Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = pine sawyer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2783 KiB  
Article
Optimization of Traps Used in the Management of Monochamus galloprovincialis (Coleoptera: Cerambycidae), the Insect-Vector of Pinewood Nematode, to Reduce By-Catches of Non-Target Insects
by Luís Bonifácio and Edmundo Sousa
Forests 2025, 16(6), 1017; https://doi.org/10.3390/f16061017 - 17 Jun 2025
Cited by 1 | Viewed by 377
Abstract
A possible tactic to survey and control Pine Wilt Disease is the use of semiochemical-baited traps to capture the insect-vector, the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). The most common chemical lure used is the Galloprotect Pack, which includes the aggregation pheromone [...] Read more.
A possible tactic to survey and control Pine Wilt Disease is the use of semiochemical-baited traps to capture the insect-vector, the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). The most common chemical lure used is the Galloprotect Pack, which includes the aggregation pheromone ([2-undecyloxy] ethanol), a host monoterpene (α-pinene), and bark-beetle pheromones (ipsenol and 2-methyl-3-buten-1-ol). This lure also attracts non-target species, including bark beetles (Coleoptera: Curculionidae: Scolytinae) that use ipsenol (Ips sexdentatus (Boerner)) and 2-methyl-3-buten-1-ol (Orthotomicus erosus (Wollaston)) as pheromones, but also large numbers of their natural enemies, Temnoscheila caerulea (Olivier) (Coleoptera: Trogossitidae), Aulonium ruficorne (Olivier) (Coleoptera: Colydiidae), and Thanasimus formicarius (L.) (Coleoptera: Cleridae), and other saproxylic insects (Coleoptera: Cerambycidae). These catches cause a decrease in biodiversity of the forest insect communities, and the removal of predatory insects may favour bark beetle outbreaks. Thus, our project objective was to test trap modifications to try to reduce catches of non-target insects. Modifying the multifunnel trap’s collection cup by placing a 0.5 cm mesh in the drainage hole allowed the escape of all predator beetles (Cleridae, Trogossitidae, Colydiidae, and Histeridae) in 2020, and retained only two Trogossitidae in 2021, against 249 specimens caught in the non-modified collection cup. This simple modification thus allowed the escape of almost all predators, while maintaining the traps’ efficiency at catching the target species, M. galloprovincialis. Full article
(This article belongs to the Special Issue Advance in Pine Wilt Disease)
Show Figures

Figure 1

16 pages, 5662 KiB  
Article
Hidden Threats: The Unnoticed Epidemic System of Pine Wilt Disease Driven by Sexually Mature Monochamus Beetles and Asymptomatic Trees
by Kazuyoshi Futai and Hideaki Ishiguro
Biology 2025, 14(5), 485; https://doi.org/10.3390/biology14050485 - 28 Apr 2025
Cited by 1 | Viewed by 515
Abstract
Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, poses a significant threat to pine forests worldwide. Understanding the dynamics of its spread is crucial for effective disease management. In this study, we investigated the involvement of asymptomatic carrier trees in the [...] Read more.
Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, poses a significant threat to pine forests worldwide. Understanding the dynamics of its spread is crucial for effective disease management. In this study, we investigated the involvement of asymptomatic carrier trees in the expansion of pine wilt disease through a series of experiments. Cage-releasing experiments revealed that sexually immature Japanese pine sawyer beetles, Monochamus alternatus, feeding on healthy pine branches drops only a minimal number of nematodes (primary infection). However, sexually mature beetles, still harboring numerous nematodes, fly to weakened trees for breeding and extend their feeding activities to healthy pines around weakened trees, infecting them with nematodes and thus spreading the disease further. Inoculation experiments on field-planted black pine seedlings demonstrated that even a small number of nematodes can lead to a high occurrence of asymptomatic carrier trees. Our findings suggest that nematode infections transmitted by sexually mature Monochamus beetles significantly contribute to the expansion of pine wilt damage and play a crucial role in the persistence of asymptomatic carrier trees. This conclusion is based on cage-release experiments demonstrating nematode transmission by mature beetles and inoculation experiments highlighting the conditions leading to asymptomatic carrier trees. Full article
Show Figures

