Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,209)

Search Parameters:
Keywords = phytochemicals’ profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2553 KB  
Article
Biotechnological Potential of Algerian Saffron Floral Residues: Recycling Phytochemicals with Antimicrobial Activity
by Nouria Meliani, Bouchra Loukidi, Larbi Belyagoubi, Nabila Belyagoubi-Benhammou, Salim Habi, Alessia D’Agostino, Antonella Canini, Saber Nahdi, Nassima Mokhtari Soulimane, Angelo Gismondi, Abdel Halim Harrath, Erdi Can Aytar and Gabriele Di Marco
Biology 2026, 15(2), 197; https://doi.org/10.3390/biology15020197 - 21 Jan 2026
Abstract
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the [...] Read more.
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the possible interactions between saffron tepal metabolites and bacterial target proteins. In parallel, antioxidant activity was assessed using radical scavenging assays, whereas antimicrobial potential (i.e., MIC, MBC, and MFC) was tested against selected bacterial strains. Results indicated that aqueous successive and crude extracts yielded the highest concentrations of polyphenols, flavonoids, and condensed tannins. In detail, HPLC-DAD analysis specifically identified significant levels of gallic acid, epicatechin, and various anthocyanins. These extracts demonstrated robust antioxidant and antimicrobial activities. This latter evidence was corroborated by the docking analyses, which revealed that chlorogenic acid and petunidin-3-glucoside exhibited high binding affinities for 2NRK and 2NZF, whereas epicatechin and pelargonidin effectively targeted 8ACR. These findings underscore the therapeutic potential of C. sativus tepals as natural bioactive agents, suggesting a promising role in overcoming antibiotic resistance and supporting their development for pharmaceutical applications. Full article
(This article belongs to the Special Issue Young Researchers in Plant Sciences)
Show Figures

Graphical abstract

42 pages, 1490 KB  
Review
A Review on Sasa quelpaertensis’s Phytochemical Profiles and Pharmacological Activities
by Varun Jaiswal and Hae-Jeung Lee
Plants 2026, 15(2), 319; https://doi.org/10.3390/plants15020319 - 21 Jan 2026
Abstract
Sasa quelpaertensis, a multipurpose bamboo plant endemic to Jeju Island in South Korea, is used by the population in traditional medicine for its anti-inflammatory, anti-diabetic, anti-gastritis, and diuretic activities. Studies have shown the potential of S. quelpaertensis against various diseases; its effects [...] Read more.
Sasa quelpaertensis, a multipurpose bamboo plant endemic to Jeju Island in South Korea, is used by the population in traditional medicine for its anti-inflammatory, anti-diabetic, anti-gastritis, and diuretic activities. Studies have shown the potential of S. quelpaertensis against various diseases; its effects include anticancer, anti-obesity, anti-diabetic, anti-inflammatory, antibacterial, antiviral, antioxidant, antidepressant, immunomodulating, and hepatoprotective effects. Several bioactive phytochemicals, including p-coumaric acid, tricin, naringenin, and vanillic acid, have been identified in S. quelpaertensis, further emphasizing its pharmacological potential. Molecular studies have identified crucial pharmacological targets of S. quelpaertensis, such as adenosine monophosphate-activated protein kinase (AMPK) and nuclear factor kappa B (NF-κB) signaling. The major challenges are that most pharmacological activities have been observed only in the preclinical stage, and that a compilation of its phytochemicals and pharmacological activities is missing from the literature. The studies with incomplete extract characterization or standardization limit the comparability across studies. Identification of active phytochemicals for specific activities and large-scale clinical trials for the majority of pharmacological effects are suggested. This review not only compiles the phytochemicals and pharmacological properties of S. quelpaertensis but also highlights current gaps and proposes solutions for its development as a therapeutic agent and/or supplement against major diseases. Full article
(This article belongs to the Special Issue Bio-Active Compounds in Horticultural Plants—2nd Edition)
Show Figures

