Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = pinch-out

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 25227 KB  
Article
Sedimentary Model of Sublacustrine Fans in the Shahejie Formation, Nanpu Sag
by Zhen Wang, Zhihui Ma, Lingjian Meng, Rongchao Yang, Hongqi Yuan, Xuntao Yu, Chunbo He and Haiguang Wu
Appl. Sci. 2025, 15(15), 8674; https://doi.org/10.3390/app15158674 - 5 Aug 2025
Viewed by 738
Abstract
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, [...] Read more.
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, and 3D seismic data to systematically analyze sedimentary characteristics of sandbodies from the first member of the Shahejie Formation (Es1) sublacustrine fans, clarifying their planar and cross-sectional distributions. Further research indicates that Gaoliu Fault activity during Es1 deposition played a significant role in fan development through two mechanisms: (1) vertical displacement between hanging wall and footwall reshaped local paleogeomorphology; (2) tectonic stresses generated by fault movement affected slope stability, triggering gravitational mass transport processes that remobilized fan delta sediments into the central depression zone as sublacustrine fans through slumping and collapse mechanisms. Core observations reveal soft-sediment deformation features, including slump structures, flame structures, and shale rip-up clasts. Seismic profiles show lens-shaped geometries with thick centers thinning laterally, exhibiting lateral pinch-out terminations. Inverse fault-step architectures formed by underlying faults control sandbody distribution patterns, restricting primary deposition locations for sublacustrine fan development. The study demonstrates that sublacustrine fans in the study area are formed by gravity flow processes. A new model was established, illustrating the combined control of the Gaoliu Fault and reverse stepover faults on fan development. These findings provide valuable insights for gravity flow exploration and reservoir prediction in the Nanpu Sag, offering important implications for hydrocarbon exploration in similar lacustrine rift basins. Full article
Show Figures

Figure 1

18 pages, 24260 KB  
Article
Sedimentary Characteristics of the Sandstone Intervals in the Fourth Member of Triassic Akekule Formation, Tarim Basin: Implications for Petroleum Exploration
by Zehua Liu, Ye Yu, Li Wang, Haidong Wu and Qi Lin
Appl. Sci. 2025, 15(6), 3297; https://doi.org/10.3390/app15063297 - 18 Mar 2025
Cited by 1 | Viewed by 942
Abstract
The fourth member of the Triassic in the Tahe Oilfield, as one of the key strata for clastic rock reservoirs, poses significant challenges to oil and gas exploration due to unclear identification of its depositional environments and sedimentary microfacies. Based on the guidance [...] Read more.
The fourth member of the Triassic in the Tahe Oilfield, as one of the key strata for clastic rock reservoirs, poses significant challenges to oil and gas exploration due to unclear identification of its depositional environments and sedimentary microfacies. Based on the guidance of sequence stratigraphy and sedimentological theories, this study comprehensively analyzed well logging data from more than 130 wells, core analysis from 9 coring wells (including lithology, sedimentary structures, and facies sequence characteristics), 3D seismic data (covering an area of 360 km2), and regional geological background. Combined with screening and settling method granularity experiments, the sedimentary characteristics of the sand body in the fourth member were systematically characterized. The results indicate the following: (1) In the Tahe Oilfield, the strata within the fourth member of the Triassic are predominantly characterized by marginal lacustrine subfacies deposits, with delta-front subfacies deposits developing in localized areas. (2) From the planar distribution perspective, influenced by the northwestern provenance, a small deltaic depositional system developed in the early stage of the fourth member in the northwestern part of the Triassic Akekule Formation. This system was dominated by subaqueous distributary channel sand bodies, which were subjected to erosion and reshaping by lake water, leading to the formation of several stable sand bars along the lake shoreline. In the later stage of the fourth member, as the lake level continued to recede, the area of deltaic deposition expanded westward, and deltaic deposits also developed in the central to slightly eastern parts of the study area. Based on this, a depositional model for the fourth member of the Triassic in the Tahe Oilfield has been established. (3) In the Tahe Oilfield, the sand bodies within the fourth member of the Triassic system gradually pinch out into mudstone, forming lithological pinch-out traps. Among these, the channel sand bodies and long belt sand ridges, due to their good sorting and high permeability, become favorable reservoirs for oil and gas accumulation. This study clarifies the sedimentary model of the fourth member and reveals the spatial differentiation mechanism of sand bodies under the control of lake-level fluctuations and ancient structures. It can provide exploration guidance for delta lake sedimentary systems similar to the edge of foreland basins, especially for efficient development of complex lithological oil and gas reservoirs controlled by multistage lake invasion–lake retreat cycles. Full article
Show Figures

