Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = pia mater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1946 KiB  
Interesting Images
Opercular Perivascular Space Mimicking a Space-Occupying Brain Lesion: A Short Case Series
by Roberts Tumelkans, Cenk Eraslan and Arturs Balodis
Diagnostics 2025, 15(12), 1486; https://doi.org/10.3390/diagnostics15121486 - 11 Jun 2025
Viewed by 503
Abstract
A newly recognized fourth type of perivascular space has recently been described in the radiological literature. Despite its growing relevance, many radiologists are still unfamiliar with its imaging characteristics, often leading to misinterpretation as cystic neoplasms. Due to its potential for diagnostic confusion, [...] Read more.
A newly recognized fourth type of perivascular space has recently been described in the radiological literature. Despite its growing relevance, many radiologists are still unfamiliar with its imaging characteristics, often leading to misinterpretation as cystic neoplasms. Due to its potential for diagnostic confusion, further studies are necessary—particularly those incorporating high-quality imaging examples across various presentations—to facilitate accurate recognition and classification. Perivascular spaces (PVSs) of the brain are cystic, fluid-filled structures formed by the pia mater and located alongside cerebral blood vessels, particularly penetrating arterioles, venules, and capillaries. Under normal conditions, these spaces are small (typically <2 mm in diameter), but in rare instances, they may become markedly enlarged (>15 mm), exerting a mass effect on adjacent brain tissue. This newly identified fourth type of PVS is found in association with the M2 and M3 segments of the middle cerebral artery, typically within the anterior temporal lobe white matter. It may mimic low-grade cystic tumors on imaging due to its size and frequent presence of surrounding perifocal edema. We present two adult male patients with this rare PVS variant. The first patient, a 63-year-old, had a brain magnetic resonance imaging scan (MRI) that revealed a cystic lesion in the white matter of the right temporal lobe anterior pole, near the middle cerebral artery M2 segment, with perifocal vasogenic edema. The second patient, a 67-year-old, had a brain MRI that showed a cystic lesion in the white matter and subcortical region of the right temporal lobe anterior pole, with minimal surrounding gliosis or minimal edema. The cystic lesions in both patients remained unchanged over time on follow-up MRI. These cases illustrate the radiological complexity of this under-recognized entity and emphasize the importance of differential diagnosis to avoid unnecessary intervention. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

24 pages, 3732 KiB  
Article
Acute Neurovascular Inflammatory Profile in Patients with Aneurysmal Subarachnoid Hemorrhage
by Ruby R. Taylor, Robert W. Keane, Begoña Guardiola, Raul Martí, Daniel Alegre, W. Dalton Dietrich, Jon Perez-Barcena and Juan Pablo de Rivero Vaccari
Biomolecules 2025, 15(5), 613; https://doi.org/10.3390/biom15050613 - 23 Apr 2025
Viewed by 742
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition that results from intracranial aneurysm rupture, leading to the accumulation of blood between the arachnoid and pia mater. The blood breakdown products and damage-associated molecule patterns (DAMPs), which are released as a result of vascular [...] Read more.
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition that results from intracranial aneurysm rupture, leading to the accumulation of blood between the arachnoid and pia mater. The blood breakdown products and damage-associated molecule patterns (DAMPs), which are released as a result of vascular and cellular compromise following aneurysm rupture, elicit local endothelial reactions leading to the narrowing of cerebral arteries and ischemia. In addition, vascular inflammation, characterized by activated endothelial cells, perpetuates disruption of the neurovascular unit and the blood–brain barrier. The uncertain prognosis of aSAH patients contributes to the necessity of a fluid biomarker that can serve as a valuable adjunct to radiological and clinical evaluation. Limited studies have investigated vascular inflammation and angiogenic protein expression following aSAH. Reliable markers of the vascular inflammatory and angiogenic response associated with aSAH may allow for the earlier detection of patients at risk for complications and aid in the identification of novel pharmacologic targets. We investigated whether vascular inflammatory and angiogenesis signaling proteins may serve as potential biomarkers of aSAH. Serum and cerebrospinal fluid (CSF) from fifteen aSAH subjects and healthy age-matched controls as well as hydrocephalus (CSF) no-aneurysm controls were evaluated for levels of vascular inflammatory and angiogenesis proteins. Protein measurement was carried out using electrochemiluminescence. The area under the curve (AUC) was calculated using receiver operating characteristics (ROC) to obtain information on biomarker reliability, specificity, sensitivity, cut-off points, and likelihood ratio. In addition, patients were grouped by Glasgow Outcome Score—Extended at 3 months post-injury to determine the correlation between vascular inflammatory protein levels and clinical outcome measures. aSAH subjects demonstrated elevated vascular inflammatory protein levels in serum and CSF when compared to controls. Certain vascular injury and angiogenic proteins were found to be promising biomarkers of inflammatory response in aSAH in the CSF and serum. In particular, elevated levels of serum amyloid-alpha (SAA) were found to be correlated with unfavorable outcomes following aSAH. Determination of these protein levels in CSF and serum in aSAH may be utilized as reliable biomarkers of inflammation in aSAH and used clinically to monitor patient outcomes. Full article
Show Figures

