Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = piezoelectric printheads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2569 KiB  
Article
Simulation Study of Ink Droplet Spraying Based on Sand 3D Printing
by Hailong Song, Ran Yan, Lei Xia, Qing Zhao and Qing Qiu
Micromachines 2025, 16(6), 621; https://doi.org/10.3390/mi16060621 - 25 May 2025
Viewed by 416
Abstract
To address the challenge of imprecise micro-droplet formation control in piezoelectric jetting devices used in sand mold 3D printing and apply on-demand inkjet printing technology to sand mold manufacturing, this study first explains the working principle of a piezoelectric shear-mode printhead. A mathematical [...] Read more.
To address the challenge of imprecise micro-droplet formation control in piezoelectric jetting devices used in sand mold 3D printing and apply on-demand inkjet printing technology to sand mold manufacturing, this study first explains the working principle of a piezoelectric shear-mode printhead. A mathematical model of the droplet ejection process is then established based on Computational Fluid Dynamics (CFD). Building upon this model, numerical simulations of droplet generation, breakup, and flight are conducted by using the Volume of Fluid (VOF) model within the Fluent module of the Workbench 2020 R2 platform. Finally, under consistent driving conditions, the effects of key parameters—viscosity, surface tension, and inlet velocity—on the ejection process are investigated through simulation. Based on the results, appropriate ranges and recommended values for ink properties are determined. This study provides significant engineering value for improving the stability and precision of droplet formation in industrial sand mold 3D printing. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

16 pages, 4781 KiB  
Article
Numerical Research on the Effects of Process Parameters on Microdroplet Jetting Characteristics by Piezoelectric Printhead
by Hong Liu, Ting Lei, Xiaohui Nan and Fan Peng
Appl. Sci. 2023, 13(7), 4452; https://doi.org/10.3390/app13074452 - 31 Mar 2023
Cited by 3 | Viewed by 1818
Abstract
The precision and consistency of the microdroplet jetting procedure are crucial for the casting sand mold’s performance during binder injection. The generation and jetting of microdroplets in piezoelectric printheads were examined in this study in relation to changes in specific jetting process parameters. [...] Read more.
The precision and consistency of the microdroplet jetting procedure are crucial for the casting sand mold’s performance during binder injection. The generation and jetting of microdroplets in piezoelectric printheads were examined in this study in relation to changes in specific jetting process parameters. Using finite element analysis and a simplified physical model of a microdroplet jetting device, an electromechanically coupled model of a microdroplet jetting device was created in order to study the characteristics of microdroplet jetting. A volume-of-fluid model was also created in order to study the microdroplet jetting process and perform repeatability tests. The effects of altering nozzle radius, actuation pulse width, intake velocity, and fluid viscosity on microdroplet jetting properties were then investigated using the models. We were able to control the development of satellite droplets thanks to the knowledge we gained about how each process parameter affected droplet status. This study demonstrates how the radius of the nozzle and the pulse width of the piezoelectric actuation signal have a significant impact on the jetting properties of piezoelectric printheads and the production of microdroplets. The quantitative correlations between process factors and jetting characteristics can be used to optimize microdroplet production and reduce droplet size. Finally, this study will help create control systems for microdroplet jetting operations and enhance the precision of 3D printed casting sand molds. Full article
Show Figures