Figure 1

16 pages, 14946 KB  
Article
The Tectonic Control on Shale Oil Migration and Accumulation of the Lower Jurassic Daanzhai Member of the Ziliujing Formation, Sichuan Basin, China
by Zhuopei Li, Haihua Zhu, Minglei Wang, Benjian Zhang, Yadong Zhou, Haitao Hong, Yucong Li and Xingzhi Wang
Energies 2025, 18(4), 1004; https://doi.org/10.3390/en18041004 - 19 Feb 2025
Cited by 1 | Viewed by 906
Abstract
In order to understand the tectonic control on shale oil migration and accumulation, samples of the Daanzhai Member of the Lower Jurassic Ziliujing Formation from the well core in a tectonically stable area and upright anticline outcrop were selected for total organic carbon [...] Read more.
In order to understand the tectonic control on shale oil migration and accumulation, samples of the Daanzhai Member of the Lower Jurassic Ziliujing Formation from the well core in a tectonically stable area and upright anticline outcrop were selected for total organic carbon (TOC) content analysis, rock pyrolysis, fluorescence scanning, and scanning electron microscopy. The results show the following: (1) In the tectonically stable area, the TOC of shale oil reservoirs is positively correlated with S1, and a high OSI interval usually occurs in high-TOC shales. The oil content of the limestone lamina decreases with an increasing distance from black shale. The vertical migration of shale oil into or across the lamina is not obvious and is mainly micro-scale. (2) The migration pathway includes a lamina interface, shell–clay interface, calcite cleavage, feldspar or calcite dissolution pores, and quartz or kaolinite intergranular pores. Large-scale shale oil migration time occurs at the peak of oil generation. (3) In the area of strong tectonic deformation, the formation of fractures in limestone further promotes the migration of oil from shale into the lamina. (4) The re-migration of shale oil during the uplift and deformation period involves three processes: upward migration in a clay matrix, then entry and migration along the limestone–shale interface from the lateral pinch-out points of the lamina, migration into the lamina joints, and then short diffusion into the limestone. (5) The migration of shale oil in the Daanzhai shale was controlled by the history of hydrocarbon generation and tectonic deformation and occurred in several stages. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