Figure 1

15 pages, 9374 KiB  
Article
Pathological Study of Demyelination with Cellular Reactions in the Cerebellum of Dogs Infected with Canine Distemper Virus
by José Manuel Verdes, Camila Larrañaga, Guillermo Godiño, Belén Varela, Victoria Yozzi, Victoria Iribarnegaray, Luis Delucchi and Kanji Yamasaki
Viruses 2024, 16(11), 1719; https://doi.org/10.3390/v16111719 - 31 Oct 2024
Cited by 1 | Viewed by 1430
Abstract
The purpose of this study was to examine the relationship between demyelination and cellular reactions in the cerebellum of Canine Distemper Virus (CDV)-infected dogs. We subdivided the disease staging by adding the degree of demyelination determined by Luxol Fast Blue staining to the [...] Read more.
The purpose of this study was to examine the relationship between demyelination and cellular reactions in the cerebellum of Canine Distemper Virus (CDV)-infected dogs. We subdivided the disease staging by adding the degree of demyelination determined by Luxol Fast Blue staining to the previously reported disease staging from the acute stage to the chronic stage, and investigated the relationship between demyelination in the cerebellum and the number and histological changes in astroglia, microglia, and Purkinje cells in each stage. Reactions of astrocytes and microglia were observed at an early stage when demyelination was not evident. Changes progressed with demyelination. Demyelination initially began in the medulla adjoining the fourth ventricle and gradually spread to the entire cerebellum, including the lobes. CDV immune-positive granules were seen from the early stage, and inclusion bodies also appeared at the same time. CDV immune-positive reaction and inclusion bodies were observed in astrocytes, microglia, neurons, ependymal cells, and even leptomeningeal mononuclear cells. On the other hand, infiltration of CDV-immunoreactive particles from the pia mater to the gray matter and further into the white matter through the granular layer was observed from an early stage. Purkinje cells decreased from the intermediate stage, and a decrease in cells in the granular layer was also observed. There was no clear association between age and each stage, and the stages did not progress with age. Full article
(This article belongs to the Special Issue Canine Distemper Virus)
Show Figures