Figure 1

13 pages, 4196 KiB  
Article
Waveform Design Method for Piezoelectric Print-Head Based on Iterative Learning and Equivalent Circuit Model
by Jianjun Wang, Chuqing Xiong, Jin Huang, Ju Peng, Jie Zhang and Pengbing Zhao
Micromachines 2023, 14(4), 768; https://doi.org/10.3390/mi14040768 - 30 Mar 2023
Cited by 8 | Viewed by 2354
Abstract
Piezoelectric print-heads (PPHs) are used with a variety of fluid materials with specific functions. Thus, the volume flow rate of the fluid at the nozzle determines the formation process of droplets, which is used to design the drive waveform of the PPH, control [...] Read more.
Piezoelectric print-heads (PPHs) are used with a variety of fluid materials with specific functions. Thus, the volume flow rate of the fluid at the nozzle determines the formation process of droplets, which is used to design the drive waveform of the PPH, control the volume flow rate at the nozzle, and effectively improve droplet deposition quality. In this study, based on the iterative learning and the equivalent circuit model of the PPHs, we proposed a waveform design method to control the volume flow rate at the nozzle. Experimental results show that the proposed method can accurately control the volume flow of the fluid at the nozzle. To verify the practical application value of the proposed method, we designed two drive waveforms to suppress residual vibration and produce smaller droplets. The results are exceptional, indicating that the proposed method has good practical application value. Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 4118 KiB  
Article
Influence of the Volatility of Solvent on the Reproducibility of Droplet Formation in Pharmaceutical Inkjet Printing
by Robert Mau and Hermann Seitz
Pharmaceutics 2023, 15(2), 367; https://doi.org/10.3390/pharmaceutics15020367 - 21 Jan 2023
Cited by 7 | Viewed by 2740
Abstract
Drop-on-demand (DOD) inkjet printing enables exact dispensing and positioning of single droplets in the picoliter range. In this study, we investigate the long-term reproducibility of droplet formation of piezoelectric inkjet printed drug solutions using solvents with different volatilities. We found inkjet printability of [...] Read more.
Drop-on-demand (DOD) inkjet printing enables exact dispensing and positioning of single droplets in the picoliter range. In this study, we investigate the long-term reproducibility of droplet formation of piezoelectric inkjet printed drug solutions using solvents with different volatilities. We found inkjet printability of EtOH/ASA drug solutions is limited, as there is a rapid forming of drug deposits on the nozzle of the printhead because of fast solvent evaporation. Droplet formation of c = 100 g/L EtOH/ASA solution was affected after only a few seconds by little drug deposits, whereas for c = 10 g/L EtOH/ASA solution, a negative affection was observed only after t = 15 min, while prominent drug deposits form at the printhead tip. Due to the creeping effect, the crystallizing structures of ASA spread around the nozzle but do not clog it necessarily. When there is a negative affection, the droplet trajectory is affected the most, while the droplet volume and droplet velocity are influenced less. In contrast, no formation of drug deposits could be observed for highly concentrated, low volatile DMSO-based drug solution of c = 100 g/L even after a dispensing time of t = 30 min. Therefore, low volatile solvents are preferable to highly volatile solvents to ensure a reproducible droplet formation in long-term inkjet printing of highly concentrated drug solutions. Highly volatile solvents require relatively low drug concentrations and frequent printhead cleaning. The findings of this study are especially relevant when high droplet positioning precision is desired, e.g., drug loading of microreservoirs or drug-coating of microneedle devices. Full article
(This article belongs to the Collection Feature Papers in Pharmaceutical Technology)
Show Figures

Graphical abstract

15 pages, 4604 KiB  
Article
Development of an Inkjet Setup for Printing and Monitoring Microdroplets
by Beatriz Cavaleiro de Ferreira, Tiago Coutinho, Miguel Ayala Botto and Susana Cardoso
Micromachines 2022, 13(11), 1878; https://doi.org/10.3390/mi13111878 - 31 Oct 2022
Cited by 5 | Viewed by 2477
Abstract
Inkjet printing is a digitally controlled additive technology that allows the precise deposition of droplets. Because it is additive, it enables geometries usually unattainable by other technologies. Because it is digitally controlled, its output is easily modulated, even during operation. Combined with the [...] Read more.
Inkjet printing is a digitally controlled additive technology that allows the precise deposition of droplets. Because it is additive, it enables geometries usually unattainable by other technologies. Because it is digitally controlled, its output is easily modulated, even during operation. Combined with the development of functional materials and their micrometer precision, it can be applicable in a wide range of fields beyond the traditional graphic industry, such as medical diagnosis, electronics manufacturing, and the fabrication of microlenses. In this work, a solution based on open-source hardware and software was implemented instead of choosing a commercial alternative, making the most of inkjet flexibility in terms of inks, substrates, and actuation signal. First, a piezoelectric printhead from MicroFab, driven by an ArduinoDue, was mounted in a 3D printer adapted to ensure precise movement in three dimensions. Then, a monitoring system using a USB digital microscope and a computational algorithm was integrated. Both systems combined allow the printing and measurement of microdroplets by digital regulation of a unipolar signal. Finally, based on a theoretical model and a set of experimentally collected samples, the curve that relates the unipolar signal amplitude to the size of the microdroplets was estimated with an acceptable range of prediction uncertainty. Full article
(This article belongs to the Special Issue Recent Advances in Inkjet Technology)
Show Figures