30 pages, 19890 KB  
Article
The Sedimentary Characteristics and Resource Potential of a Lacustrine Shallow-Water Delta on a Hanging-Wall Ramp in a Rift Basin: A Case Study from the Paleogene of the Raoyang Sag, Bohai Bay Basin, China
by Lei Ye, Xiaomin Zhu, Nigel P. Mountney, Shuanghui Xie, Renhao Zhang and Luca Colombera
Sustainability 2025, 17(1), 208; https://doi.org/10.3390/su17010208 - 30 Dec 2024
Cited by 1 | Viewed by 2392
Abstract
The hanging-wall ramps of rift basins are prone to the accumulation of large sedimentary bodies and are potential areas for the presence of large subsurface geological reservoir volumes. This paper comprehensively utilizes data from sedimentology, seismic reflection, geochemistry, and palynology to study the [...] Read more.
The hanging-wall ramps of rift basins are prone to the accumulation of large sedimentary bodies and are potential areas for the presence of large subsurface geological reservoir volumes. This paper comprehensively utilizes data from sedimentology, seismic reflection, geochemistry, and palynology to study the paleotopography, water conditions, paleoclimate, and sediment supply of the fourth member (Mbr 4) of the Shahejie Formation in the Raoyang Sag of the Bohai Bay Basin, China. The sedimentary characteristics, evolution, and preserved stratigraphic architectures of shallow-water deltaic successions are analyzed. Multiple indicators—such as sporopollen, ostracoda, fossil algae, major elements, and trace elements—suggest that when Mbr 4 was deposited, the climate became progressively more humid, and the lake underwent deepening followed by shallowing. During rift expansion, the lake level began to rise with supplied sediment progressively filling available accommodation; sand delivery to the inner delta front was higher than in other parts of the delta, and highly active distributary channels formed a reticular drainage network on the delta plain, which was conducive to the formation of sandstone up-dip pinch-out traps. In the post-rift period, the lake water level dropped, and the rate and volume of sediment supply decreased, leading to the formation of a stable dendritic network of distributary channels. At channel mouths, sediments were easily reworked into sandsheets. The distribution of sandstone and mudstone volumes is characterized by up-dip pinch-out traps and sandstone lens traps. The network of channel body elements of the shallow-water deltaic successions is expected to act as an effective carbon dioxide storage reservoir. This study reveals the influence of multiple factors on the sedimentary characteristics, evolution, and internal network of shallow-water deltas at different stages of rift basin evolution. This knowledge helps improve resource utilization and the sustainable development of comparable subsurface successions. Full article
Show Figures

Figure 1

16 pages, 5569 KB  
Article
Characteristics of Donghe Sandstone Transport Conductor in Hudson Oilfield, Tarim Basin and Its Oil and Gas Control Effect
by Haitao Zhao, Dongsheng Wu, Kaiyu Wang and Shan Jiang
Appl. Sci. 2025, 15(1), 17; https://doi.org/10.3390/app15010017 - 24 Dec 2024
Cited by 1 | Viewed by 885
Abstract
The Hudson Oilfield’s Donghe sandstone reservoir has multiple independent oil–water systems. The complex oil–water relationship is mainly due to reservoir heterogeneity, especially the sealing and shielding effects of interlayers. This paper uses methods like well logging and test well data interpretation, seismic impedance [...] Read more.
The Hudson Oilfield’s Donghe sandstone reservoir has multiple independent oil–water systems. The complex oil–water relationship is mainly due to reservoir heterogeneity, especially the sealing and shielding effects of interlayers. This paper uses methods like well logging and test well data interpretation, seismic impedance inversion, and the simulation of oil and gas preferential migration paths. It analyzes and quantifies parameters related to sand layer oil content, physical properties, and the development degree of interbedded layers using small layers as units. Sandstone horizontal transportability has three types. Type I matches structural forms to form preferential migration paths. Type II transportability has enclosed sand bodies that obstruct oil and gas flow and change their migration paths. Unevenly distributed calcareous interbedded layers are the main controlling factor for vertical sand body transportability. Locally continuous cemented calcareous interbedded layers can form the base of a dome-shaped pinch-out lithologic trap in sandstone. The closure area of the trap is controlled by the pinch-out line of sandstone and the distribution of continuous interbedded layers together. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 12408 KB  
Article
Controls on Gas-Reservoir Formation in the Benxi Formation in the Ganquan–Fuxian Area of the Ordos Basin, China
by Ming Song, Xiangzhen Meng, Renhai Pu, Xiaoping Gao, Teng Qiang and Yujie Fan
Energies 2023, 16(19), 6866; https://doi.org/10.3390/en16196866 - 28 Sep 2023
Cited by 1 | Viewed by 2051
Abstract
The Benxi Formation is one of the most important gas-producing layers in the Ganquan–Fuxian area, but the complex gas–water distribution and lack of sandstone have severely constrained natural gas exploration and development in this area. This study analyzed the structure, paleogeomorphology, sedimentary facies, [...] Read more.
The Benxi Formation is one of the most important gas-producing layers in the Ganquan–Fuxian area, but the complex gas–water distribution and lack of sandstone have severely constrained natural gas exploration and development in this area. This study analyzed the structure, paleogeomorphology, sedimentary facies, reservoir closures, and gas–water distribution of the Benxi Formation in the study area through drilling, coring, logging, seismic surveying, and experimental testing. The results show that the gas reservoirs in the Benxi Formation are mainly lithologic traps distributed along NW-trending barrier sandstones, with a small portion of updip pinchout closures. The water layers are mainly composed of thin sandstones with a single-layer thickness of less than 2 m, which are tidal-channel or barrier-margin microfacies sandstones. The water saturation in some thick sandstones is related to the activity and destruction of large individual faults. The dry layers are tight sandstones with porosity of less than 3.2%, mainly associated with high amounts of volcaniclastic matrix and lithic fragments, as well as compaction. The charging of the underlying high-quality Ordovician limestone reservoirs by carboniferous source rocks in the Benxi Formation reduces the probability of gas accumulation in Benxi sandstone. Based on the control of sedimentary facies and physical properties on gas accumulation, favorable reservoir distributions were predicted using seismic attributes and gas detection methods, providing the basis for the next phase of natural gas exploration and development in this area. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

