Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = photocatalytic and antimicrobial activities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1628 KiB  
Article
Eco-Friendly Fabrication of Zinc Oxide Nanoparticles Using Gaultheria fragrantissima: Phytochemical Analysis, Characterization, and Antimicrobial Potential
by Bhoj Raj Poudel, Sujan Dhungana, Anita Dulal, Aayush Raj Poudel, Laxmi Tiwari, Devendra Khadka, Megh Raj Pokhrel, Milan Babu Poudel, Allison A. Kim and Janaki Baral
Inorganics 2025, 13(7), 247; https://doi.org/10.3390/inorganics13070247 - 19 Jul 2025
Viewed by 387
Abstract
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and [...] Read more.
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and hazardous chemicals, posing environmental and human health risks. To overcome these limitations, this research focuses on utilizing G. fragrantissima, rich in bioactive compounds such as phenolics and flavonoids, with the methyl salicylate previously reported in the literature for this species, which helps reduce and stabilize NPs. ZnO NPs were characterized through X-ray diffraction (XRD), UV–visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy (EDS). The ZnO NPs were found to have a well-defined crystalline structure, with their average crystallite size measured at around 8.26 nm. ZnO NPs exhibited moderate antimicrobial activity against selected microbial strains. These findings underscore the potential of G. fragrantissima-mediated synthesis as an environmentally sustainable and efficient method for producing ZnO NPs with multifunctional applications. This study provides a greener alternative to conventional synthesis approaches, demonstrating a method that is both eco-friendly and capable of yielding NPss with desirable properties. Full article
Show Figures

Figure 1

29 pages, 15607 KiB  
Article
Visible-Light-Driven Co3O4/Nb2O5 Heterojunction Nanocomposites for Efficient Photocatalytic and Antimicrobial Performance in Wastewater Treatment
by Anil Pandey, Santu Shrestha, Rupesh Kandel, Narayan Gyawali, Subas Acharya, Pujan Nepal, Binod Gaire, Vince Fualo and Jae Ryang Hahn
Molecules 2025, 30(12), 2561; https://doi.org/10.3390/molecules30122561 - 12 Jun 2025
Viewed by 1086
Abstract
The development of high-performance photocatalysts is vital for combating water pollution and microbial contamination. In this study, visible-light-active Z-scheme heterojunction nanocomposites composed of Co3O4 and Nb2O5 (CNNC) were synthesized via co-crystallization and subsequent high-pressure annealing to enhance [...] Read more.
The development of high-performance photocatalysts is vital for combating water pollution and microbial contamination. In this study, visible-light-active Z-scheme heterojunction nanocomposites composed of Co3O4 and Nb2O5 (CNNC) were synthesized via co-crystallization and subsequent high-pressure annealing to enhance photocatalytic and antimicrobial performance. Structural and optical analyses via XRD, FESEM, TEM, XPS, and PL confirmed the heterojunction formation between porous Co3O4 nanoparticles (CONP) and columnar orthorhombic Nb2O5 nanoparticles (NONP). The CNNC exhibited significantly improved photocatalytic activity, achieving degradation efficiencies of 95.1% for methylene blue, 72.6% for tetracycline, and 90.0% for Congo red within 150 min. Kinetic studies showed that CNNC’s rate constants were 367% and 466% of those of CONP and NONP, respectively. Moreover, CNNC demonstrated a strong antibacterial effect on Staphylococcus aureus and Escherichia coli with ZOI values of 9.3 mm and 6.8 mm, respectively. Mechanistic analysis revealed that the Z-scheme charge-transfer pathway improved charge separation and reduced electron–hole recombination, contributing to the promoted photocatalytic efficiency. The nanocomposite also showed robust stability and recyclability over five times. These results highlight the promise of CNNC as a bifunctional, visible-light-driven photocatalyst for pollutant decomposition and microbial control. Full article
Show Figures