Figure 1

27 pages, 2278 KB  
Article
Germination as a Sustainable Green Pre-Treatment for the Recovery and Enhancement of High-Value Compounds in Broccoli and Kale
by Christine (Neagu) Dragomir, Corina Dana Misca, Sylvestre Dossa, Daniela Stoin, Ariana Velciov, Călin Jianu, Isidora Radulov, Mariana Suba, Catalin Ianasi and Ersilia Alexa
Molecules 2026, 31(2), 350; https://doi.org/10.3390/molecules31020350 - 19 Jan 2026
Viewed by 31
Abstract
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate [...] Read more.
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate composition, macro- and microelement profiles, total and individual polyphenols, phytic acid content, antimicrobial activity, and structural characteristics using Fourier Transform Infrared Spectroscopy (FTIR) and Small- and Wide-Angle X-ray Scattering (SAXS/WAXS) analyses. Germination significantly increased protein content (30.33% in broccoli sprouts and 30.21% in kale sprouts), total phenolic content (424.40 mg/100 g in broccoli sprouts and 497.94 mg/100 g in kale sprouts), and essential minerals, while reducing phytic acid levels in both species (up to 82.20%). Antimicrobial effects were matrix-dependent, being detected in broccoli and kale seed powders, while no inhibitory activity was observed for the corresponding sprout powders under the tested conditions. FTIR spectra indicated notable modifications in functional groups related to carbohydrates, proteins, and phenolic compounds, while SAXS analysis revealed structural reorganizations at the nanoscale. Overall, germination improved the nutritional and phytochemical quality of broccoli and kale while decreasing anti-nutritional compounds, highlighting its potential to enhance the health-promoting value of Brassica sprouts. Full article
Show Figures

Figure 1

28 pages, 6020 KB  
Article
Comprehensive Morpho-Functional Profiling of Peruvian Andean Capsicum pubescens Germplasm Reveals Promising Accessions with High Agronomic and Nutraceutical Value
by Erick Leao Salas-Zeta, Katherine Lisbeth Bernal-Canales, Andrea Delgado-Lazo, Gonzalo Pacheco-Lizárraga, Marián Hermoza-Gutiérrez, Hector Cántaro-Segura, Elizabeth Fernandez-Huaytalla, Dina L. Gutiérrez-Reynoso, Fredy Quispe-Jacobo and Karina Ccapa-Ramirez
Plants 2026, 15(2), 288; https://doi.org/10.3390/plants15020288 - 17 Jan 2026
Viewed by 151
Abstract
Capsicum pubescens (rocoto) is an Andean domesticate with notable agronomic and nutraceutical potential, yet it remains underrepresented in chili pepper breeding programs. In this study, 78 accessions from the Peruvian Andes were evaluated in a single field environment during the 2024 growing season [...] Read more.
Capsicum pubescens (rocoto) is an Andean domesticate with notable agronomic and nutraceutical potential, yet it remains underrepresented in chili pepper breeding programs. In this study, 78 accessions from the Peruvian Andes were evaluated in a single field environment during the 2024 growing season for 28 variables spanning plant architecture, phenology and yield, color (CIELAB), weight, fruit morphology, physicochemical variables, and functional phytochemicals, including total phenolics, carotenoids, ascorbic acid, capsaicinoids, and antioxidant activity (FRAP, DPPH, ABTS). Descriptive analyses revealed broad phenotypic diversity in key variables such as yield and bioactive compounds. Spearman correlations uncovered a clear modular structure, with strong within-domain associations across morphological, chromatic, and biochemical variables, and statistically significant but low-magnitude cross-domain associations (e.g., fruit length with pungency, redness with total phenolics). Principal component analysis and hierarchical clustering resolved three differentiated phenotypic profiles: (i) low-pungency accessions with high soluble solids and varied fruit colors; (ii) highly pungent materials with elevated antioxidant capacity; and (iii) large, red-fruited accessions with considerable carotenoid content and high moisture. This multivariate architecture revealed weak cross-block correlations among agronomic, color, and functional traits, enabling selection of promising accessions combining desirable agronomic attributes and favorable bioactive profiles in specific accessions. These results provide a quantitative foundation for future breeding strategies in C. pubescens, opening concrete opportunities to develop improved cultivars that simultaneously meet productivity and functional quality criteria. Full article
Show Figures

