Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = photo-bio-electrochemical cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2422 KiB  
Article
Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics
by Amit Sarode and Gymama Slaughter
Energies 2025, 18(12), 3167; https://doi.org/10.3390/en18123167 - 16 Jun 2025
Cited by 1 | Viewed by 573
Abstract
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and [...] Read more.
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and isolated thylakoid membranes. LIG provided a porous, conductive scaffold, while PEDOT enhanced electrode compatibility, electrical conductivity, and operational stability. Compared to MXene-based systems that involve complex, multi-step synthesis, PEDOT offers a cost-effective and scalable alternative for bioelectrode fabrication. Thylakoid membranes were immobilized onto the PEDOT-modified LIG surface to enable light-driven electron generation. Electrochemical characterization revealed enhanced redox activity following PEDOT modification and stable photocurrent generation under light illumination, achieving a photocurrent density of approximately 18 µA cm−2. The assembled photo-bioelectrochemical fuel cell employing a gas diffusion platinum cathode demonstrated an open-circuit voltage of 0.57 V and a peak power density of 36 µW cm−2 in 0.1 M citrate buffer (pH 5.5) under light conditions. Furthermore, the integration of a charge pump circuit successfully boosted the harvested voltage to drive a low-power light-emitting diode, showcasing the practical viability of the system. This work highlights the potential of combining biological photosystems with conductive nanomaterials for the development of self-powered, light-driven bioelectronic devices. Full article
Show Figures

Figure 1

14 pages, 3348 KiB  
Article
Enhanced Electricity Generation in Solar-Driven Photo-Bioelectrochemical Cells Equipped with Co3(PO4)2/Mg(OH)2 Photoanode
by Razieh Rafieenia, Mohamed Mahmoud, Mahmoud S. Abdel-Wahed, Tarek A. Gad-Allah, Anna Salvian, Daniel Farkas, Fatma El-Gohary and Claudio Avignone Rossa
Water 2024, 16(12), 1683; https://doi.org/10.3390/w16121683 - 13 Jun 2024
Cited by 5 | Viewed by 1708
Abstract
We developed a solar-driven photo-bioelectrochemical cell (s-PBEC) employing a novel anode photocatalyst material (Co3(PO4)2/Mg(OH)2) intimately coupled with electrochemically active bacteria for synergic electricity generation from wastewater. An s-PBEC was inoculated with a natural microbial community [...] Read more.
We developed a solar-driven photo-bioelectrochemical cell (s-PBEC) employing a novel anode photocatalyst material (Co3(PO4)2/Mg(OH)2) intimately coupled with electrochemically active bacteria for synergic electricity generation from wastewater. An s-PBEC was inoculated with a natural microbial community and fed with synthetic wastewater to analyze the performance of the system for electricity generation. Linear sweep voltammetry indicated an increase in power output upon light illumination of the s-PBEC after 1 h, rising from 66.0 to 91.5 mW/m2. The current density in the illuminated s-PBEC exhibited a rapid increase, reaching 0.32 A/m2 within 1 h, which was significantly higher than the current density in dark conditions (0.15 A/m2). Shotgun metagenomic analysis revealed a significant shift in the microbial community composition with a more diverse anodic biofilm upon illumination compared to the microbial communities in dark conditions. Three unclassified genera correlated with the enhanced current generation in illuminated s-PBEC, including Neisseriales (16.31%), Betaproteobacteria (7.37%), and Alphaproteobacteria (5.77%). This study opens avenues for further exploration and optimization of the solar-driven photo-bioelectrochemical cells, paving the way for integrative approaches for sustainable energy generation and wastewater treatment. Full article
(This article belongs to the Special Issue Application of Biotechnology in Water Purification)
Show Figures

