Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = piezocone penetration test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4489 KiB  
Article
CPTU-Based Offshore Wind Monopile Rigid Bearing Mechanism Analysis
by Jie Zhou, Renjie Gu, Panpan Shen, Chengjun Liu, Zeyao Li, Kefan Zhu and Zhenming Shi
J. Mar. Sci. Eng. 2025, 13(1), 130; https://doi.org/10.3390/jmse13010130 - 13 Jan 2025
Cited by 1 | Viewed by 920
Abstract
With the development of the offshore wind industry in China, the amount of offshore wind turbines has increased rapidly. Large-diameter steel monopile foundations of offshore wind turbines have been widely adopted in China with lots of marine clay located. However, the conventional offshore [...] Read more.
With the development of the offshore wind industry in China, the amount of offshore wind turbines has increased rapidly. Large-diameter steel monopile foundations of offshore wind turbines have been widely adopted in China with lots of marine clay located. However, the conventional offshore wind monopile bearing capacity prediction from the American Petroleum Institute (API) based on the small-diameter flexible pile field test is inaccurate with the rigid mechanism of large-diameter monopile causing economically loss. The piezocone penetration test (CPTU) is a common marine in situ test to exactly acquire soil parameters. Therefore, a CPTU-based offshore wind monopile rigid mechanism inference method is proposed. A creative numerical offshore wind power monopile and CPTU combined model is established through COMSOL. A self-compiling parameter function is applied to soil modeling and an innovative mobile boundary function is created to simulate CPTU penetration. Through the model, real-time CPTU data can be acquired when monopile is applied with different horizontal loads. The peripile soil stress change can be timely detected by CPTU. Through CPTU data, the monopile rigid bearing mechanism is verified. A rigid rotation center is found at the 60% point of the inserted monopile. The method is an important foundation for the next step of monopile bearing capacity research. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 5903 KiB  
Article
Study on the Influence of Pile Installation Disturbance on the Settlement of Composite Foundation
by Zhiwei Shao, Baoning Hong, Xin Liu, Yunlong Yao, Dongning Sun and Guisen Wang
Appl. Sci. 2025, 15(2), 602; https://doi.org/10.3390/app15020602 - 9 Jan 2025
Cited by 1 | Viewed by 1012
Abstract
The disturbance generated during the pile installation process increased the compressibility of the soil between the piles, thereby causing additional settlement of the composite foundation. This study was conducted against the background of a highway soft foundation treatment project in Zhongshan. Before and [...] Read more.
The disturbance generated during the pile installation process increased the compressibility of the soil between the piles, thereby causing additional settlement of the composite foundation. This study was conducted against the background of a highway soft foundation treatment project in Zhongshan. Before and after the installation of cement mixing piles (CMP) and pre-stressed high-strength concrete pipe pile (PHC), a piezocone penetration test (CPTU) was applied to assess the soil between the piles and quantify the disturbance. Based on this, the settlement of the composite foundation was predicted using the stress modified method and finite element method (FEM). The results indicate that under low embankment load (<2.5 m), the installation of PHC piles reduces the compression modulus of the soil between the piles by approximately 30%, while CMP results in a reduction of about 10%. Disturbance settlement from CMP and PHC piles accounts for approximately 3–10% and 17–28% of the total settlement, respectively. This impact diminishes with the increase of embankment load. Full article
Show Figures