Figure 1

17 pages, 12124 KiB  
Article
The Neurotranscriptome of Monochamus alternatus
by Xiaohong Han, Mingqing Weng, Wenchao Shi, Yingxin Wen, Yirong Long, Xinran Hu, Guoxi Ji, Yukun Zhu, Xuanye Wen, Feiping Zhang and Songqing Wu
Int. J. Mol. Sci. 2024, 25(8), 4553; https://doi.org/10.3390/ijms25084553 - 22 Apr 2024
Cited by 3 | Viewed by 1912
Abstract
The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played [...] Read more.
The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 719 KiB  
Article
Copulation Duration and Sperm Precedence with Reference to Larval Diapause Induction in Monochamus alternatus Hope (Coleoptera: Cerambycidae)
by Katsumi Togashi and Hiroyuki Sugimoto
Insects 2024, 15(4), 255; https://doi.org/10.3390/insects15040255 - 8 Apr 2024
Viewed by 1529
Abstract
Adults of the pine sawyer Monochamus alternatus are the primary vector of Bursaphelenchus xylophilus, the causative agent of pine wilt disease. A sawyer subspecies in Taiwan (abbreviated ‘T’) has two generations a year (bivoltinism) due to facultative diapause, whereas another subspecies in [...] Read more.
Adults of the pine sawyer Monochamus alternatus are the primary vector of Bursaphelenchus xylophilus, the causative agent of pine wilt disease. A sawyer subspecies in Taiwan (abbreviated ‘T’) has two generations a year (bivoltinism) due to facultative diapause, whereas another subspecies in Japan (abbreviated ‘J’) has a one- or two-year life cycle due to obligate diapause. T, with two infection periods a year, will cause more severe disease epidemics than J if it is introduced into Japan. Inter-subspecies hybridization may inhibit the expression of bivoltinism because many F1 hybrids induce diapause. To predict the effects of introducing T into Japan, the present study investigated copulation duration and late-male sperm precedence to fertilize eggs. The results indicated that a single copulation for more than 65 s supplied sufficient sperm to fertilize a lifetime production of eggs. The incidence of larval diapause was 0.15 for the offspring of T females that mated with a T male and increased to 0.292–0.333 after remating with a J male, while the incidence of larval diapause was 0.900–1.000 for hybrids from T females mated with a J male. Consequently, the estimated proportion of second-male sperm used by T females was 0.185–0.217. The effects of introducing T populations into Japan on the severity of disease epidemics were also discussed. Full article
(This article belongs to the Collection Biology and Control of the Invasive Wood-Boring Beetles)
Show Figures

Figure 1

12 pages, 2017 KiB  
Article
Mating Behavior and Sexual Selection in Monochamus saltuarius (Gebler)
by Chuchu Zhang, Hao Wu, Zehai Hou and Shixiang Zong
Forests 2023, 14(12), 2312; https://doi.org/10.3390/f14122312 - 24 Nov 2023
Cited by 2 | Viewed by 1602
Abstract
The Sakhalin pine sawyer Monochamus saltuarius (Gebler) (Coleoptera: Cerambycidae) is a new vector of pine wood nematode in China, which has caused huge economic losses in the forestry industry. The mating process of M. saltuarius has been described in detail. However, mate choice [...] Read more.
The Sakhalin pine sawyer Monochamus saltuarius (Gebler) (Coleoptera: Cerambycidae) is a new vector of pine wood nematode in China, which has caused huge economic losses in the forestry industry. The mating process of M. saltuarius has been described in detail. However, mate choice and sexual selection in this species are not fully understood. In this study, we quantitatively evaluated the characteristics associated with contact between the sexes in mating and inferred the sex-specific characteristics under selection. We detected positive correlations between the morphological characteristics of females and males. Most female traits and all male traits differed significantly between mated and unmated individuals. The results of this study provide evidence for the selection of the mating preferences in M. saltuarius. Full article
(This article belongs to the Special Issue Advances in Wood-Boring Insects Control and Management)
Show Figures