23 pages, 11610 KB  
Article
Static Reservoir Simulations and Seismic Attributes Application to Image the Miocene Deep-Water Reservoirs in Southeast Asia
by Muhammad Tayyab Naseer, Raja Hammad Khalid, Shazia Naseem, Wei Li, George Kontakiotis, Ahmed E. Radwan, Hammad Tariq Janjuhah and Assimina Antonarakou
Water 2023, 15(14), 2543; https://doi.org/10.3390/w15142543 - 11 Jul 2023
Cited by 7 | Viewed by 2772
Abstract
Globally, deep-water reservoir systems are comprised of a variety of traps. Lateral and downdip trapping features include sand pinch-outs, truncation against salt or shale diapirs, and monoclinal dip or faulting with any combination of trapping designs; the potential for massive hydrocarbon accumulations exists, [...] Read more.
Globally, deep-water reservoir systems are comprised of a variety of traps. Lateral and downdip trapping features include sand pinch-outs, truncation against salt or shale diapirs, and monoclinal dip or faulting with any combination of trapping designs; the potential for massive hydrocarbon accumulations exists, representing significant exploration prospects across the planet. However, deep-water turbidites and submarine fans are two different types of traps, which are developed along the upslope and the basin floor fans. Among these two traps, the basin floor fans are the most prolific traps as they are not influenced by sea-level rise, which distorts the seismic signals, and hence provides ambiguous seismic signatures to predict them as hydrocarbon-bearing zones for future explorations. Therefore, the deep-water channel-levee sand systems and basin floor fans sandstone define economically viable stratigraphic plays. The subsurface variability is significant, and hence, characterizing the thick (porous) channelized-basin floor fans reservoir is a challenge for the exploitation of hydrocarbons. This study aims to develop seismic-based attributes and wedge modeling tools to accurately resolve and characterize the porous and gas-bearing reservoirs using high-resolution seismic-based profiles, in SW Pakistan. The reflection strength slices better delineate the geomorphology of sand-filled channelized-basin floor fans as compared to the instant frequency magnitudes. This stratigraphic prospect has an area of 1180 km2. The sweetness magnitudes predict the thickness of channelized-basin floor fans as 33 m, faults, and porous lithofacies that complete a vital petroleum system. The wedge modeling also acts as a direct hydrocarbon indicator (DHI) and, hence, should be incorporated into conventional stratigraphic exploration schemes for de-risking stratigraphic prospects. The wedge model resolves a 26-m thick hydrocarbon-bearing channelized-basin floor fans lens with a lateral distribution of ~64 km. Therefore, this wedge model provides ~75% correlation of the thickness of the LSL as measured by sweetness magnitudes. The thickness of shale that serves as the top seal is 930 m, the lateral mud-filled canyons are 1190 m, and the thick bottom seal is ~10 m, which provides evidence for the presence of a vibrant petroleum play. Hence, their reveals bright opportunities to exploit the economically vibrant stratigraphic scheme inside the OIB and other similar global depositional systems. Full article
(This article belongs to the Special Issue Coastal and Continental Shelf Dynamics in a Changing Climate II)
Show Figures