Graphical abstract

29 pages, 3423 KiB  
Review
A Review on Biomedical Applications of Plant Extract-Mediated Metallic Ag, Au, and ZnO Nanoparticles and Future Prospects for Their Combination with Graphitic Carbon Nitride
by Priyanka Panchal, Protima Rauwel, Satya Pal Nehra, Priyanka Singh, Mamta Karla, Glemarie Hermosa and Erwan Rauwel
Pharmaceuticals 2025, 18(6), 820; https://doi.org/10.3390/ph18060820 - 29 May 2025
Viewed by 953
Abstract
Since the publication of the 12 principles of green chemistry in 1998 by Paul Anastas and John Warner, the green synthesis of metal and metal oxide nanoparticles has emerged as an eco-friendly and sustainable alternative to conventional chemical methods. Plant-based synthesis utilizes natural [...] Read more.
Since the publication of the 12 principles of green chemistry in 1998 by Paul Anastas and John Warner, the green synthesis of metal and metal oxide nanoparticles has emerged as an eco-friendly and sustainable alternative to conventional chemical methods. Plant-based synthesis utilizes natural extracts as reducing and stabilizing agents, minimizing harmful chemicals and toxic by-products. Ag nanoparticles (Ag-NPs) exhibit strong antibacterial activity; Au nanoparticles (Au-NPs) are seen as a promising carrier for drug delivery and diagnostics because of their easy functionalization and biocompatibility; and ZnO nanoparticles (ZnO-NPs), on the other hand, produce reactive oxygen species (ROS) that kill microorganisms effectively. These nanoparticles also demonstrate antioxidant properties by scavenging free radicals, reducing oxidative stress, and preventing degenerative diseases. Green syntheses based on plant extracts enhance biocompatibility and therapeutic efficacy, making them suitable for antimicrobial, anticancer, and antioxidant applications. Applying a similar “green synthesis” for advanced nanostructures like graphitic carbon nitride (GCN) is an environmentally friendly alternative to the traditional ways of doing things. GCN exhibits exceptional photocatalytic activity, pollutant degradation efficiency, and electronic properties, with applications in environmental remediation, energy storage, and biomedicine. This review highlights the potential of green-synthesized hybrid nanocomposites combining nanoparticles and GCN as sustainable solutions for biomedical and environmental challenges. The review also highlights the need for the creation of a database using a machine learning process that will enable providing a clear vision of all the progress accomplished till now and identify the most promising plant extracts that should be used for targeted applications. Full article
Show Figures

Graphical abstract

47 pages, 4051 KiB  
Review
Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry
by Veeranjaneya Reddy Lebaka, Perugu Ravi, Madhava C. Reddy, Chandrasekhar Thummala and Tapas Kumar Mandal
Nanomaterials 2025, 15(10), 754; https://doi.org/10.3390/nano15100754 - 17 May 2025
Cited by 3 | Viewed by 1748
Abstract
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention across various scientific and technological domains due to their unique physicochemical properties, including high surface area, photostability, biocompatibility, and potent antimicrobial activity. These attributes make ZnO NPs highly versatile, enabling their application in biomedicine, [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention across various scientific and technological domains due to their unique physicochemical properties, including high surface area, photostability, biocompatibility, and potent antimicrobial activity. These attributes make ZnO NPs highly versatile, enabling their application in biomedicine, environmental science, industry, and agriculture. They serve as effective antimicrobial agents in medical treatments and as catalysts in environmental purification processes, owing to their ability to generate reactive oxygen species (ROS) and exhibit photocatalytic activity under UV light. Moreover, ZnO NPs are being increasingly employed in advanced drug delivery systems and cancer therapies, highlighting their potential in modern medicine. Their growing popularity is further supported by their ease of synthesis, cost-effectiveness, and capacity for diverse functionalization, which expand their utility across multiple sectors. This review focuses on research from the past five years (2020–2025) on the practical uses of ZnO nanoparticles in the biomedical, environmental, industrial, and agricultural fields. It also highlights current trends, existing challenges, and future perspectives. By examining these aspects, the article provides a comprehensive understanding of the versatile roles of ZnO NPs and their emerging significance in science and technology. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