Figure 1

24 pages, 2021 KB  
Article
Phytochemical Composition and Bioactivity of Different Fruit Parts of Opuntia robusta and Opuntia ficus-indica: Conventional Versus NADES-Based Extraction
by Ouafaa Hamdoun, Sandra Gonçalves, Inês Mansinhos, Raquel Rodríguez-Solana, Gema Pereira-Caro, José Manuel Moreno-Rojas, Brahim El Bouzdoudi, Mohammed L’bachir El Kbiach and Anabela Romano
Horticulturae 2026, 12(1), 98; https://doi.org/10.3390/horticulturae12010098 - 17 Jan 2026
Viewed by 70
Abstract
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in [...] Read more.
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in comparison with 50% methanol. Phytochemical profiling was performed using ultra-high-performance liquid chromatography–high-resolution mass spectrometry, alongside antioxidant and enzyme inhibition assessments (acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-glucosidase, and α-amylase). Glycerol–urea performed similarly to methanol in extracting phenolic compounds with notable antioxidant properties. Peel extracts contained the highest levels of bioactive compounds, particularly phenolic acids (525.49 in O. robusta and 362.96 µg/gDW in O. ficus indica). Enzyme inhibition varied across species and fruit parts, with extracts from both species inhibiting all targeted enzymes. Notably, this study provides the first evidence of tyrosinase inhibitory activity in O. robusta, which exhibited the strongest inhibition. Overall, these results emphasize the potential of cactus fruit extracts, particularly from O. robusta, for valorization, and support the use of NADESs as a sustainable and medium for extracting antioxidant compounds. Furthermore, the potential of fruit peel as waste with nutraceutical applications was demonstrated. Full article
Show Figures

Figure 1

21 pages, 1188 KB  
Review
Antidiabetic and Anti-Inflammatory Potential of Zingiberaceae Plants in Dietary Supplement Interventions
by Natalia Kuzia, Olga Adamska, Natalia Ksepka, Agnieszka Wierzbicka and Artur Jóźwik
Molecules 2026, 31(2), 311; https://doi.org/10.3390/molecules31020311 - 16 Jan 2026
Viewed by 232
Abstract
Plants from the Zingiberaceae family, particularly Zingiber officinale, Curcuma longa, and Alpinia galanga, are rich sources of bioactive compounds with documented antidiabetic and anti-inflammatory properties. This review summarizes current evidence on their phytochemical profiles and pathways relevant to metabolic regulation. [...] Read more.
Plants from the Zingiberaceae family, particularly Zingiber officinale, Curcuma longa, and Alpinia galanga, are rich sources of bioactive compounds with documented antidiabetic and anti-inflammatory properties. This review summarizes current evidence on their phytochemical profiles and pathways relevant to metabolic regulation. Key compounds, including gingerols, shogaols, curcuminoids, and phenylpropanoids, support glucose homeostasis by enhancing insulin sensitivity, promoting Glucose Transporter Type 4 (GLUT4)-mediated glucose uptake, improving β-cell function, and modulating metabolic signaling pathways such as PI3K/Akt, AMPK, PPARγ, and NF-κB. Their potent antioxidant and anti-inflammatory activities further reduce oxidative stress and chronic low-grade inflammation, both central to the progression of type 2 diabetes and its complications. Evidence from selected clinical and experimental studies suggests that dietary supplementation with whole-rhizome preparations or standardized extracts (including formulation-enhanced products) may improve fasting blood glucose (FBG), glycated hemoglobin (HbA1c), lipid metabolism, and oxidative stress markers. Recent advances in delivery systems, including nanoemulsions, liposomes, and curcumin–piperine complexes, substantially enhance the bioavailability of poorly soluble phytochemicals, strengthening their therapeutic potential. Overall, Zingiberaceae plants emerge as promising natural supplements in nutritional and pharmacological strategies targeting diabetes. Further clinical research is required to refine dosage, confirm long-term efficacy, and support their integration into evidence-based metabolic interventions. Full article
(This article belongs to the Special Issue Chemical Composition and Functional Properties of Food By-Products)
Show Figures