Figure 1

22 pages, 9178 KiB  
Article
Geomechanical Characterization of a Brazilian Experimental Site: Testing, Interpretation, and Material Properties
by Jair de Jesús Arrieta Baldovino, Yamid E. Nuñez de la Rosa and Marcos Massao Futai
Appl. Sci. 2024, 14(13), 5656; https://doi.org/10.3390/app14135656 - 28 Jun 2024
Viewed by 1188
Abstract
Clarity in monitoring existing foundation structures demands innovative safety analysis methodologies for deep foundations, necessitating advanced models calibrated with real-world field parameters. Understanding controlled conditions, including geotechnical profiles, seismic attributes, and soil mechanics, is crucial. A dedicated research group at the University of [...] Read more.
Clarity in monitoring existing foundation structures demands innovative safety analysis methodologies for deep foundations, necessitating advanced models calibrated with real-world field parameters. Understanding controlled conditions, including geotechnical profiles, seismic attributes, and soil mechanics, is crucial. A dedicated research group at the University of São Paulo spent three years refining these conditions, characterizing an experimental field along a canal in São Paulo. This study pioneers geotechnical and geomechanical characterization of the region’s tertiary sediments in São Paulo, offering valuable insights for current and future applications. Standard penetration tests with torque (SPT-Torque), piezocone tests (CPTu), and measurement of wave velocity (Vs) with piezocone tests (S-CPTu) were carried out. The exploration of the subsoil shows that in up to 2 m of excavation, there are clays and silts, and in up to 25 m, there is a significant layer of compact fine sand that has high values of tip resistance and wave velocities more significant than 100 m/s. In the electric cone tests, the abacus used displayed a reasonable classification. All propositions identified the transition from the surface soil to the sandy soil at between 3 and 25 m. The soil classification values were obtained with the data of the field parameters, and the geotechnical and mechanical parameters were estimated. No differences were detected among the values found in the SPT-T and CPTu tests for the values obtained via cone resistance. This demonstrates the reliability of both methods. In addition, using the CPTu test to identify the stratigraphic profile horizons employing the soil’s mechanical behavior when the cone is driven proved appropriate. Full article
Show Figures

Figure 1

14 pages, 3950 KiB  
Article
A Novel Method for Estimating the Undrained Shear Strength of Marine Soil Based on CPTU Tests
by Sai Fu, Yanghai Shen, Xianlin Jia, Zhiqing Zhang and Xibin Li
J. Mar. Sci. Eng. 2024, 12(6), 1019; https://doi.org/10.3390/jmse12061019 - 19 Jun 2024
Cited by 2 | Viewed by 2158
Abstract
The undrained shear strength is an essential parameter in the foundation design of marine structures. Due to the complex marine environment and technical limitations, it is difficult and costly to obtain offshore samples. Piezocone penetration tests (CPTU) are relatively low-cost compared to drilling [...] Read more.
The undrained shear strength is an essential parameter in the foundation design of marine structures. Due to the complex marine environment and technical limitations, it is difficult and costly to obtain offshore samples. Piezocone penetration tests (CPTU) are relatively low-cost compared to drilling and sampling methods. Therefore, based on the soil behavior type index (Ic) derived from CPTU results, a model for estimating cone factors (Nkt, Nke) is proposed to improve the accuracy of estimation of undrained shear strength. The result shows that the soil behavior type index (Ic) and cone factors take on a negatively correlated exponential relation. Incorporating a cone factor that varies with the soil behavior type index (Ic) significantly enhances the accuracy of undrained shear strength predictions compared to the conventional method of using a constant cone factor. This approach reduces the root mean square error (RMSE) for Nkt (Nke) from 0.124 (0.126) MPa to 0.056 (0.06) MPa, and the mean absolute error (MAE) from 0.0154 (0.016) MPa to 0.0032 (0.0036) MPa. The method was validated at an additional location and the predictions were in high agreement with the results of the consolidated quick direct shear test. The developed method can serve as an effective tool used in the design of foundations of marine structures. Full article
Show Figures