15 pages, 2028 KiB  
Article
Assessing the Performance of Different Treatment Methods in Removing Tetracycline from Wastewater: Efficiency and Cost Evaluation
by Kehinde Shola Obayomi, Zongli Xie, Stephen R. Gray and Jianhua Zhang
Materials 2025, 18(9), 2134; https://doi.org/10.3390/ma18092134 - 6 May 2025
Viewed by 634
Abstract
To tackle the pollution of tetracycline (TC) in aqueous environments, a few treatment methods, including ozonation, adsorption, and photocatalytic degradation, were compared using a novel and sustainable granular activated carbon-based zinc oxide nanoparticle (ZnO@GAC) composite. The results demonstrate that the ZnO@GAC composite towards [...] Read more.
To tackle the pollution of tetracycline (TC) in aqueous environments, a few treatment methods, including ozonation, adsorption, and photocatalytic degradation, were compared using a novel and sustainable granular activated carbon-based zinc oxide nanoparticle (ZnO@GAC) composite. The results demonstrate that the ZnO@GAC composite towards TC exhibited a high removal efficiency of 82.1% in a batch adsorption system. Moreover, the photocatalytic TC degradation study on ZnO@GAC under UV light yields a maximum degradation efficiency of 86.4% with a pseudo-first-order rate constant value of 0.0059 min−1. Ozonation treatment resulted in TC and total organic carbon (TOC) removal reaching a maximum of 95.3% and 79.7% for 4 mg O3/min and 99.6% and 86.6% for 16 mg O3/min after 10 min. Overall, in comparing the adsorption, photocatalysis, and ozonation techniques, in terms of removal efficiency and time, ozonation was found to be more promising for treating TC, while in terms of cost-effectiveness, the adsorption process is preferable. Finally, the application of the developed composite in municipal and hospital wastewater using adsorption, photocatalytic degradation, and ozonation techniques revealed that the TOC removal efficiencies were higher for hospital wastewater than municipal wastewater. Furthermore, the applicability of these techniques in treating hospital wastewater containing pharmaceuticals, antibiotics, fungicides, and antimicrobial pollutants shows an outstanding result after treatment. In conclusion, the technologies studied in this research can significantly improve the efficiency and effectiveness of wastewater treatment applications, providing a sustainable, cost-effective, and eco-friendly solution. Full article
Show Figures

Graphical abstract

35 pages, 9518 KiB  
Article
Green Innovation: Multifunctional Zinc Oxide Nanoparticles Synthesized Using Quercus robur for Photocatalytic Performance, Environmental, and Antimicrobial Applications
by Selma Redjili, Houria Ghodbane, Hichem Tahraoui, Lokmane Abdelouahed, Derradji Chebli, Mohammad Shamsul Ola, Amine Aymen Assadi, Mohammed Kebir, Jie Zhang, Abdeltif Amrane and Sabrina Lekmine
Catalysts 2025, 15(3), 256; https://doi.org/10.3390/catal15030256 - 7 Mar 2025
Cited by 2 | Viewed by 1647
Abstract
This study investigates the green synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf extract as a natural reducing agent, evaluating their antimicrobial and photocatalytic properties. The nanoparticles were annealed at 320 °C and 500 °C, and the effects of leaf extract concentration [...] Read more.
This study investigates the green synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf extract as a natural reducing agent, evaluating their antimicrobial and photocatalytic properties. The nanoparticles were annealed at 320 °C and 500 °C, and the effects of leaf extract concentration and annealing temperature on their structural, morphological, and electronic properties were systematically explored. X-ray diffraction (XRD) analysis confirmed the hexagonal wurtzite structure of ZnO, with crystallite size and defect density being influenced by the concentration of the extract. Scanning electron microscopy (SEM) revealed the formation of smaller, spherical particles, with increased aggregation observed at higher extract concentrations. Fourier-transform infrared spectroscopy (FTIR) identified key functional groups, such as hydroxyl groups, C–O bonds, and metal–oxygen vibrations. UV–Vis spectroscopy showed a reduction in band gap energy and an increase in Urbach energy as the extract concentration and annealing temperature were increased. The antimicrobial activity of the ZnO NPs was evaluated against Gram-positive and Gram-negative bacteria as well as Candida albicans, demonstrating significant antibacterial efficacy. Photocatalytic degradation studies of methylene blue dye revealed a superior efficiency of up to 74% for the annealed samples, particularly at 500 °C. This research highlights the potential of green-synthesized ZnO NPs for a wide range of applications, including antimicrobial agents, water purification, and environmental catalysis. It contributes to the advancement of sustainable nanotechnology, offering promising solutions for both technological and ecological challenges. Full article
Show Figures