Graphical abstract

22 pages, 3068 KB  
Article
Hydroalcoholic Extracts of Cucumis prophetarum L. Affect the Insulin Signaling Pathway in an In Vitro Model of Insulin-Resistant L6 Myotubes
by Zewdie Mekonnen, Giuseppe Petito, Getasew Shitaye, Gianluca D’Abrosca, Belete Adefris Legesse, Sisay Addisu, Antonia Lanni, Roberto Fattorusso, Carla Isernia, Lara Comune, Simona Piccolella, Severina Pacifico, Rosalba Senese, Gaetano Malgieri and Solomon Tebeje Gizaw
Molecules 2026, 31(2), 307; https://doi.org/10.3390/molecules31020307 - 15 Jan 2026
Viewed by 161
Abstract
Type 2 diabetes mellitus (T2DM) can be traditionally treated by edible and medicinal species rich in flavonoids and triterpenoids known for their metabolic benefits. Cucumis prophetarum L. has shown antioxidant and antidiabetic properties in decoction extracts. Since solvent polarity strongly influences the extraction [...] Read more.
Type 2 diabetes mellitus (T2DM) can be traditionally treated by edible and medicinal species rich in flavonoids and triterpenoids known for their metabolic benefits. Cucumis prophetarum L. has shown antioxidant and antidiabetic properties in decoction extracts. Since solvent polarity strongly influences the extraction of secondary metabolites, this study investigated the hydroalcoholic extracts of C. prophetarum L. to explore their chemical composition and insulin-sensitizing potential. Hydroalcoholic extracts from the leaf, stem, and root of C. prophetarum L. were analyzed by UV-Vis spectroscopy, ATR-FTIR, and UHPLC-ESI-QqTOF–MS/MS to profile their secondary metabolites. The insulin-sensitizing potential of each extract was assessed using an in vitro model of palmitic-acid-induced insulin resistance in L6 skeletal muscle cells, followed by Western blot analysis of key insulin-signaling proteins. Flavonoid glycosides such as apigenin-C,O-dihexoside, apigenin-malonylhexoside, and luteolin-C,O-dihexoside were abundant in leaf and stem extracts, while cucurbitacins predominated in the root. MTT assay confirmed that hydroalcoholic stem and root extracts of C. prophetarum L. were non-cytotoxic to L6 myotubes, whereas the leaf extract reduced viability only at higher concentrations. Oil Red O staining revealed a pronounced decrease in lipid accumulation following stem and root extract treatment. Consistently, the stem extract enhanced insulin signaling through the activation of the IRS-1/PI3K/Akt pathway, while the root extract primarily modulated the AMPK–mTOR pathway. Importantly, both extracts promoted GLUT4 translocation to the plasma membrane, highlighting their complementary mechanisms in restoring insulin sensitivity. Hydroalcoholic extracts of C. prophetarum L. alleviate insulin resistance through multiple molecular mechanisms, with bioactivity and composition differing markedly from previously reported in the decoctions, which highlight a promising source of insulin-sensitizing phytochemicals and underscore the importance of solvent selection in maximizing therapeutic potential. Full article
(This article belongs to the Special Issue Bioactive Natural Products and Derivatives)
Show Figures

Graphical abstract

17 pages, 1112 KB  
Article
Small but Mighty: Low Bio-Accessibility Preserves Polyphenols from Mini Purple Carrots for Direct Action Against Colon Cancer Cells
by Amel Hamdi, Emel Hasan Yusuf, Rocío Rodríguez-Arcos, Ana Jiménez-Araujo, Paulina Nowicka, Rafael Guillén-Bejarano and Sara Jaramillo-Carmona
Antioxidants 2026, 15(1), 113; https://doi.org/10.3390/antiox15010113 - 15 Jan 2026
Viewed by 288
Abstract
Carrots are exceptional sources of bioactive compounds with potential health benefits. This study investigated the relationship between the biodiversity of carrot cultivars (colour and size) and their potential chemopreventive properties. Four distinct carrot cultivars (orange, white, yellow, and purple) of normal and miniature [...] Read more.
Carrots are exceptional sources of bioactive compounds with potential health benefits. This study investigated the relationship between the biodiversity of carrot cultivars (colour and size) and their potential chemopreventive properties. Four distinct carrot cultivars (orange, white, yellow, and purple) of normal and miniature sizes were comprehensively analysed for polyphenolic composition, bio-accessibility through in vitro simulated digestion, and in vitro antiproliferative activity against the HCT-116 colon cancer cell line. Our findings revealed that vegetable size influenced phytochemical composition more than vegetable colour, with mini purple carrots exhibiting exceptionally high polyphenolic concentrations and superior antiproliferative activity compared to orange, yellow, or white varieties. Notably, the bioaccessibility of bioactive compounds remained remarkably low across all samples, suggesting that these phytochemicals reach the colon in intact form, potentially enabling direct interaction with cancer cells. Interestingly, we found no direct correlation between total phenolic content and antiproliferative activity. In vitro cell cycle analysis revealed that mini purple carrot extracts induced S-phase arrest similar to the chemotherapeutic agent 5-FU, whereas other extracts caused G0/G1-phase arrest. The specific polyphenolic composition appears to be fundamentally important for bioactivity, with chlorogenic acid and diferulic acid-derivative isomer 2 potentially acting synergistically. These findings highlight the importance of carrot biodiversity in delivering functional foods with enhanced health-promoting properties, particularly for colorectal cancer prevention. Full article
Show Figures