Figure 1

23 pages, 27417 KiB  
Article
Comparison of the Piezocone Penetrometer (CPTU) and Flat Dilatometer (DMT) Methods for Landslide Characterisation
by Kristijan Grabar, Jasmin Jug, Anja Bek and Stjepan Strelec
Geosciences 2024, 14(3), 64; https://doi.org/10.3390/geosciences14030064 - 26 Feb 2024
Cited by 2 | Viewed by 2139
Abstract
The increasing occurrence of landslides worldwide causes many human casualties and huge socio-economic losses. Therefore, the fastest and most accurate characterisation of landslides is important. The objective of this study is to compare how well the flat dilatometer (DMT) test and the piezocone [...] Read more.
The increasing occurrence of landslides worldwide causes many human casualties and huge socio-economic losses. Therefore, the fastest and most accurate characterisation of landslides is important. The objective of this study is to compare how well the flat dilatometer (DMT) test and the piezocone penetration (CPTU) test can find the depth of a sliding zone. Inclinometers were used to measure horizontal changes in the soil to ensure the depth of the sliding zone was correct. The coincidence of the results of in situ static probes, and the displacements of the inclinometers is a sure confirmation of the depth of the sliding zone. In the example of Bedekovčina and Kravarsko landslides, in situ static probes were used to obtain values of input parameters on the sliding zone for parametric sensitivity analysis of parameters. Sensitivity analysis was performed by plotting the relationship between the above parameters and the vertical effective stress σ′vo on the sliding zone. The sensitivity analysis of the parameters of 11 tested samples shows that for the parameters of the obtained DMT probe, a higher sensitivity of the parameters is obtained, closer to the values concerning the expected range, and a minor standard deviation. The parameter Kd obtained by dilatometer probing is the best indicator of the depth of the sliding zone. The literature value Kd = 1.8–2.0 on the sliding zone in this paper is extended to the range Kd = 1.8–2.5, and its detection sensitivity is influenced by over-consolidation in shallow soil layers. In general, the research results show that the dilatometer probe has an advantage over the piezocone penetrometer test for the needs of landslide characterisation. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation)
Show Figures

Figure 1

21 pages, 12047 KiB  
Article
Tailings Behavior Assessment Using Piezocone Penetration Test
by Magdalena Wróżyńska
Minerals 2024, 14(2), 208; https://doi.org/10.3390/min14020208 - 18 Feb 2024
Cited by 3 | Viewed by 2017
Abstract
Intensive economic development is associated with an increasing demand for raw materials, including minerals. An illustrative example of this issue is the development of the copper industry. A significant problem arising from the scale of copper production is the management of an ever-growing [...] Read more.
Intensive economic development is associated with an increasing demand for raw materials, including minerals. An illustrative example of this issue is the development of the copper industry. A significant problem arising from the scale of copper production is the management of an ever-growing amount of post-flotation tailings. This necessitates the need to ensure the continuity of safe storage. This study presents the results of studies on the behavior of deposits in the Żelazny Most Tailings Storage Facility (Poland). The primary objective of this study was to estimate the settlements of tailings under variable deposition conditions. The results were assessed using two methods: indirect and direct; this was based on cone penetration test (CPTU) results. The results were verified using Modified Cam Clay (MCC) modeling. Depending on the type of test, settlements ranged from several dozen centimeters to over three meters. Despite the observed differences, the results of both CPTU methods indicate a convergent trend in tailings behavior. Conversely, the results estimated using the direct method and numerical modeling demonstrate a high level of agreement. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

17 pages, 6811 KiB  
Article
An Analytical Study on Penetration and Pore Pressure Dissipation of Piezocone Test in Typical Normally and Over-Consolidated Silty Clays
by Shenggui Deng, Yan Zhang, Jun Han, Kaidi Wang, Zhuangcai Tian and Tao Liu
Appl. Sci. 2023, 13(6), 3797; https://doi.org/10.3390/app13063797 - 16 Mar 2023
Cited by 2 | Viewed by 1963
Abstract
The degree of the over-consolidation ratio (OCR) of silty clay affects the soil’s mechanical properties and in situ test results. The present study utilized numerical analysis to investigate the behavior of cone penetration and pore pressure dissipation in typical silty clay soils, while [...] Read more.
The degree of the over-consolidation ratio (OCR) of silty clay affects the soil’s mechanical properties and in situ test results. The present study utilized numerical analysis to investigate the behavior of cone penetration and pore pressure dissipation in typical silty clay soils, while also taking into account the impact of the over-consolidation ratio (OCR). Effective stress finite-element analyses, which accounted for considerable deformation, were carried out at various OCRs. The model assumed the soil as a homogeneous material obeying the modified Cam Clay (MCC) model. The significant advance of this work is the evaluation of the effect of OCR on penetration resistance and pore pressure test data and the calculation formula of OCR and ch in typical silty clay. An inversion method based on the results of piezocone penetration tests was proposed in terms of strength and the over-consolidation ratio of the silty clay, which is of great importance for the inversion of soil parameters in the Yellow River Delta region. This paper presents a consolidation coefficient inversion method of typical normally and over-consolidated silty clays and corrected the disadvantage that traditional conversion methods could not take OCR effects into account. Full article
(This article belongs to the Special Issue State-of-Art of Soil Dynamics and Geotechnical Engineering)
Show Figures