Figure 1

43 pages, 5509 KiB  
Review
Metal–Organic Frameworks: Next-Generation Materials for Environmental Remediation
by Daniel Terrón, Angeles Sanromán and Marta Pazos
Catalysts 2025, 15(3), 244; https://doi.org/10.3390/catal15030244 - 4 Mar 2025
Cited by 1 | Viewed by 1609
Abstract
Contamination of water resources, particularly from industrial discharges, agricultural runoff, or hospital wastewater, poses significant environmental and public health challenges. Traditional wastewater treatment methods often fail to effectively remove the diverse and persistent pollutants present in these sources, including emerging chemical compounds or [...] Read more.
Contamination of water resources, particularly from industrial discharges, agricultural runoff, or hospital wastewater, poses significant environmental and public health challenges. Traditional wastewater treatment methods often fail to effectively remove the diverse and persistent pollutants present in these sources, including emerging chemical compounds or biological agents. To address these challenges, metal–organic frameworks (MOFs) have emerged as multifunctional materials offering promising advancements in wastewater remediation. These materials can be applied directly as pollutant adsorbents or used for pathogen removal due to their antimicrobial activity. Additionally, MOFs play a crucial role in Advanced Oxidation Processes (AOPs) due to their catalytic activity. When incorporated into electro-Fenton, Fenton-like, or photocatalytic processes, MOFs enhance the generation of oxidant radicals, enabling efficient wastewater decontamination. This comprehensive review explores the potential of MOFs, focusing specifically on their design, synthesis, and application as multifunctional materials for the inactivation of pathogens and the removal of organic pollutants. Moreover, it examines their characteristics, recent advances in synthesis techniques, and the mechanisms underlying their removal efficiency. The findings presented underscore the transformative potential of MOFs in achieving clean and safer water, contributing to sustainable environmental management and public health protection. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