Graphical abstract

16 pages, 3852 KiB  
Article
Optical Interactions in Bio-Electricity Generation from Photosynthesis in Microfluidic Micro-Photosynthetic Power Cells
by Kirankumar Kuruvinashetti, Hemanth Kumar Tanneru, Shanmugasundaram Pakkiriswami and Muthukumaran Packirisamy
Energies 2023, 16(21), 7353; https://doi.org/10.3390/en16217353 - 31 Oct 2023
Cited by 3 | Viewed by 2042
Abstract
Within the realm of renewable energy sources, biological-based power systems have emerged as pivotal players particularly suited for low- and ultra-low-power applications. Unlike microbial fuel cells (MFCs), which invariably rely on external carbon feedstock, micro-photosynthetic cells (µPSCs) exhibit a unique feature by operating [...] Read more.
Within the realm of renewable energy sources, biological-based power systems have emerged as pivotal players particularly suited for low- and ultra-low-power applications. Unlike microbial fuel cells (MFCs), which invariably rely on external carbon feedstock, micro-photosynthetic cells (µPSCs) exhibit a unique feature by operating independently of organic fuel. They harness the principles of photosynthesis and respiration to generate electricity in both illuminated and dark settings through water-splitting reactions. Here, we present a viable, easy, and cost-effective method to fabricate µPSCs. We meticulously examined the performance of a fabricated µPSC under varying illuminations and even in the absence of light. With an electrode surface area spanning 4.84 cm2, the µPSC achieved its peak power output of 200.6 µW when exposed to an illumination of 2 µmolm−2s−1 (equivalent to 147 lux). Of the three light intensities studied, 2 µmolm−2s−1, 8 µmolm−2s−1 (595 lux), and 20 µmolm−2s−1 (1500 lux), the µPSC exhibited its optimal performance at a light intensity of 2 µmolm−2s−1, establishing this as the ideal operational illumination. Furthermore, intermittent toggling of the illumination had no discernible impact on the µPSC’s performance. However, subjecting it to a dark environment for 30 min resulted in a reduction in the maximum power to 81 µW, marking a significant 119% decrease when compared to the peak power output achieved under 2 µmolm−2s−1 illumination. Full article
(This article belongs to the Collection Renewable and Sustainable Energy)
Show Figures

Figure 1

14 pages, 2872 KiB  
Article
The Structure of Bilirubin Oxidase from Bacillus pumilus Reveals a Unique Disulfide Bond for Site-Specific Direct Electron Transfer
by Shalev Gihaz, Nidaa Shrara Herzallh, Yifat Cohen, Oren Bachar, Ayelet Fishman and Omer Yehezkeli
Biosensors 2022, 12(5), 258; https://doi.org/10.3390/bios12050258 - 19 Apr 2022
Viewed by 4426
Abstract
Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the [...] Read more.
Efficient oxygen-reducing biocatalysts are essential for the development of biofuel cells or photo-bioelectrochemical applications. Bilirubin oxidase (BOD) is a promising biocatalyst for oxygen reduction processes at neutral pH and low overpotentials. BOD has been extensively investigated over the last few decades. While the enzyme’s internal electron transfer process and methods to establish electrical communication with electrodes have been elucidated, a crystal structure of BOD from bacterial origin has never been determined. Here we present the first crystal structure of BOD from Bacillus pumilus (BpBOD) at 3.5 Å resolution. Overall, BpBOD shows high homology with the fungal enzymes; however, it holds a unique surface-exposed disulfide bond between Cys229 and Cys322 residues. We present methodologies to orient the T1 site towards the electrode by coupling the reduced disulfide bond with maleimide moiety on the electrodes. The developed configurations were further investigated and revealed improved direct electron transfer rates with the electrodes. The work presented here may contribute to the construction of rationally designed bioanodes or biocathode configurations that are based on redox-active enzymes. Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Bioelectronic Devices Section)
Show Figures