Graphical abstract

34 pages, 6047 KB  
Article
HPLC-ESI-QTOF-MS/MS-Guided Profiling of Bioactive Compounds in Fresh and Stored Saffron Corms Reveals Potent Anticancer Activity Against Colorectal Cancer
by Sanae Baddaoui, Ennouamane Saalaoui, Oussama Khibech, Diego Salagre, Álvaro Fernández-Ochoa, Samira Mamri, Nahida Aktary, Muntajin Rahman, Amama Rani, Abdeslam Asehraou, Bonglee Kim and Ahmad Agil
Pharmaceuticals 2026, 19(1), 149; https://doi.org/10.3390/ph19010149 - 14 Jan 2026
Viewed by 122
Abstract
Background: Saffron (Crocus sativus L.) corms, often discarded as agricultural by-products, are a promising and sustainable source of bioactive metabolites with potential therapeutic relevance. However, their anticancer potential remains largely underinvestigated. Objectives: This study aimed to compare the phytochemical composition [...] Read more.
Background: Saffron (Crocus sativus L.) corms, often discarded as agricultural by-products, are a promising and sustainable source of bioactive metabolites with potential therapeutic relevance. However, their anticancer potential remains largely underinvestigated. Objectives: This study aimed to compare the phytochemical composition of hydroethanolic extracts from fresh (HEEF) and stored (HEES) saffron corms and to evaluate their anticancer effectiveness against colorectal cancer cells. Methods: Phytochemical profiling was performed using HPLC-ESI-QTOF-MS/MS. Cytotoxicity against T84 and SW480 colorectal cancer cell lines was determined by the crystal violet assay. Apoptosis-related protein modulation was assessed by Western blotting. Additionally, molecular docking, molecular dynamics simulations, and MM/GBSA calculations were used to investigate ligand–target binding affinities and stability. Results: Both extracts contained diverse primary and secondary metabolites, including phenolic acids, flavonoids, triterpenoids, lignans, anthraquinones, carotenoids, sugars, and fatty acids. HEES showed higher relative abundance of key bioactive metabolites than HEEF, which was enriched mainly in primary metabolites. HEES showed significantly greater dose-dependent cytotoxicity, particularly against SW480 cells after 24 h (IC50 = 34.85 ± 3.35). Apoptosis induction was confirmed through increased expression of caspase-9 and p53 in T84 cells. In silico studies revealed strong and stable interactions of major metabolites, especially 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid with COX2 and crocetin with VEGFR2. Conclusions: Stored saffron corms possess a richer bioactive profile and show enhanced anticancer effects in vitro compared with fresh saffron corms, suggesting that they may represent a promising source of compounds for the future development of colorectal cancer therapeutics. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 1585 KB  
Article
Comparative Analysis of Phytochemical Profile and Antioxidant and Antimicrobial Activity of Green Extracts from Quercus ilex and Quercus robur Acorns
by Diego Gonzalez-Iglesias, Francisco Martinez-Vazquez, Laura Rubio, Jesús María Vielba, Trinidad de Miguel and Marta Lores
Molecules 2026, 31(2), 277; https://doi.org/10.3390/molecules31020277 - 13 Jan 2026
Viewed by 205
Abstract
An environmentally friendly extraction strategy based on an MSAT (Medium Scale Ambient Temperature) system was applied to Quercus ilex and Quercus robur acorns with the aim of maximizing polyphenolic yield and antioxidant activity while minimizing solvent consumption. Operational parameters were first optimized for [...] Read more.
An environmentally friendly extraction strategy based on an MSAT (Medium Scale Ambient Temperature) system was applied to Quercus ilex and Quercus robur acorns with the aim of maximizing polyphenolic yield and antioxidant activity while minimizing solvent consumption. Operational parameters were first optimized for Quercus ilex using a BBD-RSM (Box–Behnken response surface methodology), where the optimum working zone corresponds to the values of 200 g of acorn, 100 mL of extracting solvent, and 0.5 dispersant/acorn ratio. Subsequently, these conditions were applied to Quercus robur to enable an interspecific comparison. Extracts were evaluated in terms of total polyphenolic content, antioxidant activity, reducing sugars, proteins, targeted polyphenols quantified by UHPLC-QToF, and antimicrobial activity. Optimal extractions from Quercus ilex reached 25,072 mgGAE L−1 and 162 mmolTE L−1, while Quercus robur extracts showed markedly superior values of 35,822 mgGAE L−1 and 234 mmolTE L−1. Polyphenol quantification revealed higher concentrations of gallotannins in Quercus robur and procyanidins and catechin in Quercus ilex. The extracts showed strong antibacterial activity, especially Quercus ilex against S. aureus with a MIC ≤ 0.63%. Furthermore, it has been demonstrated for the first time that acorn extracts can inhibit the growth of Phytophthora cinnamomi in vitro, with Quercus robur extracts having a MIC ≤ 0.1% and Quercus ilex extracts ≤ 1%. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