Figure 1

17 pages, 3646 KiB  
Article
DNA Damage and Senescence in the Aging and Alzheimer’s Disease Cortex Are Not Uniformly Distributed
by Gnanesh Gutta, Jay Mehta, Rody Kingston, Jiaan Xie, Eliana Brenner, Fulin Ma and Karl Herrup
Biomedicines 2024, 12(6), 1327; https://doi.org/10.3390/biomedicines12061327 - 14 Jun 2024
Viewed by 2265
Abstract
Alzheimer’s disease (AD) is a neurodegenerative illness with a typical age of onset exceeding 65 years of age. The age dependency of the condition led us to track the appearance of DNA damage in the frontal cortex of individuals who died with a [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative illness with a typical age of onset exceeding 65 years of age. The age dependency of the condition led us to track the appearance of DNA damage in the frontal cortex of individuals who died with a diagnosis of AD. The focus on DNA damage was motivated by evidence that increasing levels of irreparable DNA damage are a major driver of the aging process. The connection between aging and the loss of genomic integrity is compelling because DNA damage has also been identified as a possible cause of cellular senescence. The number of senescent cells has been reported to increase with age, and their senescence-associated secreted products are likely contributing factors to age-related illnesses. We tracked DNA damage with 53BP1 and cellular senescence with p16 immunostaining of human post-mortem brain samples. We found that DNA damage was significantly increased in the BA9 region of the AD cortex compared with the same region in unaffected controls (UCs). In the AD but not UC cases, the density of cells with DNA damage increased with distance from the pia mater up to approximately layer V and then decreased in deeper areas. This pattern of DNA damage was overlaid with the pattern of cellular senescence, which also increased with cortical depth. On a cell-by-cell basis, we found that the intensities of the two markers were tightly linked in the AD but not the UC brain. To test whether DNA damage was a causal factor in the emergence of the senescence program, we used etoposide treatment to damage the DNA of cultured mouse primary neurons. While DNA damage increased after treatment, after 24 h, no change in the expression of senescence-associated markers was observed. Our work suggests that DNA damage and cellular senescence are both increased in the AD brain and increasingly coupled. We propose that in vivo, the relationship between the two age-related processes is more complex than previously thought. Full article
Show Figures

Figure 1

7 pages, 11947 KiB  
Communication
Bacterial Meningitis in Buffaloes in Brazil
by José Diomedes Barbosa, Henrique dos Anjos Bomjardim, Camila Cordeiro Barbosa, Carlos Magno Chaves Oliveira, Paulo Sérgio Chagas da Costa, Carlos Eduardo da Silva Ferreira Filho, Natália da Silva e Silva Silveira, Marcos Dutra Duarte, Luís Antônio Scalabrin Tondo and Marilene de Farias Brito
Animals 2024, 14(3), 505; https://doi.org/10.3390/ani14030505 - 3 Feb 2024
Viewed by 2173
Abstract
Meningitis is the inflammation of the membranes surrounding the central nervous system and is poorly described in water buffaloes. Five cases of meningitis in adults buffaloes of the Murrah and Mediterranean breads were studied. All buffaloes came from a farm located in the [...] Read more.
Meningitis is the inflammation of the membranes surrounding the central nervous system and is poorly described in water buffaloes. Five cases of meningitis in adults buffaloes of the Murrah and Mediterranean breads were studied. All buffaloes came from a farm located in the municipality of Castanhal, Pará, Brazil at different times. Clinical examination showed neurological clinical signs, such as apathy, reluctance to move, spastic paresis especially of the pelvic limbs, hypermetria, difficulty getting up, pressing of the head into obstacles and convulsion. In three buffaloes, a large part of the horn had been lost, exposing the corresponding frontal sinus, through which a bloody to purulent exudate flowed. The hemogram revealed neutrophilic leukocytosis. At necropsy, adherence of the dura mater to the periosteum and a purulent to fibrinopurulent exudate were observed in the sulci of the cerebral cortex and on the pia mater over almost the entire surface of the brain and throughout the spinal cord. The cerebrospinal fluid had a cloudy aspect with fibrin filaments. The histopathology of buffaloes confirmed the diagnosis of bacterial fibrinopurulent meningitis. Buffaloes are susceptible to bacterial inflammation of the meninges due to fractures of the base of the horn and mostly present with neurological manifestations. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