Figure 1

21 pages, 6516 KiB  
Article
Study on Mechanical Properties of Permeable Polymer Treated Loess
by Weifan Zhao, Chengchao Guo, Chaojie Wang, Yuke Wang and Lina Wang
Materials 2022, 15(19), 6647; https://doi.org/10.3390/ma15196647 - 25 Sep 2022
Cited by 12 | Viewed by 1868
Abstract
The reinforcement and durability of loess are of great importance for road performance. In this study, a self-designed grouting system and newly permeable polymers were adopted to investigate the mechanical properties and durability of solidified loess (SL), considering different dry densities and water [...] Read more.
The reinforcement and durability of loess are of great importance for road performance. In this study, a self-designed grouting system and newly permeable polymers were adopted to investigate the mechanical properties and durability of solidified loess (SL), considering different dry densities and water contents. The unconfined compression test and piezocone penetration (CPTU) test were used to examine the mechanical properties. The mechanism of the loess solidified by permeable polymer was analyzed from the micro-level by SEM, MIP, and XRD tests. The test results show that the effect of polymer grouting is obvious, the unconfined compressive strength (UCS) of the SL after grouting is as high as 3.05–5.42 MPa; it is 11.83–20.99 times that of unsolidified loess (UL). The UCS of the SL after grouting is inversely proportional to the dry densities and water contents. After 56 days of immersion, the SL still shows a high compressive strength. The additional erosion of the SL was not caused by the salt solution; the durability is significantly better than that of cement mixing soil. The sensitivity of various factors on the UCS of the SL are service environment > water content > dry density. The SEM tests clearly show that the gel formed by the reaction of the polymer with water on the surface of soil particles makes the bond of soil particles tighter. It can be observed from the MIP test that the cumulative mercury of SL was 0.115 mL/g, which was 33.72% of UL (0.341 mL/g), and the cumulative mercury of SL after immersion in water and salt solutions was 0.183 mL/g and 0.175 mL/g, which was 53.7% and 51.3% of UL (0.341 mL/g), respectively. The XRD results show that there are no other new mineral components produced after grouting and the spacing between crystalline planes decreases, which proves that permeable polymer grouting makes the soil denser and does not erode the soil particles. Full article
Show Figures