Figure 1

14 pages, 7092 KiB  
Article
Squeeze-Type Piezoelectric Inkjet Printhead Actuating Waveform Design Method Based on Numerical Simulation and Experiment
by Ning Liu, Xianjun Sheng, Mingcong Zhang, Wei Han and Kexin Wang
Micromachines 2022, 13(10), 1695; https://doi.org/10.3390/mi13101695 - 9 Oct 2022
Cited by 13 | Viewed by 2908
Abstract
The piezoelectric inkjet printing technique has been commonly used to produce conductive graphics. In this paper, a trapezoidal waveform design method for squeeze-type piezoelectric inkjet printhead is presented to provide a modified steady ejection and optimal droplet shape, in which a coupled multi-physics [...] Read more.
The piezoelectric inkjet printing technique has been commonly used to produce conductive graphics. In this paper, a trapezoidal waveform design method for squeeze-type piezoelectric inkjet printhead is presented to provide a modified steady ejection and optimal droplet shape, in which a coupled multi-physics model of a piezoelectric inkjet printhead is developed. This research describes the effects of parameters, including rising time tr, falling time tf, and dwelling time td, of the trapezoidal waveform on the pressure at the nozzle through numerical simulations. These parameters are initially optimized based on numerical simulations and further optimized based on experimental results. When the printhead is actuated by the optimized waveform with the tr = 5 µs, td = 10 µs, and tf = 2 µs, the droplets are in optimal shape, and their size is about half the diameter of the nozzle. The experimental results validate the efficacy of this waveform design method, which combines numerical simulation and experiment, as well as demonstrating that ink droplet formation can be studied from the point of pressure variation at the nozzle. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