Figure 1

12 pages, 2098 KiB  
Article
The Temperature-Dependent Functional Response and Mutual Interference of Cyanopterus ninghais (Hymenoptera: Braconidae) Parasitizing Monochamus alternatus (Coleoptera: Cerambycidae)
by Shaobo Wang, Mengjiao Han, Ke Wei and Xiaoyi Wang
Forests 2023, 14(10), 2024; https://doi.org/10.3390/f14102024 - 9 Oct 2023
Cited by 5 | Viewed by 1473
Abstract
Cyanopterus ninghais (Hymenoptera: Braconidae) is a newly discovered parasitoid on the 3rd-5th instar larvae of the Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae). We investigated the functional response of C. ninghais at three temperatures (20, 25, and 30 °C) and examined mutual interference. [...] Read more.
Cyanopterus ninghais (Hymenoptera: Braconidae) is a newly discovered parasitoid on the 3rd-5th instar larvae of the Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae). We investigated the functional response of C. ninghais at three temperatures (20, 25, and 30 °C) and examined mutual interference. Results showed that C. ninghais had a Holling Type II functional response at all temperatures. By increasing the density of the M. alternatus larvae, the number of parasitized larvae increased until a maximum was reached. The parasitoid was most effective (a′/Th) at 30 °C (0.270) and an individual female wasp’s attack rate (a′) was 0.158, the handling time (Th) was 0.587, and the maximum theoretical parasitization rate per day (T/Th) was 11.927. However, the per capita parasitized level and per capita searching efficiency decreased significantly when the parasitoid density ranged from one to five. These findings suggest that intraspecific mutual interference and competition occur when multiple females search for a host in the same area. This study demonstrates that C. ninghais serves as an effective biocontrol agent, displaying strong control capabilities against M. alternatus larvae, with the potential for further development in the context of biological pest management targeting M. alternatus. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

10 pages, 2775 KiB  
Article
Population Density and Host Preference of the Japanese Pine Sawyer (Monochamus alternatus) in the Qinling–Daba Mountains of China
by Junke Nan, Jingyu Qi, Yuexiang Yang, Mengqin Zhao, Chaoqiong Liang, Hong He and Cong Wei
Insects 2023, 14(2), 181; https://doi.org/10.3390/insects14020181 - 13 Feb 2023
Cited by 7 | Viewed by 2309
Abstract
Monochamus alternatus is a serious trunk-boring pest and is the most important and effective vector of the pine wood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. The pine wilt disease poses a serious threat to forest vegetation and ecological security in [...] Read more.
Monochamus alternatus is a serious trunk-boring pest and is the most important and effective vector of the pine wood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. The pine wilt disease poses a serious threat to forest vegetation and ecological security in the Qinling–Daba Mountains and their surrounding areas. In order to clarify whether the population density of M. alternatus larvae is related to the host preference of M. alternatus adults, we investigated the population density of M. alternatus overwintering larvae and explored the host preference of M. alternatus adults on Pinus tabuliformis, P. armandii, and P. massoniana. The results show that the population density of M. alternatus larvae was significantly higher on P. armandii than those on P. massoniana and P. tabuliformis. The development of M. alternatus larvae was continuous according to the measurements of the head capsule width and the pronotum width. Adults of M. alternatus preferred to oviposit on P. armandii rather than on P. massoniana and P. tabuliformis. Our results indicate that the difference in the population density of M. alternatus larvae between different host plants was due to the oviposition preference of M. alternatus adults. In addition, the instars of M. alternatus larvae could not be accurately determined, because Dyar’s law is not suitable for continuously developing individuals. This study could provide theoretical basis for the comprehensive prevention and control of the pine wilt disease in this region and adjacent areas. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

18 pages, 6859 KiB  
Article
Design and Preparation of Avermectin Nanopesticide for Control and Prevention of Pine Wilt Disease
by Yanxue Liu, Yiwu Zhang, Xin Xin, Xueying Xu, Gehui Wang, Shangkun Gao, Luqin Qiao, Shuyan Yin, Huixiang Liu, Chunyan Jia, Weixing Shen, Li Xu, Yingchao Ji and Chenggang Zhou
Nanomaterials 2022, 12(11), 1863; https://doi.org/10.3390/nano12111863 - 30 May 2022
Cited by 16 | Viewed by 3047
Abstract
Pine wilt disease is a devastating forest disaster caused by Bursaphelenchus xylophilus, which has brought inestimable economic losses to the world’s forestry due to lack of effective prevention and control measures. In this paper, a porous structure CuBTC was designed to deliver [...] Read more.
Pine wilt disease is a devastating forest disaster caused by Bursaphelenchus xylophilus, which has brought inestimable economic losses to the world’s forestry due to lack of effective prevention and control measures. In this paper, a porous structure CuBTC was designed to deliver avermectin (AM) and a control vector insect Japanese pine sawyer (JPS) of B. xylophilus, which can improve the biocompatibility, anti-photolysis and delivery efficacy of AM. The results illustrated the cumulative release of pH-dependent AM@CuBTC was up to 12 days (91.9%), and also effectively avoided photodegradation (pH 9.0, 120 h, retention 69.4%). From the traceable monitoring experiment, the AM@CuBTC easily penetrated the body wall of the JPS larvae and was transmitted to tissue cells though contact and diffusion. Furthermore, AM@CuBTC can effectively enhance the cytotoxicity and utilization of AM, which provides valuable research value for the application of typical plant-derived nerve agents in the prevention and control of forestry pests. AM@CuBTC as an environmentally friendly nanopesticide can efficiently deliver AM to the larval intestines where it is absorbed by the larvae. AM@CuBTC can be transmitted to the epidemic wood and dead wood at a low concentration (10 mg/L). Full article
Show Figures