Figure 1

16 pages, 5155 KiB  
Article
Soil Classification from Piezocone Penetration Test Using Fuzzy Clustering and Neuro-Fuzzy Theory
by Joon-Shik Moon, Chan-Hong Kim and Young-Sang Kim
Appl. Sci. 2022, 12(8), 4023; https://doi.org/10.3390/app12084023 - 15 Apr 2022
Cited by 2 | Viewed by 2605
Abstract
The advantage of the piezocone penetration test is a guarantee of continuous data, which are a source of reliable interpretation of the target soil layer. Much research has been carried out for several decades, and several classification charts have been developed to classify [...] Read more.
The advantage of the piezocone penetration test is a guarantee of continuous data, which are a source of reliable interpretation of the target soil layer. Much research has been carried out for several decades, and several classification charts have been developed to classify in situ soil from the cone penetration test result. Even though most present classification charts or methods were developed on the basis of data which were compiled over many countries, they should be verified to be feasible for local country. However, unfortunately, revision of those charts is quite difficult or almost impossible even though a chart provides misclassified soil class. In this research, a new method for developing soil classification model is proposed by using soft computing theory—fuzzy C-mean clustering and neuro-fuzzy theory—as a function of 5173 piezocone penetration test (PCPT) results and soil boring logs compiled from 17 local sites around Korea. Feasibility of the proposed soil classification model was verified from the viewpoint of accuracy of the classification result by comparing the classification results not only for data which were used for developing the model but also new data, which were not included in developing the model with real boring logs, other fuzzy computing classification models, and Robertson’s charts. The biggest advantage of the proposed method is that it is easy to make the piezocone soil classification system more accurate by updating new data. Full article
(This article belongs to the Special Issue Novel Hybrid Intelligence Techniques in Engineering)
Show Figures

Figure 1

14 pages, 4203 KiB  
Article
Pore Pressure Response and Dissipation of Piezocone Test in Shallow Silty Soil of Yellow River Delta
by Yan Zhang, Xiuli Feng, Shenggui Deng, Chenhao Ding and Tao Liu
J. Mar. Sci. Eng. 2022, 10(2), 255; https://doi.org/10.3390/jmse10020255 - 13 Feb 2022
Cited by 4 | Viewed by 2757
Abstract
Soil dilatancy and partial drainage have great influence on the consolidation coefficient assessment of silty soils with clay content of less than 30% in the Yellow River Delta using the CPTu. This paper discussed the effect of soil dilatancy and partial drainage on [...] Read more.
Soil dilatancy and partial drainage have great influence on the consolidation coefficient assessment of silty soils with clay content of less than 30% in the Yellow River Delta using the CPTu. This paper discussed the effect of soil dilatancy and partial drainage on the pore pressure response and dissipation of piezocone test in shallow silty soil of the Yellow River Delta through variable penetration rate tests in a pressure chamber and a series of supplementary soil element tests. The results show that the pore pressure dissipation curve is affected by soil type and degree of consolidation. The soil dilatancy is the key factor affecting consolidation coefficient inversion of shallow silt and silty clays. The initial pore pressure is negative and the pore pressure increases to umax first, but the umax value is very small in the Yellow River Delta silt. The inversion method used for shear contractile soil cannot be used to invert the mechanical properties of shallow silty soil directly, and a new consolidation curve normalization method is proposed. This paper provides a reference for the consolidation coefficient inversion of CPTu data in the Yellow River Delta area. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

13 pages, 2532 KiB  
Article
Estimating Hydraulic Conductivity of Overconsolidated Soils Based on Piezocone Penetration Test (PCPT)
by Binyam M. Bekele, Chung R. Song, Gyunam Jin and Mark Lindemann
Infrastructures 2021, 6(3), 32; https://doi.org/10.3390/infrastructures6030032 - 28 Feb 2021
Cited by 1 | Viewed by 2887
Abstract
Overconsolidated (OC) soils may develop a low or negative pore pressure during PCPT. Thus, it is challenging to develop an “on-the-fly” estimation of hydraulic conductivity from PCPT results. This study presents a method to estimate the hydraulic conductivity of OC soils from PCPT [...] Read more.
Overconsolidated (OC) soils may develop a low or negative pore pressure during PCPT. Thus, it is challenging to develop an “on-the-fly” estimation of hydraulic conductivity from PCPT results. This study presents a method to estimate the hydraulic conductivity of OC soils from PCPT results based on a previously developed method for normally consolidated (NC) soils. To apply the existing method, PCPT pore pressure in OC soils is adjusted by using a correction factor. An equation for the correction factor is derived based on the concepts of critical state soil mechanics, cavity expansion, and consolidation theories. Then, it was reformulated so that traditional cone indices could be used as input parameters. It is shown that the correction factor is mainly influenced by the cone tip resistance, pore pressure, and the rigidity index. The comparison of predicted, which is based on corrected pore pressure and measured hydraulic conductivity showed a good match for four well documented data sets. With the findings of the study, it is expected that an “on-the-fly” estimation of hydraulic conductivity of overconsolidated soils is possible. Full article
(This article belongs to the Special Issue Urban Geotechnical Engineering)
Show Figures