Figure 1

17 pages, 26225 KB  
Article
Characterizing a Wedged Chalk Prospect in the Danish Central Graben Using Direct Probabilistic Inversion
by Kenneth Bredesen, Ian Herbert, Florian Smit, Ask Frode Jakobsen, Peter Frykman and Anders Bruun
Geosciences 2022, 12(5), 194; https://doi.org/10.3390/geosciences12050194 - 29 Apr 2022
Viewed by 3330
Abstract
A novel direct probabilistic inversion using seismic pre-stack data as input to characterize a wedged chalk reservoir prospect was demonstrated from the Upper Cretaceous unit, Danish North Sea. The objective was to better resolve the lateral extent and pinch-out of the chalk prospect [...] Read more.
A novel direct probabilistic inversion using seismic pre-stack data as input to characterize a wedged chalk reservoir prospect was demonstrated from the Upper Cretaceous unit, Danish North Sea. The objective was to better resolve the lateral extent and pinch-out of the chalk prospect in a frontier exploration setting and compare the results with a more traditional deterministic inversion and geostatistical reservoir modeling. The direct probabilistic inversion results provided additional reservoir insights that were challenging to obtain from the more traditional workflows and are also more flexible for associated uncertainty assessments. Hence, this study demonstrates the usefulness of such direct probabilistic inversions even with suboptimal data availability. Full article
(This article belongs to the Special Issue Bayesian Inference and Its Application to Geophysical Inversion)
Show Figures

Figure 1

14 pages, 24796 KB  
Article
Chemical Characteristics of Ordovician Formation Water and Its Relationship with Hydrocarbons in Halahatang Depression, Tarim Basin, NW China
by Tong Xu, Chuanqing Zhu, Xiaoxue Jiang, Boning Tang, Xiang Wang, Haizu Zhang and Baoshou Zhang
Water 2022, 14(5), 756; https://doi.org/10.3390/w14050756 - 27 Feb 2022
Cited by 4 | Viewed by 3189
Abstract
The chemical characteristics of Ordovician formation water and its relationship with hydrocarbons in the Halahatang depression (Tabei Uplift, Tarim Basin, NW China) were analyzed on the basis of the detailed formation water test data. The formation water in the Halahatang depression can be [...] Read more.
The chemical characteristics of Ordovician formation water and its relationship with hydrocarbons in the Halahatang depression (Tabei Uplift, Tarim Basin, NW China) were analyzed on the basis of the detailed formation water test data. The formation water in the Halahatang depression can be characterized as CaCl2 type with high total dissolved solids (TDS) generally. The TDS concentration has a weak negative relationship with the depth, and is above 200 g/L in the North Region (north of the pinch-out line), then gradually decreases to the south, but is still greater than 50 g/L. The ion-proportionality coefficients of formation water, including the sodium-chlorine coefficient, desulfurization coefficient and metamorphic coefficient, reflect that the present strata are well sealed and had once experienced strong water-rock interactions. Furthermore, the source and evolution of the formation water presents a closed relationship with the hydrocarbon accumulation. The meteoric source of the formation water indicates the denuding by the Ordovician formation and the damage from the previous oil and gas reservoirs. The reservoir quality was also improved due to the strong karstification during the denudation, which was beneficial for hydrocarbon accumulation. The distribution of the TDS concentration is controlled by the caprock (Sangtamu Formation) and the high salinity fluids from overlying strata and adjacent regions. A geological model was established, the high salinity fluids penetrated the Ordovician strata resulting in the TDS increases in the northern part. Whereas, the South Region (south of the pinch-out line) was less affected due to the shielding layer of the O3s. The favorable preservation conditions reflected by the high TDS and ion-proportionality coefficients correspond to the stable subsidence of strata since the Triassic era, the oil and gas reservoirs formed in the Himalayan can be preserved. Full article
(This article belongs to the Special Issue Geochemistry of Mineral Groundwater)
Show Figures