27 pages, 4896 KiB  
Article
Differential Effects of Regulatory T Cells in the Meninges and Spinal Cord of Male and Female Mice with Neuropathic Pain
by Nathan T. Fiore, Brooke A. Keating, Yuting Chen, Sarah I. Williams and Gila Moalem-Taylor
Cells 2023, 12(18), 2317; https://doi.org/10.3390/cells12182317 - 20 Sep 2023
Cited by 16 | Viewed by 3314
Abstract
Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune [...] Read more.
Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune responses and preserve immune homeostasis. In this study, we utilised intrathecal adoptive transfer of activated Tregs in male and female mice after peripheral nerve injury to investigate Treg migration and whether Treg-mediated suppression of pain behaviours is associated with changes in peripheral immune cell populations in lymphoid and meningeal tissues and spinal microglial and astrocyte reactivity and phenotypes. Treatment with Tregs suppressed mechanical pain hypersensitivity and improved changes in exploratory behaviours after chronic constriction injury (CCI) of the sciatic nerve in both male and female mice. The injected Treg cells were detected in the choroid plexus and the pia mater and in peripheral lymphoid organs in both male and female recipient mice. Nonetheless, Treg treatment resulted in differential changes in meningeal and lymph node immune cell profiles in male and female mice. Moreover, in male mice, adoptive transfer of Tregs ameliorated the CCI-induced increase in microglia reactivity and inflammatory phenotypic shift, increasing M2-like phenotypic markers and attenuating astrocyte reactivity and neurotoxic astrocytes. Contrastingly, in CCI female mice, Treg injection increased astrocyte reactivity and neuroprotective astrocytes. These findings show that the adoptive transfer of Tregs modulates meningeal and peripheral immunity, as well as spinal glial populations, and alleviates neuropathic pain, potentially through different mechanisms in males and females. Full article
(This article belongs to the Special Issue Role of Glial Cells in Neuropathic Pain)
Show Figures

Figure 1

16 pages, 4072 KiB  
Article
Computational Modeling of Thermodynamical Pulsatile Flow with Uncertain Pressure in Hydrocephalus
by Hemalatha Balasundaram, Nazek Alessa, Karuppusamy Loganathan, V. Vijayalakshmi and Nayani Uday Ranjan Goud
Symmetry 2023, 15(2), 534; https://doi.org/10.3390/sym15020534 - 16 Feb 2023
Cited by 3 | Viewed by 1931
Abstract
The watery cerebrospinal fluid that flows in the subarachnoid space (SAS) surrounds the entire central nervous system via symmetrical thermo-solute flow. The significance of this study was to present a flexible simulation based on theoretical vivo inputs onto a mathematical framework to describe [...] Read more.
The watery cerebrospinal fluid that flows in the subarachnoid space (SAS) surrounds the entire central nervous system via symmetrical thermo-solute flow. The significance of this study was to present a flexible simulation based on theoretical vivo inputs onto a mathematical framework to describe the interaction of cerebrospinal fluid circulation restricted to a pathological disorder. The pathophysiology disorder hydrocephalus is caused by an enormous excess of asymmetric fluid flow in the ventricular region. This fluid imposition increases the void space of its boundary wall (Pia mater). As a result, the dumping effect affects an inertial force in brain tissues. A mathematical model was developed to impose the thermal dynamics of hydrocephalus, in which solute transport constitutes the excess watery CSF fluid caused by hydrocephalus, in order to demonstrate perspective changes in ventricular spaces. This paper investigated brain porous spaces in order to strengthen the acceleration and thermal requirements in the CNS mechanism. To characterize neurological activities, a unique mathematical model that includes hydrodynamics and nutrient transport diffusivity was used. We present the analytical results based on physical experiments that use the novel Laplace method to determine the nutrients transported through permeable pia (brain) parenchyma with suitable pulsatile boundary conditions. This causes high CSF pressure and brain damage due to heat flux over the SAS boundary wall. As a result of the increased Schmidt number, the analysis of the hydrocephalus problem revealed an increase in permeability and drop in solute transport. A high-velocity profile caused a rise in thermal buoyancy (Grashof number). When the CSF velocity reached an extreme level, it indicated a higher Womersley number. Additionally, the present study compared a number of clinical studies for CSF amplitude and pressure. We validated the results by providing a decent justification with the clinical studies by appropriate field references. Full article
(This article belongs to the Special Issue Symmetry in System Theory, Control and Computing)
Show Figures