21 pages, 3919 KB  
Article
Myristicin from Athamanta sicula L.: A Potential Natural Antimicrobial Agent
by Antonella Porrello, Alessia Sordillo, Natale Badalamenti, Giusy Castagliuolo, Giuseppe Bazan, Daniela Di Girolamo, Mario Varcamonti, Anna Zanfardino and Maurizio Bruno
Antibiotics 2026, 15(1), 79; https://doi.org/10.3390/antibiotics15010079 - 13 Jan 2026
Viewed by 180
Abstract
Athamanta L. is a small genus of the Apiaceae family, comprising only sixteen species and subspecies, which are distributed in the Canary Islands, Central Europe, and the Mediterranean basin. Background/Objectives: Since the time of Dioscurides, the species of this genus have been [...] Read more.
Athamanta L. is a small genus of the Apiaceae family, comprising only sixteen species and subspecies, which are distributed in the Canary Islands, Central Europe, and the Mediterranean basin. Background/Objectives: Since the time of Dioscurides, the species of this genus have been reported to have had several ethnopharmacological activities, and some of them are also used currently. Athamanta sicula L., growing in Italy, Tunisia, Algeria, and Morocco, is the only species of this genus present in Sicily. To further explore the phytochemical profile and biological properties of this species, the present study focused on the essential oil (EO) extracted from the aerial parts of wild A. sicula populations collected in central Sicily. Methods: The chemical composition of the EO, obtained by hydrodistillation, was determined by GC–MS analysis. The presence of myristicin was confirmed by isolation and by 1H-NMR spectroscopic characterization. Results: The EO and its main constituents have been tested for possible antimicrobial properties against several bacterial strains, showing MIC values in the of 15–30 mg/mL range, and the mechanism of action was further investigated, revealing membrane-targeting effects consistent with outer membrane permeabilization. In addition, antibiofilm activity (with up to ~80% inhibition of biofilm formation at sub-MICs), antioxidant potential (demonstrating dose-dependent radical scavenging activity), and biocompatibility with eukaryotic cells were assessed to provide a comprehensive pharmacological profile of A. sicula EO. Specifically, the most abundant constituent was myristicin (62.2%), the principal representative of the phenylpropanoid class (64.4%). Hydrocarbon monoterpenes represented the second class of the EO (27.4%), with β-phellandrene (12.2%) as the main compound. Conclusions: Myristicin emerged as the key contributor to the antimicrobial and antibiofilm activity of the EO. The obtained results highlight the relevance of A. sicula EO as a myristicin-rich essential oil with notable in vitro biological activity. Full article
(This article belongs to the Section Plant-Derived Antibiotics)
Show Figures

Figure 1

21 pages, 1963 KB  
Article
Juniperus communis L. Needle Extract Modulates Oxidative and Inflammatory Pathways in an Experimental Model of Acute Inflammation
by Dinu Bolunduț, Alina Elena Pârvu, Andra Diana Cecan, Anca Elena But, Florica Ranga, Marcel Pârvu, Iulia Ioana Morar and Ciprian Ovidiu Dalai
Molecules 2026, 31(2), 247; https://doi.org/10.3390/molecules31020247 - 11 Jan 2026
Viewed by 233
Abstract
Juniperus communis L. is a conifer widely used in traditional European medicine for the management of inflammatory disorders. However, its effects on oxidative stress and inflammation remain incompletely characterized. The present study investigated the antioxidant and anti-inflammatory potential of an ethanolic needle extract [...] Read more.
Juniperus communis L. is a conifer widely used in traditional European medicine for the management of inflammatory disorders. However, its effects on oxidative stress and inflammation remain incompletely characterized. The present study investigated the antioxidant and anti-inflammatory potential of an ethanolic needle extract of J. communis using in vitro assays and an in vivo model of acute inflammation induced by turpentine oil in rats. Phytochemical profiling by HPLC–DAD–ESI–MS revealed a polyphenol-rich extract dominated by flavonols, flavanols, and hydroxybenzoic acids, with quercetin derivatives and taxifolin as major constituents. In vitro analyses demonstrated radical-scavenging and reducing capacities, exceeding or comparable to reference antioxidants in DPPH, hydrogen peroxide, ferric-reducing, and nitric oxide scavenging assays. In vivo, both therapeutic and prophylactic administration of the extract significantly attenuated oxidative and nitrosative stress, as evidenced by reductions in total oxidant status, oxidative stress index, malondialdehyde, advanced oxidation protein products, nitric oxide, 3-nitrotyrosine, and 8-hydroxy-2′-deoxyguanosine, alongside restoration of total antioxidant capacity and thiol levels. These effects were concentration-dependent. Concomitantly, inflammatory signaling was suppressed, with decreased NF-κB activity and reduced levels of interleukin-1β and interleukin-18. These results support the use of these extracts, whose benefits have been observed in traditional medicine, providing scientific support for the anti-inflammatory and antioxidant capacity of J. communis extract. Full article
Show Figures