Figure 1

9 pages, 1248 KiB  
Communication
Diel Rhythmicity of Field Responses to Synthetic Pheromone Lures in the Pine Sawyer Monochamus saltuarius
by Junheon Kim, Young Hak Jung and Sang-Myeong Lee
Insects 2021, 12(5), 441; https://doi.org/10.3390/insects12050441 - 12 May 2021
Cited by 8 | Viewed by 2254
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, causes lethal pine wilt disease (PWD) in Asia and Europe and has become a serious threat to global pine forest ecosystems. In Korea, Monochamus saltuarius transmits PWN not only to Pinus densiflora, but also [...] Read more.
The pine wood nematode (PWN), Bursaphelenchus xylophilus, causes lethal pine wilt disease (PWD) in Asia and Europe and has become a serious threat to global pine forest ecosystems. In Korea, Monochamus saltuarius transmits PWN not only to Pinus densiflora, but also to Pinus koraiensis, which is widely distributed across eastern Asia. The diel rhythmicity of M. saltuarius in response to its aggregation pheromone was studied with the aim of providing reliable data for the prevention of PWD and control of Monochamus spp. Using a spray dispenser controlled with an electronic timer, M. saltuarius pheromone and attractants (PA) were sprayed to determine the diel rhythm of the response to PA. The spraying period was divided into four time periods: 05:00–11:00 (time period A), 11:00–17:00 (time period B), 17:00–23:00 (time period C), and 23:00–05:00 (time period D). The largest number of M. saltuarius was caught in time period B, followed by A, C, and D. It could be concluded that the flight activity of M. saltuarius in response to PA was diurnal. The results of this study improve the understanding of the behavioral biology of M. saltuarius, allowing for the development of pest management strategies to prevent the spread of PWN and control its vector. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

17 pages, 7068 KiB  
Article
Transcriptome Analysis of the Japanese Pine Sawyer Beetle, Monochamus alternatus, Infected with the Entomopathogenic Fungus Metarhizium anisopliae JEF-197
by Jong-Cheol Kim, Mi-Rong Lee, Sihyeon Kim, So-Eun Park, Se-Jin Lee, Tae-Young Shin, Woo-Jin Kim and Jaesu Kim
J. Fungi 2021, 7(5), 373; https://doi.org/10.3390/jof7050373 - 10 May 2021
Cited by 11 | Viewed by 4285
Abstract
The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae), damages pine trees and transmits the pine wilt nematode, Bursaphelenchus xylophilus Nickle. Chemical agents have been used to control JPS beetle, but due to various issues, efforts are being made to replace [...] Read more.
The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae), damages pine trees and transmits the pine wilt nematode, Bursaphelenchus xylophilus Nickle. Chemical agents have been used to control JPS beetle, but due to various issues, efforts are being made to replace these chemical agents with entomopathogenic fungi. We investigated the expression of immune-related genes in JPS beetle in response to infection with JEF-197, a Metarhizium anisopliae isolate, using RNA-seq. RNA samples were obtained from JEF-197, JPS adults treated with JEF-197, and non-treated JPS adults on the 8th day after fungal treatment, and RNA-seq was performed using Illumina sequencing. JPS beetle transcriptome was assembled de novo and differentially expressed gene (DEG) analysis was performed. There were 719 and 1953 up- and downregulated unigenes upon JEF-197 infection, respectively. Upregulated contigs included genes involved in RNA transport, ribosome biogenesis in eukaryotes, spliceosome-related genes, and genes involved in immune-related signaling pathways such as the Toll and Imd pathways. Forty-two fungal DEGs related to energy and protein metabolism were upregulated, and genes involved in the stress response were also upregulated in the infected JPS beetles. Together, our results indicate that infection of JPS beetles by JEF-197 induces the expression of immune-related genes. Full article
(This article belongs to the Special Issue Fungal Pathogen as Potent Toxin for Pest and Disease Control)
Show Figures