22 pages, 1281 KiB  
Article
A Multi-Fidelity Model for Simulations and Sensitivity Analysis of Piezoelectric Inkjet Printheads
by Vinh-Tan Nguyen, Jason Yu Chuan Leong, Satoshi Watanabe, Toshimitsu Morooka and Takayuki Shimizu
Micromachines 2021, 12(9), 1038; https://doi.org/10.3390/mi12091038 - 29 Aug 2021
Cited by 6 | Viewed by 3170
Abstract
The ink drop generation process in piezoelectric droplet-on-demand devices is a complex multiphysics process. A fully resolved simulation of such a system involves a coupled fluid–structure interaction approach employing both computational fluid dynamics (CFD) and computational structural mechanics (CSM) models; thus, it is [...] Read more.
The ink drop generation process in piezoelectric droplet-on-demand devices is a complex multiphysics process. A fully resolved simulation of such a system involves a coupled fluid–structure interaction approach employing both computational fluid dynamics (CFD) and computational structural mechanics (CSM) models; thus, it is computationally expensive for engineering design and analysis. In this work, a simplified lumped element model (LEM) is proposed for the simulation of piezoelectric inkjet printheads using the analogy of equivalent electrical circuits. The model’s parameters are computed from three-dimensional fluid and structural simulations, taking into account the detailed geometrical features of the inkjet printhead. Inherently, this multifidelity LEM approach is much faster in simulations of the whole inkjet printhead, while it ably captures fundamental electro-mechanical coupling effects. The approach is validated with experimental data for an existing commercial inkjet printhead with good agreement in droplet speed prediction and frequency responses. The sensitivity analysis of droplet generation conducted for the variation of ink channel geometrical parameters shows the importance of different design variables on the performance of inkjet printheads. It further illustrates the effectiveness of the proposed approach in practical engineering usage. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 1726 KiB  
Communication
Modelling of Power-Law Fluid Flow Inside a Piezoelectric Inkjet Printhead
by Ju Peng, Jin Huang and Jianjun Wang
Sensors 2021, 21(7), 2441; https://doi.org/10.3390/s21072441 - 1 Apr 2021
Cited by 7 | Viewed by 3215
Abstract
Piezoelectric three-dimensional inkjet printing has been used to manufacture heterogeneous objects due to its high level of flexibility. The materials used are non-Newtonian inks with complex rheological properties, and their behavior in the context of inkjet printing has not been fully understood: for [...] Read more.
Piezoelectric three-dimensional inkjet printing has been used to manufacture heterogeneous objects due to its high level of flexibility. The materials used are non-Newtonian inks with complex rheological properties, and their behavior in the context of inkjet printing has not been fully understood: for example, the fact that the shear-thinning viscosity affects the droplet generation. Therefore, a control strategy coping with shear-thinning behaviors is needed to ensure printing consistency. In this paper, a novel model-based approach is presented to describe the shear-thinning ink dynamics inside the piezoelectric inkjet printhead, which provides the basis to design the excitation parameters in a systematic way. The dynamic equation is simplified into a quasi-one-dimensional equation through the combination of the boundary layer theory and the constitutive equation of the power-law fluid, of which the viscosity is shear-thinning. Based on this, a nonlinear time-varying equivalent circuit model is presented to simulate the power-law fluid flow rate inside the tube. The feasibility and effectiveness of this model can be evaluated by comparing the results of computational fluid dynamics and the experimental results. Full article
(This article belongs to the Special Issue 3D Printed Microfluidic Devices)
Show Figures

Figure 1

14 pages, 9372 KiB  
Article
Actuating Voltage Waveform Optimization of Piezoelectric Inkjet Printhead for Suppression of Residual Vibrations
by Muhammad Ali Shah, Duck-Gyu Lee, Bo Yeon Lee, Nam Woon Kim, Hyojin An and Shin Hur
Micromachines 2020, 11(10), 900; https://doi.org/10.3390/mi11100900 - 29 Sep 2020
Cited by 30 | Viewed by 4424
Abstract
After a piezoelectric inkjet printhead jets the first droplet, the actuating membrane still vibrates, creating residual vibrations in the ink channel, which can degrade the inkjet printhead performance. For suppressing these vibrations, an optimized actuating voltage waveform with two pulses must be obtained, [...] Read more.
After a piezoelectric inkjet printhead jets the first droplet, the actuating membrane still vibrates, creating residual vibrations in the ink channel, which can degrade the inkjet printhead performance. For suppressing these vibrations, an optimized actuating voltage waveform with two pulses must be obtained, of which the first pulse is used for jetting and the second pulse is used to suppress the residual vibrations. In this study, the pressure history within the ink channel of a recirculating piezoelectric inkjet printhead was first acquired using lumped element modeling. Then, for suppressing residual vibrations, a bipolar voltage waveform was optimized via analysis of the tuning time (tt ), dwell time (td2), rising time (tr2), falling time (tf2), and voltage amplitude of the second pulse. Two voltage waveforms, Waveform 01 and Waveform 02, were optimized thereafter. In Waveform 01, tt=2 μs, td2=2 μs, and tr2 and tf2=1 μs were finalized as the optimal parameters; in the case of another waveform, the optimal parameters of td2, tr2, and tf2 were found to be 4, 1, and 1 μs, respectively. The optimal voltage amplitude of the second pulse was found to be 1/3 the amplitude of the first pulse. On the basis of our analysis, the tuning time in Waveform 01 is the most sensitive parameter, and the performance yielded is even poorer than that yielded by standard waveform, if not optimized. Therefore, the other waveform is recommended for the suppression of residual vibrations. Full article
Show Figures