Figure 1

23 pages, 1157 KB  
Review
Unifying Phytochemistry, Analytics, and Target Prediction to Advance Dendropanax morbifera Bioactive Discovery
by SuHyun Kim, Damhee Lee, Kyujeong Won, Jinseop Lee, Wooseop Lee, Woohyeon Roh and Youngjun Kim
Life 2026, 16(1), 100; https://doi.org/10.3390/life16010100 - 11 Jan 2026
Viewed by 263
Abstract
Dendropanax morbifera (DM; “Hwangchil”) is an evergreen tree native to southern Korea and Jeju Island, traditionally used for detoxification, anti-inflammatory, immunomodulatory, and neuroprotective purposes. Recent studies indicate that DM extracts and their constituents exhibit a broad range of biological activities, including antioxidant, anti-inflammatory, [...] Read more.
Dendropanax morbifera (DM; “Hwangchil”) is an evergreen tree native to southern Korea and Jeju Island, traditionally used for detoxification, anti-inflammatory, immunomodulatory, and neuroprotective purposes. Recent studies indicate that DM extracts and their constituents exhibit a broad range of biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, antidiabetic, hepatoprotective, and neuroprotective effects. Phytochemical investigations have revealed a chemically diverse profile comprising phenolic acids, flavonoids, diterpenoids, triterpenoids—most notably dendropanoxide—and polyacetylenes, with marked variation in compound distribution across plant parts. Despite this progress, translational application remains constrained by the lack of standardized extraction protocols, substantial variability in high-performance liquid chromatography (HPLC) methodologies, and limited mechanistic validation of reported bioactivities. This review proposes an integrated framework that links extraction strategies tailored to compound class and plant part with standardized C18 reverse-phase HPLC conditions to enhance analytical reproducibility. In parallel, in silico target prediction using SwissTargetPrediction is applied as a hypothesis-generating approach to prioritize potential molecular targets for subsequent experimental validation. By emphasizing methodological harmonization, critical evaluation of evidence levels, and systems-level consideration of multi-compound interactions, this review aims to clarify structure–activity relationships, support pharmacokinetic and safety assessment, and facilitate the rational development of DM-derived materials for medical, nutritional, and cosmetic applications. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

18 pages, 1099 KB  
Article
Cultivar-Specific Responses in Postharvest Strategies to Preserve Phytochemical Profile in Traditional Serbian Peppers (Capsicum annuum L.)
by Lidija Milenković, Zoran S. Ilić, Žarko Kevrešan, Bratislav Ćirković, Ljubomir Šunić, Ljiljana Tubić, Renata Kovač and Dragana Ubiparip
Agronomy 2026, 16(2), 179; https://doi.org/10.3390/agronomy16020179 - 10 Jan 2026
Viewed by 225
Abstract
Traditional Serbian pepper cultivars ‘Kurtovska ajvaruša’, ‘Grkinja babura’, and ‘Duga bela ljuta’ were stored under different conditions (10 °C, 4 °C, and 4 °C with pre-storage hot water dipping-HWD) for 21 days plus a 3-day shelf life. [...] Read more.
Traditional Serbian pepper cultivars ‘Kurtovska ajvaruša’, ‘Grkinja babura’, and ‘Duga bela ljuta’ were stored under different conditions (10 °C, 4 °C, and 4 °C with pre-storage hot water dipping-HWD) for 21 days plus a 3-day shelf life. The main quality parameters measured included mineral content, total soluble solids (TSS), titratable acidity (TA),sugar content (glucose, fructose), organic (ascorbic and citric) acid content, and total phenolic content (TPC). Principal component analysis (PCA) revealed cultivar-specific responses to storage treatments. Cultivar specificity is a crucial determinant in defining optimal conditions for the preservation of phytochemical composition. The cultivar ‘Kurtovska ajvaruša’ showed the highest retention of phenolic compounds when stored at 4 °C following hot water treatment (HWD), whereas ‘Grkinja babura’ should be stored at 4 °C (without hot water treatment, as it provides no additional benefits) for up to 21 days, as this ensures balanced preservation of sugar and organic acid contents while maintaining high sensory quality of the fruit. ‘Duga bela ljuta’ exhibited superior ascorbic acid preservation at 10 °C, reaching 104.4 mg/100 g. Optimizing postharvest storage conditions is essential for maintaining the nutritional quality of traditional pepper cultivars intended for both fresh consumption and processing. Full article
Show Figures