Figure 1

7 pages, 834 KiB  
Case Report
A Case Presenting with Neuromyelitis Optica Spectrum Disorder and Infectious Polyradiculitis Following BNT162b2 Vaccination and COVID-19
by Youngho Kim, Donghyun Heo, Moonjeong Choi and Jong-Mok Lee
Vaccines 2022, 10(7), 1028; https://doi.org/10.3390/vaccines10071028 - 27 Jun 2022
Cited by 6 | Viewed by 2935
Abstract
A 37-year-old woman presented with paraparesis and paresthesia in both legs 19 and 3 days after BNT162b2 vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, respectively. Cerebrospinal fluid (CSF) analysis, nerve conduction study, electromyography, magnetic resonance imaging, and autoantibody tests were [...] Read more.
A 37-year-old woman presented with paraparesis and paresthesia in both legs 19 and 3 days after BNT162b2 vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, respectively. Cerebrospinal fluid (CSF) analysis, nerve conduction study, electromyography, magnetic resonance imaging, and autoantibody tests were performed. Neurological examination showed hyperesthesia below the T7 level and markedly impaired bilateral leg weakness with absent deep tendon reflexes on the knees and ankles. CSF examination revealed polymorphonuclear dominant pleocytosis and elevated total protein levels. Enhancement of the pia mater in the lumbar spinal cord and positive sharp waves in the lumbar paraspinal muscles indicated infectious polyradiculitis. In contrast, a high signal intensity of intramedullary spinal cord on a T2-weighted image from C1 to conus medullaris and positive anti-aquaporin-4 antibody confirmed neuromyelitis optica spectrum disorder (NMOSD). The patient received intravenous methylprednisolone, antiviral agents, and antibiotics, followed by a tapering dose of oral prednisolone and azathioprine. Two months after treatment, she was ambulatory without assistance. The dual pathomechanism of NMOSD triggered by coronavirus disease 2019 (COVID-19) vaccination and polyradiculitis caused by SARS-CoV-2 infection may have caused atypical clinical findings in our patient. Therefore, physicians should remain alert and avoid overlooking the possibilities of diverse mechanisms associated with neurological manifestations after SARS-CoV-2 infection and COVID-19 vaccination. Full article
Show Figures

Figure 1

11 pages, 1490 KiB  
Article
Proteolytic Rafts for Improving Intraparenchymal Migration of Minimally Invasively Administered Hydrogel-Embedded Stem Cells
by Marcin Piejko, Anna Jablonska, Piotr Walczak and Miroslaw Janowski
Int. J. Mol. Sci. 2019, 20(12), 3083; https://doi.org/10.3390/ijms20123083 - 24 Jun 2019
Cited by 6 | Viewed by 3370
Abstract
The physiological spaces (lateral ventricles, intrathecal space) or pathological cavities (stroke lesion, syringomyelia) may serve as an attractive gateway for minimally invasive deployment of stem cells. Embedding stem cells in injectable scaffolds is essential when transplanting into the body cavities as they secure [...] Read more.
The physiological spaces (lateral ventricles, intrathecal space) or pathological cavities (stroke lesion, syringomyelia) may serve as an attractive gateway for minimally invasive deployment of stem cells. Embedding stem cells in injectable scaffolds is essential when transplanting into the body cavities as they secure favorable microenvironment and keep cells localized, thereby preventing sedimentation. However, the limited migration of transplanted cells from scaffold to the host tissue is still a major obstacle, which prevents this approach from wider implementation for the rapidly growing field of regenerative medicine. Hyaluronan, a naturally occurring polymer, is frequently used as a basis of injectable scaffolds. We hypothesized that supplementation of hyaluronan with activated proteolytic enzymes could be a viable approach for dissolving the connective tissue barrier on the interface between the scaffold and the host, such as pia mater or scar tissue, thus demarcating lesion cavity. In a proof-of-concept study, we have found that collagenase and trypsin immobilized in hyaluronan-based hydrogel retain 60% and 28% of their proteolytic activity compared to their non-immobilized forms, respectively. We have also shown that immobilized enzymes do not have a negative effect on the viability of stem cells (glial progenitors and mesenchymal stem cells) in vitro. In conclusion, proteolytic rafts composed of hyaluronan-based hydrogels and immobilized enzymes may be an attractive strategy to facilitate migration of stem cells from injectable scaffolds into the parenchyma of surrounding tissue. Full article
(This article belongs to the Special Issue Stem Cell-Based Therapy)
Show Figures