19 pages, 3219 KiB  
Article
Impact of UV-Irradiated Mesoporous Titania Nanoparticles (mTiNPs) on Key Onco- and Tumor Suppressor microRNAs of PC3 Prostate Cancer Cells
by Andrea Méndez-García, Luis Alberto Bravo-Vázquez, Padmavati Sahare and Sujay Paul
Genes 2025, 16(2), 148; https://doi.org/10.3390/genes16020148 - 25 Jan 2025
Cited by 1 | Viewed by 1348
Abstract
Background: Mesoporous titanium dioxide nanoparticles (mTiNPs) are known for their chemical stability, non-toxicity, antimicrobial and anticancer effects, as well as for their photocatalytic properties. When this material is subjected to UV radiation, its electronic structure shifts, and during that process, reactive oxygen species [...] Read more.
Background: Mesoporous titanium dioxide nanoparticles (mTiNPs) are known for their chemical stability, non-toxicity, antimicrobial and anticancer effects, as well as for their photocatalytic properties. When this material is subjected to UV radiation, its electronic structure shifts, and during that process, reactive oxygen species are generated, which in turn exert apoptotic events on the cancer cells. Objectives: We evaluated the cytotoxic effects of UV-irradiated mTiNPs on prostate cancer (PCa) cell line PC3 with the aim of demonstrating that the interaction between UV-light and mTiNPs positively impacts the nanomaterial’s cytotoxic efficiency. Moreover, we assessed the differential expression of key oncomiRs and tumor suppressor (TS) miRNAs, as well as their associated target genes, in cells undergoing this treatment. Methods: PBS-suspended mTiNPs exposed to 290 nm UV light were added at different concentrations to PC3 cells. Cell viability was determined after 24 h with a crystal violet assay. Then, the obtained IC50 concentration of UV-nanomaterial was applied to a new PC3 cell culture, and the expression of a set of miRNAs and selected target genes was evaluated via qRT-PCR. Results: The cells exposed to photo-activated mTiNPs required 4.38 times less concentration of the nanomaterial than the group exposed to non-irradiated mTiNPs to achieve the half-maximal inhibition, demonstrating an improved cytotoxic performance of the UV-irradiated mTiNPs. Moreover, the expression of miR-18a-5p, miR-21-5p, and miR-221-5p was downregulated after the application of UV-mTiNPs, while TS miR-200a-5p and miR-200b-5p displayed an upregulated expression. Among the miRNA target genes, PTEN was found to be upregulated after the treatment, while BCL-2 and TP53 were underexpressed. Conclusions: Our cytotoxic outcomes coincided with previous reports performed in other cancer cell lines, strongly suggesting UV-irradiated mTiNPs as a promising nano-therapeutic approach against PCa. On the other hand, to the best of our knowledge, this is the first report exploring the impact of UV-irradiated mTiNPs on key onco- and TS microRNAs in PCa cells. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

1 pages, 139 KiB  
Retraction
RETRACTED: Saied et al. Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities. Bioengineering 2022, 9, 397
by Ebrahim Saied, Salem S. Salem, Abdulaziz A. Al-Askar, Fathy M. Elkady, Amr A. Arishi and Amr H. Hashem
Bioengineering 2025, 12(2), 100; https://doi.org/10.3390/bioengineering12020100 - 22 Jan 2025
Viewed by 774
Abstract
The Bioengineering Editorial Office retracts the article “Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities” [...] Full article
18 pages, 5459 KiB  
Article
Chitosan/Polyvinyl Alcohol/g-C3N4 Nanocomposite Film: An Efficient Visible Light-Responsive Photocatalyst and Antimicrobial Agent
by Murugan Sutharsan, Krishnan Senthil Murugan, Kanagaraj Narayanan and Thillai Sivakumar Natarajan
Processes 2025, 13(1), 229; https://doi.org/10.3390/pr13010229 - 15 Jan 2025
Viewed by 1979
Abstract
Biopolymer-based nanocomposite film is an efficient material for addressing the increasing levels of pollutants in the environment and also for the production of antimicrobial packing material due to its good film-forming properties, biodegradability, and minimal environmental impact. In particular, chitosan/polyvinyl alcohol/g-C3N [...] Read more.
Biopolymer-based nanocomposite film is an efficient material for addressing the increasing levels of pollutants in the environment and also for the production of antimicrobial packing material due to its good film-forming properties, biodegradability, and minimal environmental impact. In particular, chitosan/polyvinyl alcohol/g-C3N4 (CS/PVA/g-C3N4) nanocomposite films with different weight percentages of PVA were prepared using simple methodologies and characterized using XRD, TGA, FT-IR, DSC, FE-SEM, EDX, and elemental mapping analysis. The XRD and FT-IR results validated the nanocomposite film formation. The FE-SEM images showed the smooth surface of the composite films without any wrinkles; the smoothness of the film increased with increases in the PVA loading, and the surface morphologies of the films were largely unchanged. The EDX and elemental mapping analysis validated the presence and uniform dispersion of g-C3N4 within the nanocomposite film. The photocatalytic activity of the CS/PVA/g-C3N4 composite films was assessed by the degradation of rhodamine B dye (RhB) and acetophenone under direct sunlight irradiation. The CS/PVA/g-C3N4 nanocomposite films exhibited superior degradation efficiency toward the RhB dye and acetophenone compared to the bare polymeric film and the g-C3N4 material. The order of degradation for the RhB dye and acetophenone was CS/PVA (1.0) g-C3N4 (95.34%, 33.33%) > CS/PVA (1.5) g-C3N4 (93.18%, 31.31%) > CS/PVA (0.5) g-C3N4 (93.02%, 29.29%) > CS/PVA (90.69%, 26.26%) > g-C3N4 (87.56%, 24%), respectively. Furthermore, the antimicrobial activity of the nanocomposite films was tested against E. coli, Pseudomonas sps., Klesiella sps., and Enterococcus sps., and the CS/PVA (1.5)/g-C3N4 nanocomposite film offered better antimicrobial properties than the other composite films and bare materials. In conclusion, these biopolymer-based nanocomposites are highly efficient and provide a promising path for the development of various biodegradable polymeric nanocomposites for environmental remediation and antibacterial packing applications. Full article
(This article belongs to the Special Issue Nanomaterials for Environmental Remediation Processes)
Show Figures