Figure 1

29 pages, 8991 KB  
Article
Exploration and Preliminary Investigation of Wiled Tinospora crispa: A Medicinal Plant with Promising Anti-Inflammatory and Antioxidant Properties
by Salma Saddeek
Curr. Issues Mol. Biol. 2026, 48(1), 70; https://doi.org/10.3390/cimb48010070 - 9 Jan 2026
Viewed by 204
Abstract
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in [...] Read more.
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in chemotype, bioactivity, and safety, and how this might support or refine traditional use. Study Objectives: This study aimed to compare wild and cultivated ecotypes of T. crispa from the Nile Delta (Egypt) in terms of quantitative and qualitative phytochemical profiles; selected in vitro biological activities (especially antioxidant and cytotoxic actions); genetic markers potentially associated with metabolic variation; and short-term oral safety in an animal model. Core Methodology: Standardized extraction of plant material from wild and cultivated ecotypes. Determination of total phenolics, total flavonoids, and major phytochemical classes (alkaloids, tannins, terpenoids). Metabolomic characterization using UHPLC-ESI-QTOF-MS, supported by NMR, to confirm key compounds such as berberine, palmatine, chlorogenic acid, rutin, and borapetoside C. In vitro bioassays including: Antioxidant activity (e.g., radical-scavenging assay with EC50 determination). Cytotoxicity against human cancer cell lines, with emphasis on HepG2 hepatoma cells and calculation of IC50 values. Targeted genetic analysis to detect single-nucleotide polymorphisms (SNPs) in the gen1 locus that differentiate ecotypes. A 14-day oral toxicity study in rats, assessing liver and kidney function markers and performing histopathology of liver and kidney tissues. Principal Results: The wild ecotype showed a 43–65% increase in total flavonoid and polyphenol content compared with the cultivated ecotype, as well as substantially higher levels of key alkaloids, particularly berberine (around 12.5 ± 0.8 mg/g), along with elevated chlorogenic acid and borapetoside C. UHPLC-MS and NMR analyses confirmed the identity of the main bioactive constituents and defined a distinct chemical fingerprint for the wild chemotype. Bioassays demonstrated stronger antioxidant activity of the wild extract than the cultivated one and selective cytotoxicity of the wild extract against HepG2 cells (IC50 ≈ 85 µg/mL), being clearly more potent than extracts from cultivated plants. Genetic profiling detected a C → T SNP within the gen1 region that differentiates the wild ecotype and may be linked to altered biosynthetic regulation. The 14-day oral toxicity study (up to 600 mg/kg) revealed no evidence of hepatic or renal toxicity, with biochemical markers remaining within physiological limits and normal liver and kidney histology. Conclusions and Future Perspectives: The wild Nile-Delta ecotype of T. crispa appears to be a stress-adapted chemotype characterized by enriched levels of multiple bioactive metabolites, superior in vitro bioactivity, and an encouraging preliminary safety margin. These findings support further evaluation of wild T. crispa as a candidate source for standardized botanical preparations targeting oxidative stress-related and hepatic pathologies, while emphasizing the need for: More comprehensive in vivo efficacy studies. Cultivation strategies that deliberately maintain or mimic beneficial stress conditions to preserve phytochemical richness. Broader geographical and genetic sampling to assess how generalizable the present chemotypic and bioactivity patterns are across the species. Full article
(This article belongs to the Special Issue Advances in Phytochemicals: Biological Activities and Applications)
Show Figures

Graphical abstract

Back to TopTop