Figure 1

25 pages, 7756 KiB  
Article
Implementation and Use of a Mechanical Cone Penetration Test Database for Liquefaction Hazard Assessment of the Coastal Area of the Tuscany Region
by Stefano Stacul, Aurora Magalotti, Massimo Baglione, Claudia Meisina and Diego Lo Presti
Geosciences 2020, 10(4), 128; https://doi.org/10.3390/geosciences10040128 - 2 Apr 2020
Cited by 4 | Viewed by 2908
Abstract
This paper describes the implementation and use of a mechanical cone penetration test (CPTm) database for the evaluation of the liquefaction potential in some areas of Tuscany. More specifically, the database contains 4500 CPTm covering an area of 1787 square km and mainly [...] Read more.
This paper describes the implementation and use of a mechanical cone penetration test (CPTm) database for the evaluation of the liquefaction potential in some areas of Tuscany. More specifically, the database contains 4500 CPTm covering an area of 1787 square km and mainly concerns some coastal areas of Tuscany. Available simplified liquefaction evaluation procedures (LEPs) are mainly based on piezocone CPT (CPTu) test results and not on CPTm. An early interest on developing LEPs with reference to CPTm became quite soon obsolete because of the widespread use of piezocone. Unfortunately, in Italy, the use of CPTm is very popular. After the 2012 seismic sequence of Emilia-Romagna, the use of CPTm for liquefaction risk analysis has seen a renewed interest, even though such a topic should require further studies. This paper shows an empirical approach for liquefaction triggering assessment by CPTm using existing LEPs, thus making possible the use of the developed CPTm database for the preliminary screening of the study area. Full article
Show Figures

Figure 1

17 pages, 7728 KiB  
Article
A Study on the Improvement Effect and Field Applicability of the Deep Soft Ground by Ground Heating Method
by Mincheol Park
Appl. Sci. 2018, 8(6), 852; https://doi.org/10.3390/app8060852 - 23 May 2018
Cited by 3 | Viewed by 4128
Abstract
The soft ground in coastal areas should be treated when it needs to be used for the sustainably developed of urban or industrial complex constructions. The ground heating method for soft ground improvement was applied in Eastern Europe in the 1960s, but it [...] Read more.
The soft ground in coastal areas should be treated when it needs to be used for the sustainably developed of urban or industrial complex constructions. The ground heating method for soft ground improvement was applied in Eastern Europe in the 1960s, but it was not widely used due to economic and environmental problems. The author developed a device for improving soft ground using an electric heating pipe. This paper investigates the improvement effect and field application of deep soft ground by the ground heating method using the electric heating pipe. Ground heating increases the temperature of the deep soft ground and increases the tip resistance of the static electronic piezo-cone penetration test. Additionally, the pressure of the pore water decreases because the pore water is evaporated due to the ground heating. As a result of the experiment, it was verified that there was an improvement in the effect of deep soft ground by the ground heating method. With ground heating for 96 h, the tip resistance was increased by 61% at a point 0.35 m horizontally away from the electric heat pipe, 22% at 0.97 m, and 2% at 1.31 m. As a result of the field test, it was found that there were no problems in the power supply of the diesel generator and the control panel. It was easy to install the electric heating pipes in the deep soft ground. However, due to boring, the ground was disturbed and water vapor was discharged through this gap. To minimize the discharge of water vapor, it is necessary to drive the electric heating pipe. Full article
(This article belongs to the Special Issue Sciences in Heat Pump and Refrigeration)
Show Figures

Figure 1

Back to TopTop