Graphical abstract

18 pages, 5686 KiB  
Article
Eco-Friendly Synthesis of Zirconium Dioxide Nanoparticles from Toddalia asiatica: Applications in Dye Degradation, Antioxidant and Antibacterial Activity
by Arumugam Kathirvel, Ramalingam Srinivasan, Sathasivam Harini, Natarajan Ranjith, Govindan Suresh Kumar, Kesavan Lalithambigai, Raji Atchudan, Mohamed A. Habila, Ahmed M. Aljuwayid and Hae Keun Yun
Nanomaterials 2025, 15(2), 84; https://doi.org/10.3390/nano15020084 - 7 Jan 2025
Cited by 2 | Viewed by 1783
Abstract
Zirconium dioxide nanoparticles (ZrO2 NPs) have gained significant attention due to their excellent bioavailability, low toxicity, and diverse applications in the medical and industrial fields. In this study, ZrO2 NPs were synthesized using zirconyl oxychloride and the aqueous leaf extract of [...] Read more.
Zirconium dioxide nanoparticles (ZrO2 NPs) have gained significant attention due to their excellent bioavailability, low toxicity, and diverse applications in the medical and industrial fields. In this study, ZrO2 NPs were synthesized using zirconyl oxychloride and the aqueous leaf extract of Toddalia asiatica as a stabilizing agent. Analytical techniques, including various spectroscopy methods and electron microscopy, confirmed the formation of aggregated spherical ZrO2 NPs, ranging from 15 to 30 nm in size, with mixed-phase structure composed of tetragonal and monoclinic structures. UV–visible spectroscopy showed a characteristic band at 281 nm with a bandgap energy of 3.7 eV, indicating effective stabilization by the phytochemicals in T. asiatica. EDX analysis revealed that the NPs contained 37.18 mol.% zirconium (Zr) and 62.82 mol.% oxygen. The ZrO2 NPs demonstrated remarkable photocatalytic activity, degrading over 95% of methylene blue dye after 3 h of sunlight exposure. Additionally, the ZrO2 NPs exhibited strong antibacterial effects, particularly against Gram-negative bacteria such as E. coli, and significant antioxidant activity, with low IC50 values for hydroxyl radical scavenging. In conclusion, the green synthesis of ZrO2 NPs using T. asiatica leaf extract is an effective, eco-friendly method that produces nanoparticles with remarkable antioxidant, antimicrobial, and photocatalytic properties, highlighting their potential for applications in water treatment, environmental remediation, and biomedicine. Full article
(This article belongs to the Special Issue Nanomaterials for Green and Sustainable World)
Show Figures