Figure 1

11 pages, 2022 KiB  
Article
Electron Mediation and Photocurrent Enhancement in Dunalliela salina Driven Bio-Photo Electrochemical Cells
by Yaniv Shlosberg, Tünde N. Tóth, Benjamin Eichenbaum, Lee Keysar, Gadi Schuster and Noam Adir
Catalysts 2021, 11(10), 1220; https://doi.org/10.3390/catal11101220 - 10 Oct 2021
Cited by 25 | Viewed by 3484
Abstract
In recent years, finding alternatives for fossil fuels has become a major concern. One promising solution is microorganism-based bio-photo electrochemical cells (BPECs) that utilize photosynthetic solar energy conversion as an energy source while absorbing CO2 from the atmosphere. It was previously reported [...] Read more.
In recent years, finding alternatives for fossil fuels has become a major concern. One promising solution is microorganism-based bio-photo electrochemical cells (BPECs) that utilize photosynthetic solar energy conversion as an energy source while absorbing CO2 from the atmosphere. It was previously reported that in cyanobacterial-based BPECs, the major endogenous electron mediator that can transfer electrons from the thylakoid membrane photosynthetic complexes and external anodes is NADPH. However, the question of whether the same electron transfer mechanism is also valid for live eukaryotic microalgae, in which NADPH must cross both the chloroplast outer membrane and the cell wall to be secreted from the cell has remained elusive. In this work, we show that NADPH is also the major endogenous electron mediator in the microalgae Dunalliela salina (Ds). We show that the ability of Ds to tolerate high salinity enables the production of a photocurrent that is 5–6 times greater than previously reported for freshwater cyanobacterial-based BPECs in the presence or absence of exogenous electron mediators. Additionally, we show that the electron mediator Vitamin B1 can also function as an electron mediator enhancing photocurrent production. Finally, we show that the addition of both FeCN and NADP+ to Ds has a synergistic effect enhancing the photocurrent beyond the effect of adding each mediator separately. Full article
(This article belongs to the Special Issue NanoBio Hybrids and Photocatalysis)
Show Figures

Graphical abstract

27 pages, 2816 KiB  
Review
Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes
by A K M Khabirul Islam, Patrick S. M. Dunlop, Neil J. Hewitt, Rose Lenihan and Caterina Brandoni
Clean Technol. 2021, 3(1), 156-182; https://doi.org/10.3390/cleantechnol3010010 - 18 Feb 2021
Cited by 74 | Viewed by 12557
Abstract
Billions of litres of wastewater are produced daily from domestic and industrial areas, and whilst wastewater is often perceived as a problem, it has the potential to be viewed as a rich source for resources and energy. Wastewater contains between four and five [...] Read more.
Billions of litres of wastewater are produced daily from domestic and industrial areas, and whilst wastewater is often perceived as a problem, it has the potential to be viewed as a rich source for resources and energy. Wastewater contains between four and five times more energy than is required to treat it, and is a potential source of bio-hydrogen—a clean energy vector, a feedstock chemical and a fuel, widely recognised to have a role in the decarbonisation of the future energy system. This paper investigates sustainable, low-energy intensive routes for hydrogen production from wastewater, critically analysing five technologies, namely photo-fermentation, dark fermentation, photocatalysis, microbial photo electrochemical processes and microbial electrolysis cells (MECs). The paper compares key parameters influencing H2 production yield, such as pH, temperature and reactor design, summarises the state of the art in each area, and highlights the scale-up technical challenges. In addition to H2 production, these processes can be used for partial wastewater remediation, providing at least 45% reduction in chemical oxygen demand (COD), and are suitable for integration into existing wastewater treatment plants. Key advancements in lab-based research are included, highlighting the potential for each technology to contribute to the development of clean energy. Whilst there have been efforts to scale dark fermentation, electro and photo chemical technologies are still at the early stages of development (Technology Readiness Levels below 4); therefore, pilot plants and demonstrators sited at wastewater treatment facilities are needed to assess commercial viability. As such, a multidisciplinary approach is needed to overcome the current barriers to implementation, integrating expertise in engineering, chemistry and microbiology with the commercial experience of both water and energy sectors. The review concludes by highlighting MECs as a promising technology, due to excellent system modularity, good hydrogen yield (3.6–7.9 L/L/d from synthetic wastewater) and the potential to remove up to 80% COD from influent streams. Full article
(This article belongs to the Special Issue Hydrogen Economy Technologies)
Show Figures

