meter scale. First, microchannels with micro pillars were designed via hydrodynamic simulations to form a five-layered flow with aqueous and lipid/oil solutions. Then, pBLMs were successfully formed by controlling the pumping pressure of the solutions and allowing contact between the two lipid monolayers. Finally, pore-forming proteins were reconstituted in the pBLMs, and ion current signals of nanopores were obtained as confirmed by electrical measurements, indicating that double-stacked pBLMs were successfully formed. The strategy for the double-stacked pBLM formation can be applied to highly integrated nanopore-based systems. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Graphical abstract

17 pages, 2445 KiB  
Article
Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques
by Carmen M. González-Henríquez, Vanessa A. Villegas-Opazo, Dallits H. Sagredo-Oyarce, Mauricio A. Sarabia-Vallejos and Claudio A. Terraza
Biosensors 2017, 7(3), 34; https://doi.org/10.3390/bios7030034 - 18 Aug 2017
Cited by 10 | Viewed by 7815
Abstract
Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the [...] Read more.
Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed—like biosensors—based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures—with differences in its aliphatic chain length—present a co-existence of two thermal responses due to non-ideal mixing. Full article
Show Figures

Figure 1

20 pages, 3167 KiB  
Article
Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study
by Goli Yamini, Nnanya Kalu and Ekaterina M. Nestorovich
Toxins 2016, 8(11), 337; https://doi.org/10.3390/toxins8110337 - 15 Nov 2016
Cited by 6 | Viewed by 6517
Abstract
Nearly all the cationic molecules tested so far have been shown to reversibly block K+ current through the cation-selective PA63 channels of anthrax toxin in a wide nM–mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic [...] Read more.
Nearly all the cationic molecules tested so far have been shown to reversibly block K+ current through the cation-selective PA63 channels of anthrax toxin in a wide nM–mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH2, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH2/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH2. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH2. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH2, increasing with the cis-negative voltage increase. We also describe kinetics of the PA63 ion current modulation by two different types of the “imperfect” PAMAM dendrimers, the mixed-surface G2 75% OH 25% NH2 dendrimer and G3-NH2 dendron. At low voltages, both “imperfect” dendrimers show similar rate constants but significantly weaker voltage sensitivity when compared with the intact G2-NH2 PAMAM dendrimer. Full article
(This article belongs to the Special Issue Novel Pharmacological Inhibitors for Bacterial Protein Toxins)
Show Figures

Figure 1

20 pages, 6158 KiB  
Article
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording
by Marco Crescentini, Marco Bennati, Shimul Chandra Saha, Josip Ivica, Maurits De Planque, Hywel Morgan and Marco Tartagni
Sensors 2016, 16(5), 709; https://doi.org/10.3390/s16050709 - 19 May 2016
Cited by 5 | Viewed by 11573
Abstract
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main [...] Read more.
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

21 pages, 1413 KiB  
Review
Biotechnology Applications of Tethered Lipid Bilayer Membranes
by Joshua A. Jackman, Wolfgang Knoll and Nam-Joon Cho
Materials 2012, 5(12), 2637-2657; https://doi.org/10.3390/ma5122637 - 7 Dec 2012
Cited by 103 | Viewed by 15341
Abstract
The importance of cell membranes in biological systems has prompted the development of model membrane platforms that recapitulate fundamental aspects of membrane biology, especially the lipid bilayer environment. Tethered lipid bilayers represent one of the most promising classes of model membranes and are [...] Read more.
The importance of cell membranes in biological systems has prompted the development of model membrane platforms that recapitulate fundamental aspects of membrane biology, especially the lipid bilayer environment. Tethered lipid bilayers represent one of the most promising classes of model membranes and are based on the immobilization of a planar lipid bilayer on a solid support that enables characterization by a wide range of surface-sensitive analytical techniques. Moreover, as the result of molecular engineering inspired by biology, tethered bilayers are increasingly able to mimic fundamental properties of natural cell membranes, including fluidity, electrical sealing and hosting transmembrane proteins. At the same time, new methods have been employed to improve the durability of tethered bilayers, with shelf-lives now reaching the order of weeks and months. Taken together, the capabilities of tethered lipid bilayers have opened the door to biotechnology applications in healthcare, environmental monitoring and energy storage. In this review, several examples of such applications are presented. Beyond the particulars of each example, the focus of this review is on the emerging design and characterization strategies that made these applications possible. By drawing connections between these strategies and promising research results, future opportunities for tethered lipid bilayers within the biotechnology field are discussed. Full article
(This article belongs to the Special Issue Supported Lipid Membranes)
Show Figures

Graphical abstract

Back to TopTop