Figure 1

33 pages, 4394 KiB  
Article
The Photocatalytic Degradation of Enrofloxacin Using an Ecofriendly Natural Iron Mineral: The Relationship Between the Degradation Routes, Generated Byproducts, and Antimicrobial Activity of Treated Solutions
by Sindy D. Jojoa-Sierra, Efraím A. Serna-Galvis, Inés García-Rubio, Maria P. Ormad, Ricardo A. Torres-Palma and Rosa Mosteo
Molecules 2024, 29(24), 5982; https://doi.org/10.3390/molecules29245982 - 18 Dec 2024
Viewed by 1222
Abstract
The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to [...] Read more.
The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM’s feasibility for photocatalytic processes. Consequently, the effectiveness of different advanced processes such as using solar light with the NIM (Light–NIM) and solar light with the NIM and H2O2 (Light–NIM–H2O2) to reduce AA was evaluated. The NIM acts as a semiconductor under solar light, effectively degrading enrofloxacin (ENR) and reducing its AA, although complete elimination was not achieved. The addition of hydrogen peroxide (NIM–Light–H2O2) enhanced the generation of reactive oxygen species (ROS), thereby increasing the elimination of ENR and AA. The role of ROS, specifically O2•− and HO, in the degradation of enrofloxacin was distinguished using scavenger species and electron paramagnetic resonance (EPR) analysis. Additionally, the five primary degradation products generated during the advanced processes were elucidated. Furthermore, the relationship between the structure of these products and the persistence or elimination of AA, which was differentiated against E. coli but not against S. aureus, was discussed. The effects of the matrix during the process and the extent of the treatments, including their capacity to promote disinfection, were also studied. The reusability of the natural iron material was examined, and it was found that the NIM–Light–H2O2 system showed an effective reduction of 5 logarithmic units in microbiological contamination in an EWWTP and can be reused for up to three cycles while maintaining 100% efficiency in reducing AA. Full article
(This article belongs to the Special Issue New Research on Novel Photo-/Electrochemical Materials)
Show Figures

Figure 1

21 pages, 2890 KiB  
Review
Visible-Light-Activated TiO2-Based Photocatalysts for the Inactivation of Pathogenic Bacteria
by Farhana Haque, Allison Blanchard, Baileigh Laipply and Xiuli Dong
Catalysts 2024, 14(12), 855; https://doi.org/10.3390/catal14120855 - 25 Nov 2024
Cited by 5 | Viewed by 2749
Abstract
Pathogenic bacteria in the environment pose a significant threat to public health. Titanium dioxide (TiO2)-based photocatalysts have emerged as a promising solution due to their potent antimicrobial effects under visible light and their generally eco-friendly properties. This review focuses on the [...] Read more.
Pathogenic bacteria in the environment pose a significant threat to public health. Titanium dioxide (TiO2)-based photocatalysts have emerged as a promising solution due to their potent antimicrobial effects under visible light and their generally eco-friendly properties. This review focuses on the antibacterial properties of visible-light-activated, TiO2-based photocatalysts against pathogenic bacteria and explores the factors influencing their efficacy. Various TiO2 modification strategies are discussed, including doping with non-metals, creating structure defects, combining narrow-banded semiconductors, etc., to extend the light absorption spectrum from the UV to the visible light region. The factors affecting bacterial inactivation, and the underlying mechanisms are elucidated. Although certain modified TiO2 nanoparticles (NPs) show antibacterial activities in the dark, they exhibit much higher antibacterial efficacies under visible light, especially with higher light intensity. Doping TiO2 with elements such as N, S, Ce, Bi, etc., or introducing surface defects in TiO2 NPs without doping, can effectively inactivate various pathogenic bacteria, including multidrug-resistant bacteria, under visible light. These surface modifications are advantageous in their simplicity and cost-effectiveness in synthesis. Additionally, TiO2 can be coupled with narrow-banded semiconductors, resulting in narrower band gaps and enhanced photocatalytic efficiency and antibacterial activities under visible light. This information aids in understanding the current technologies for developing visible-light-driven, TiO2-based photocatalysts and their application in inactivating pathogenic bacteria in the environment. Full article
(This article belongs to the Special Issue Photocatalysis towards a Sustainable Future)
Show Figures