Figure 1

14 pages, 3727 KiB  
Article
A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection
by Matteo Tucci, Paolo Bombelli, Christopher J. Howe, Silvia Vignolini, Stefano Bocchi and Andrea Schievano
Microorganisms 2019, 7(12), 630; https://doi.org/10.3390/microorganisms7120630 - 29 Nov 2019
Cited by 31 | Viewed by 5137
Abstract
A novel mediatorless photo-bioelectrochemical sensor operated with a biofilm of the cyanobacterium Synechocystis PCC6803 wt. for herbicide detection with long term stability (>20 days) was successfully developed and tested. Photoanodic current generation was obtained in the absence of artificial mediators. The inhibitory [...] Read more.
A novel mediatorless photo-bioelectrochemical sensor operated with a biofilm of the cyanobacterium Synechocystis PCC6803 wt. for herbicide detection with long term stability (>20 days) was successfully developed and tested. Photoanodic current generation was obtained in the absence of artificial mediators. The inhibitory effect on photocurrent of three commonly used herbicides (i.e., atrazine, diuron, and paraquat) was used as a means of measuring their concentrations in aqueous solution. The injection of atrazine and diuron into the algal medium caused an immediate photocurrent drop due to the inhibition of photosynthetic electron transport. The detected concentrations were suitable for environmental analysis, as revealed by a comparison with the freshwater quality benchmarks set by the Environmental Protection Agency of the United States (US EPA). In contrast, paraquat caused an initial increase (~2 h) of the photocurrent effect of about 200%, as this compound can act as a redox mediator between the cells and the anode. A relatively long-term stability of the biosensor was demonstrated, by keeping anodes colonized with cyanobacterial biofilm in the dark at 4 °C. After 22 days of storage, the performance in terms of the photocurrent was comparable with the freshly prepared biosensor. This result was confirmed by the measurement of chlorophyll content, which demonstrated preservation of the cyanobacterial biofilm. The capacity of this biosensor to recover after a cold season or other prolonged environmental stresses could be a key advantage in field applications, such as in water bodies and agriculture. This study is a step forward in the biotechnological development and implementation of storable mediatorless electrochemical biosensors for herbicide detection. Full article
(This article belongs to the Special Issue The Emerging Role of Cyanobacteria in Green Biotechnology)
Show Figures

Figure 1

12 pages, 10998 KiB  
Article
Electrochemical Characterisation of Bio-Bottle-Voltaic (BBV) Systems Operated with Algae and Built with Recycled Materials
by Peter Bateson, Jack E. H. Fleet, Anthony S. Riseley, Elena Janeva, Anastasia S. Marcella, Chiara Farinea, Maria Kuptsova, Núria Conde Pueyo, Christopher J. Howe, Paolo Bombelli and Brenda M. Parker
Biology 2018, 7(2), 26; https://doi.org/10.3390/biology7020026 - 17 Apr 2018
Cited by 19 | Viewed by 11584
Abstract
Photobioelectrochemical systems are an emerging possibility for renewable energy. By exploiting photosynthesis, they transform the energy of light into electricity. This study evaluates a simple, scalable bioelectrochemical system built from recycled plastic bottles, equipped with an anode made from recycled aluminum, and operated [...] Read more.
Photobioelectrochemical systems are an emerging possibility for renewable energy. By exploiting photosynthesis, they transform the energy of light into electricity. This study evaluates a simple, scalable bioelectrochemical system built from recycled plastic bottles, equipped with an anode made from recycled aluminum, and operated with the green alga Chlorella sorokiniana. We tested whether such a system, referred to as a bio-bottle-voltaic (BBV) device, could operate outdoors for a prolonged time period of 35 days. Electrochemical characterisation was conducted by measuring the drop in potential between the anode and the cathode, and this value was used to calculate the rate of charge accumulation. The BBV systems were initially able to deliver ~500 mC·bottle−1·day−1, which increased throughout the experimental run to a maximum of ~2000 mC·bottle−1·day−1. The electrical output was consistently and significantly higher than that of the abiotic BBV system operated without algal cells (~100 mC·bottle−1·day−1). The analysis of the rate of algal biomass accumulation supported the hypothesis that harvesting a proportion of electrons from the algal cells does not significantly perturb the rate of algal growth. Our finding demonstrates that bioelectrochemical systems can be built using recycled components. Prototypes of these systems have been displayed in public events; they could serve as educational toolkits in schools and could also offer a solution for powering low-energy devices off-grid. Full article
(This article belongs to the Special Issue Microalgal Biotechnology)
Show Figures

Figure 1

Back to TopTop