Figure 1

10 pages, 482 KiB  
Article
The First Record of Monochamus saltuarius (Coleoptera; Cerambycidae) as Vector of Bursaphelenchus xylophilus and Its New Potential Hosts in China
by Min Li, Huan Li, Ruo-Cheng Sheng, Hui Sun, Shou-Hui Sun and Feng-Mao Chen
Insects 2020, 11(9), 636; https://doi.org/10.3390/insects11090636 - 16 Sep 2020
Cited by 44 | Viewed by 3778
Abstract
Pine wilt disease was first discovered in Dongtang town, Liaoning Province, China, in 2017. However, no record of Monochamus alteratus existed in Fengcheng, where M. saltuarius is an indigenous insect, and no experimental evidence has thus far indicated that M. saltuarius can transport [...] Read more.
Pine wilt disease was first discovered in Dongtang town, Liaoning Province, China, in 2017. However, no record of Monochamus alteratus existed in Fengcheng, where M. saltuarius is an indigenous insect, and no experimental evidence has thus far indicated that M. saltuarius can transport the Bursaphelenchus xylophilus in China. In this study, we investigated whether M. saltuarius is a vector of B. xylophilus in China. On the sixth day after eclosion, beetles began to transmit nematodes into the twigs. The transmission period of nematodes is known to be able to last for 48 days after beetle emergence. In laboratory experiments, M. saltuarius fed and transmitted B. xylophilus not only on pines but also on other non-Pinus conifers. The non-Pinus conifers preferred by M. saltuarius for feeding are Picea pungens, Picea asperata, and Abies fabri. The experimental results show that M. saltuarius functions as a vector of B. xylophilus in northeast China. Full article
Show Figures

Figure 1

19 pages, 1381 KiB  
Article
High-Throughput Sequencing to Investigate Phytopathogenic Fungal Propagules Caught in Baited Insect Traps
by Émilie D. Tremblay, Troy Kimoto, Jean A. Bérubé and Guillaume J. Bilodeau
J. Fungi 2019, 5(1), 15; https://doi.org/10.3390/jof5010015 - 12 Feb 2019
Cited by 10 | Viewed by 5240
Abstract
Studying the means of dispersal of plant pathogens is crucial to better understand the dynamic interactions involved in plant infections. On one hand, entomologists rely mostly on both traditional molecular methods and morphological characteristics, to identify pests. On the other hand, high-throughput sequencing [...] Read more.
Studying the means of dispersal of plant pathogens is crucial to better understand the dynamic interactions involved in plant infections. On one hand, entomologists rely mostly on both traditional molecular methods and morphological characteristics, to identify pests. On the other hand, high-throughput sequencing (HTS) is becoming the go-to avenue for scientists studying phytopathogens. These organisms sometimes infect plants, together with insects. Considering the growing number of exotic insect introductions in Canada, forest pest-management efforts would benefit from the development of a high-throughput strategy to investigate the phytopathogenic fungal and oomycete species interacting with wood-boring insects. We recycled formerly discarded preservative fluids from the Canadian Food Inspection Agency annual survey using insect traps and analysed more than one hundred samples originating from across Canada. Using the Ion Torrent Personal Genome Machine (PGM) HTS technology and fusion primers, we performed metabarcoding to screen unwanted fungi and oomycetes species, including Phytophthora spp. Community profiling was conducted on the four different wood-boring, insect-attracting semiochemicals; although the preservative (contained ethanol) also attracted other insects. Phytopathogenic fungi (e.g., Leptographium spp. and Meria laricis in the pine sawyer semiochemical) and oomycetes (mainly Peronospora spp. and Pythium aff. hypogynum in the General Longhorn semiochemical), solely associated with one of the four types of semiochemicals, were detected. This project demonstrated that the insect traps’ semiochemical microbiome represents a new and powerful matrix for screening phytopathogens. Compared to traditional diagnostic techniques, the fluids allowed for a faster and higher throughput assessment of the biodiversity contained within. Additionally, minimal modifications to this approach would allow it to be used in other phytopathology fields. Full article
(This article belongs to the Special Issue Fungal-Insect Interactions)
Show Figures

Figure 1

Back to TopTop