Figure 1

19 pages, 1911 KB  
Article
Multi-Touch Interaction Generation Device by Spatiotemporally Switching Electrodes
by Masahiro Okamoto and Kazuya Murao
Electronics 2021, 10(12), 1475; https://doi.org/10.3390/electronics10121475 - 19 Jun 2021
Cited by 1 | Viewed by 3542
Abstract
With the spread of devices equipped with touch panels, such as smartphones, tablets, and laptops, the opportunity for users to perform touch interaction has increased. In this paper, we constructed a device that generates multi-touch interactions to realize high-speed, continuous, or hands-free touch [...] Read more.
With the spread of devices equipped with touch panels, such as smartphones, tablets, and laptops, the opportunity for users to perform touch interaction has increased. In this paper, we constructed a device that generates multi-touch interactions to realize high-speed, continuous, or hands-free touch input on a touch panel. The proposed device consists of an electrode sheet printed with multiple electrodes using conductive ink and a voltage control board, and generates eight multi-touch interactions: tap, double-tap, long-press, press-and-tap, swipe, pinch-in, pinch-out, and rotation, by changing the capacitance of the touch panel in time and space. In preliminary experiments, we investigated the appropriate electrode size and spacing for generating multi-touch interactions, and then implemented the device. From the evaluation experiments, it was confirmed that the proposed device can generate multi-touch interactions with high accuracy. As a result, tap, press-and-tap, swipe, pinch-in, pinch-out, and rotation can be generated with a success rate of 100%. It was confirmed that all the multi-touch interactions evaluated by the proposed device could be generated with high accuracy and acceptable speed. Full article
(This article belongs to the Special Issue Human–Computer Interaction: Information and Interaction Design)
Show Figures

Figure 1

21 pages, 26180 KB  
Article
Unique Path Method of the Pinch-Out Profile Based on Unified Stratigraphic Sequence
by Zhen Liu, Jin Luo, Xiangdong Wang, Weihua Ming and Cuiying Zhou
Geosciences 2021, 11(6), 251; https://doi.org/10.3390/geosciences11060251 - 10 Jun 2021
Cited by 3 | Viewed by 5767
Abstract
Pinch-outs refers to the gradual thinning of the thickness of the sedimentary layer laterally until there is no deposition and are a major topic of modern research on the automated drawing of geological profiles. The rapid development of smart geological systems imposed an [...] Read more.
Pinch-outs refers to the gradual thinning of the thickness of the sedimentary layer laterally until there is no deposition and are a major topic of modern research on the automated drawing of geological profiles. The rapid development of smart geological systems imposed an urgent need for high-speed, accurate methods to plot pinch-outs. However, because of their complexity, excessive number of branch paths, low rendering speed, and poor reliability in the case of large-scale data, the existing pinch-out drawing methods are inadequate and cannot satisfy the modeling needs of large-scale geological projects. To resolve these problems, based on unified stratigraphic sequences, this paper proposes a unique path method for drawing pinch-out profiles by converting the principle of plotting of pinch-outs into controlling the appearance of stratigraphic boundaries, and a high-speed and reliable method for drawing pinch-out in digital profiles is also proposed. The proposed method is successfully applied to drawing geological profiles for an urban geological project in East China, and greatly reduces the complexity of the method without reducing the drawing accuracy. Compared with those of other methods, the speed and reliability are significantly improved. Therefore, the unique path method for drawing pinch-out profiles based on a unified stratigraphic sequence proposed in the writers’ previous paper effectively avoids the excessive branch paths, slow speed, and insufficient reliability of the existing methods and provides effective and reliable support for the rapid drawing of profiles in smart geological systems. Full article
Show Figures