Figure 1

13 pages, 2678 KiB  
Article
The Research on Multi-Material 3D Vascularized Network Integrated Printing Technology
by Shuai Yang, Hao Tang, Chunmei Feng, Jianping Shi and Jiquan Yang
Micromachines 2020, 11(3), 237; https://doi.org/10.3390/mi11030237 - 25 Feb 2020
Cited by 12 | Viewed by 3749
Abstract
Three-dimensional bioprinting has emerged as one of the manufacturing approaches that could potentially fabricate vascularized channels, which is helpful to culture tissues in vitro. In this paper, we report a novel approach to fabricate 3D perfusable channels by using the combination of extrusion [...] Read more.
Three-dimensional bioprinting has emerged as one of the manufacturing approaches that could potentially fabricate vascularized channels, which is helpful to culture tissues in vitro. In this paper, we report a novel approach to fabricate 3D perfusable channels by using the combination of extrusion and inkjet techniques in an integrated manufacture process. To achieve this, firstly we investigate the theoretical model to analyze influencing factors of structural dimensions of the printed parts like the printing speed, pressure, dispensing time, and voltage. In the experiment, photocurable hydrogel was printed to form a self-supporting structure with internal channel grooves. When the desired height of hydrogel was reached, the dual print-head was switched to the piezoelectric nozzle immediately, and the sacrificial material was printed by the changed nozzle on the printed hydrogel layer. Then, the extrusion nozzle was switched to print the next hydrogel layer. Once the printing of the internal construct was finished, hydrogel was extruded to wrap the entire structure, and the construct was immersed in a CaCl2 solution to crosslink. After that, the channel was formed by removing the sacrificial material. This approach can potentially provide a strategy for fabricating 3D vascularized channels and advance the development of culturing thick tissues in vitro. Full article
(This article belongs to the Special Issue 10th Anniversary of Micromachines)
Show Figures

Figure 1

19 pages, 5099 KiB  
Article
Design and Characteristic Analysis of a MEMS Piezo-Driven Recirculating Inkjet Printhead Using Lumped Element Modeling
by Muhammad Ali Shah, Duck-Gyu Lee and Shin Hur
Micromachines 2019, 10(11), 757; https://doi.org/10.3390/mi10110757 - 6 Nov 2019
Cited by 17 | Viewed by 5355
Abstract
The recirculation of ink in an inkjet printhead system keeps the ink temperature and viscosity constant, and leads to the development of a high-performance device. Herein, we propose a recirculating piezo-driven micro-electro-mechanical system (MEMS)-based inkjet printhead that has a pressure chamber, a nozzle, [...] Read more.
The recirculation of ink in an inkjet printhead system keeps the ink temperature and viscosity constant, and leads to the development of a high-performance device. Herein, we propose a recirculating piezo-driven micro-electro-mechanical system (MEMS)-based inkjet printhead that has a pressure chamber, a nozzle, and double restrictors. The design and characteristic analysis are performed using a two-port lumped element model (LEM) to investigate the effect of design parameters on the system responses. Using LEM, the jetting pressure at the pressure chamber, velocity at the nozzle inlet, meniscus pressure, and Helmholtz resonance frequency are predicted and the comparative analysis of the jetting pressure and velocity between LEM and the finite element method (FEM) simulation is conducted to validate our proposed LEM method. Furthermore, the effect of a change in major design parameters on the jetting pressure, velocity, and Helmholtz resonance frequency is analyzed. On the basis of this analysis, the optimized device dimensions are finalized. From our analysis, it is also concluded that the restrictor is more sensitive than the pressure chamber in terms of their variations in depth. As the cross-talk effect can occur due to an array of hundreds or thousands of nozzles, we investigated the effect of a single activated nozzle on the non-activated neighboring nozzles, as well as the effect of multi-activated nozzles on a single central nozzle using our proposed LEM. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Back to TopTop