Figure 1

16 pages, 20305 KiB  
Article
Preparation and Antibacterial Performance Study of CeO2/g-C3N4 Nanocomposite Materials
by Jingtao Zhang, Ruichun Nan, Tianzhu Liang, Yuheng Zhao, Xinxin Zhang, Mengzhen Zhu, Ruoyu Li, Xiaodong Sun, Yisong Chen and Bingkun Liu
Molecules 2024, 29(23), 5557; https://doi.org/10.3390/molecules29235557 - 25 Nov 2024
Cited by 3 | Viewed by 1544
Abstract
In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO2/g-C3N4 nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO [...] Read more.
In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO2/g-C3N4 nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO2/g-C3N4 exhibited superior electron–hole separation efficiency. Quantitative antimicrobial assays demonstrated that the nanocomposites displayed enhanced bactericidal activity against Escherichia coli, Ralstonia solanacearum, and Staphylococcus aureus. Electron paramagnetic resonance (EPR) spectroscopy analysis verified the generation of hydroxyl radicals (·OH) and superoxide radicals (·O2) during the photo-Fenton process utilizing CeO2/g-C3N4 nanocomposites. Additionally, 8 wt% CeO2/g-C3N4 nanocomposites demonstrated enhanced photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC) under photo-Fenton conditions. Full article
Show Figures

Graphical abstract

29 pages, 6044 KiB  
Article
Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics
by Nada S. Shweqa, Noura El-Ahmady El-Naggar, Hala M. Abdelmigid, Amal A. Alyamani, Naglaa Elshafey, Hadeel El-Shall, Yasmin M. Heikal and Hoda M. Soliman
J. Funct. Biomater. 2024, 15(12), 354; https://doi.org/10.3390/jfb15120354 - 21 Nov 2024
Cited by 1 | Viewed by 1811
Abstract
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, [...] Read more.
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc. This study details the biosynthesis and characterization of silver nanoparticles (AgNPs) using the aqueous mycelial-free filtrate of Aspergillus flavus. The formation of AgNPs was indicated by a brown color in the extracellular filtrate and confirmed by UV-Vis spectroscopy with a peak at 426 nm. The Box-Behnken design (BBD) is used to optimize the physicochemical parameters affecting AgNPs biosynthesis. The desirability function was employed to theoretically predict the optimal conditions for the biosynthesis of AgNPs, which were subsequently experimentally validated. Through the desirability function, the optimal conditions for the maximum predicted value for the biosynthesized AgNPs (235.72 µg/mL) have been identified as follows: incubation time (58.12 h), initial pH (7.99), AgNO3 concentration (4.84 mM/mL), and temperature (34.84 °C). Under these conditions, the highest experimental value of AgNPs biosynthesis was 247.53 µg/mL. Model validation confirmed the great accuracy of the model predictions. Scanning electron microscopy (SEM) revealed spherical AgNPs measuring 8.93–19.11 nm, which was confirmed by transmission electron microscopy (TEM). Zeta potential analysis indicated a positive surface charge (+1.69 mV), implying good stability. X-ray diffraction (XRD) confirmed the crystalline nature, while energy-dispersive X-ray spectroscopy (EDX) verified elemental silver (49.61%). FTIR findings indicate the presence of phenols, proteins, alkanes, alkenes, aliphatic and aromatic amines, and alkyl groups which play significant roles in the reduction, capping, and stabilization of AgNPs. Cotton fabrics embedded with AgNPs biosynthesized using the aqueous mycelial-free filtrate of Aspergillus flavus showed strong antimicrobial activity. The disc diffusion method revealed inhibition zones of 15, 12, and 17 mm against E. coli (Gram-negative), S. aureus (Gram-positive), and C. albicans (yeast), respectively. These fabrics have potential applications in protective clothing, packaging, and medical care. In silico modeling suggested that the predicted compound derived from AgNPs on cotton fabric could inhibit Penicillin-binding proteins (PBPs) and Lanosterol 14-alpha-demethylase (L-14α-DM), with binding energies of −4.7 and −5.2 Kcal/mol, respectively. Pharmacokinetic analysis and sensitizer prediction indicated that this compound merits further investigation. Full article
Show Figures

Figure 1

Back to TopTop