Figure 1

17 pages, 8178 KB  
Article
Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy)
by Claudio Argentino, Stefano Conti, Chiara Fioroni and Daniela Fontana
Geosciences 2019, 9(3), 134; https://doi.org/10.3390/geosciences9030134 - 20 Mar 2019
Cited by 26 | Viewed by 4595
Abstract
The occurrence of seep-carbonates associated with shallow gas hydrates is increasingly documented in modern continental margins but in fossil sediments the recognition of gas hydrates is still challenging for the lack of unequivocal proxies. Here, we combined multiple field and geochemical indicators for [...] Read more.
The occurrence of seep-carbonates associated with shallow gas hydrates is increasingly documented in modern continental margins but in fossil sediments the recognition of gas hydrates is still challenging for the lack of unequivocal proxies. Here, we combined multiple field and geochemical indicators for paleo-gas hydrate occurrence based on present-day analogues to investigate fossil seeps located in the northern Apennines. We recognized clathrite-like structures such as thin-layered, spongy and vuggy textures and microbreccias. Non-gravitational cementation fabrics and pinch-out terminations in cavities within the seep-carbonate deposits are ascribed to irregularly oriented dissociation of gas hydrates. Additional evidences for paleo-gas hydrates are provided by the large dimensions of seep-carbonate masses and by the association with sedimentary instability in the host sediments. We report heavy oxygen isotopic values in the examined seep-carbonates up to +6‰ that are indicative of a contribution of isotopically heavier fluids released by gas hydrate decomposition. The calculation of the stability field of methane hydrates for the northern Apennine wedge-foredeep system during the Miocene indicated the potential occurrence of shallow gas hydrates in the upper few tens of meters of sedimentary column. Full article
(This article belongs to the Special Issue Gas Hydrate: Environmental and Climate Impacts)
Show Figures

Figure 1

13 pages, 21940 KB  
Article
Diffraction Enhancement Through Pre-Image Processing: Applications to Field Data, Sarawak Basin, East Malaysia
by Yasir Bashir, Deva Prasad Ghosh, Hammad Tariq Janjuhah and Chow Weng Sum
Geosciences 2018, 8(2), 74; https://doi.org/10.3390/geosciences8020074 - 18 Feb 2018
Cited by 12 | Viewed by 7773
Abstract
The future exploration plans of the industry is to find a small-scale reservoir for possible economic hydrocarbon reserves. These reserves could be illuminated by the super-resolution of full seismic data, including fractured zones, pinch-outs, channel edges, small-scale faults, reflector unconformities, salt flanks, karst, [...] Read more.
The future exploration plans of the industry is to find a small-scale reservoir for possible economic hydrocarbon reserves. These reserves could be illuminated by the super-resolution of full seismic data, including fractured zones, pinch-outs, channel edges, small-scale faults, reflector unconformities, salt flanks, karst, caves and fluid fronts, which are generally known as small scattering objects. However, an imaging approach that includes the diffraction event individually and images it constitutes a new approach for the industry; it is known as diffraction imaging. This paper documents results of a seismic processing procedure conducted to enhance diffractions in Sarawak Basin, using datasets from the Malaysian Basin to which no diffraction processing has been applied. We observed that the diffraction amplitude achieves maximum value when the detector is positioned vertically above the end point of the reflector, but drops off with increasing offset-distance from the point. Furthermore, the rate of attenuation of the diffracted wave energy is greater than that of the normal reflected wave energy in the same medium. In addition, the results indicate that the near offset and far angle stack data provide better diffraction events. In the other hand far offset and near angle stack provides the poor diffraction response. These results were revealed by angle-stacking of near-, mid-, and far-offsets data (4.5, 22.5 and 31.5 degrees) that was conducted to study amplitude and phase change of the diffraction curve. The final imaged data provides better faults definition in the carbonate field data. Full article
Show Figures

Figure 1

Back to TopTop