Figure 1

16 pages, 9111 KiB  
Article
Ultracompact Multielectrode Array for Neurological Monitoring
by Ming-Yuan Cheng, Ramona B. Damalerio, Weiguo Chen, Ramamoorthy Rajkumar and Gavin S. Dawe
Sensors 2019, 19(10), 2286; https://doi.org/10.3390/s19102286 - 17 May 2019
Cited by 4 | Viewed by 4577
Abstract
Patients with paralysis, spinal cord injury, or amputated limbs could benefit from using brain–machine interface technology for communication and neurorehabilitation. In this study, a 32-channel three-dimensional (3D) multielectrode probe array was developed for the neural interface system of a brain–machine interface to monitor [...] Read more.
Patients with paralysis, spinal cord injury, or amputated limbs could benefit from using brain–machine interface technology for communication and neurorehabilitation. In this study, a 32-channel three-dimensional (3D) multielectrode probe array was developed for the neural interface system of a brain–machine interface to monitor neural activity. A novel microassembly technique involving lead transfer was used to prevent misalignment in the bonding plane during the orthogonal assembly of the 3D multielectrode probe array. Standard microassembly and biopackaging processes were utilized to implement the proposed lead transfer technique. The maximum profile of the integrated 3D neural device was set to 0.50 mm above the pia mater to reduce trauma to brain cells. Benchtop tests characterized the electrical impedance of the neural device. A characterization test revealed that the impedance of the 3D multielectrode probe array was on average approximately 0.55 MΩ at a frequency of 1 KHz. Moreover, in vitro cytotoxicity tests verified the biocompatibility of the device. Subsequently, 3D multielectrode probe arrays were implanted in rats and exhibited the capability to record local field potentials and spike signals. Full article
(This article belongs to the Special Issue Wearable and Implantable Sensors and Electronics Circuits)
Show Figures

Figure 1

10 pages, 2107 KiB  
Article
Aquaporin-11 (AQP11) Expression in the Mouse Brain
by Shin Koike, Yasuko Tanaka, Toshiyuki Matsuzaki, Yoshiyuki Morishita and Kenichi Ishibashi
Int. J. Mol. Sci. 2016, 17(6), 861; https://doi.org/10.3390/ijms17060861 - 1 Jun 2016
Cited by 26 | Viewed by 7462
Abstract
Aquaporin-11 (AQP11) is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined [...] Read more.
Aquaporin-11 (AQP11) is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined the AQP11 expression in the mouse brain and the brain phenotype of AQP11-deficient mice. AQP11 messenger ribonucleic acid (mRNA) and protein were expressed in the brain, but much less than in the thymus and kidney. Immunostaining showed that AQP11 was localized at the epithelium of the choroid plexus and at the endothelium of the brain capillary, suggesting that AQP11 may be involved in water transport at the choroid plexus and blood-brain barrier (BBB) in the brain. The expression of AQP4, another brain AQP expressed at the BBB, was decreased by half in AQP11-deficient mice, thereby suggesting the presence of the interaction between AQP11 and AQP4. The brain of AQP11-deficient mice, however, did not show any morphological abnormalities and the function of the BBB was intact. Our findings provide a novel insight into a water transport mechanism mediated by AQPs in the brain, which may lead to a new therapy for brain edema. Full article
(This article belongs to the Special Issue Aquaporin)
Show Figures

Graphical abstract

Back to TopTop