Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = phosphatidylinositol 3,4,5-trisphosphate (PIP3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2512 KiB  
Article
Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
by Amir Damouni, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros and Péter Várnai
Cells 2025, 14(14), 1125; https://doi.org/10.3390/cells14141125 - 21 Jul 2025
Viewed by 392
Abstract
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor [...] Read more.
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP3, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP3 avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP3 signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

14 pages, 1789 KiB  
Article
A Novel PLCζ Mutation Linked to Male Factor Infertility Induces a Gain-of-Function Effect on Ca2+ Oscillations in Eggs
by Alaaeldin Saleh, Zizhen Huang, Maryam Al Shaikh, Tomasz P. Jurkowski, Zeyaul Islam, Karl Swann and Michail Nomikos
Int. J. Mol. Sci. 2025, 26(13), 6241; https://doi.org/10.3390/ijms26136241 - 28 Jun 2025
Viewed by 329
Abstract
Mammalian fertilization is triggered by a series of calcium (Ca2+) oscillations that are essential for egg activation and successful embryo development. It is widely accepted that Phospholipase C zeta (PLCζ) is the sperm-derived factor that triggers these oscillations, initiating egg activation [...] Read more.
Mammalian fertilization is triggered by a series of calcium (Ca2+) oscillations that are essential for egg activation and successful embryo development. It is widely accepted that Phospholipase C zeta (PLCζ) is the sperm-derived factor that triggers these oscillations, initiating egg activation through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), leading to Ca2+ release. Several studies have reported a number of PLCζ mutations associated with polyspermy, egg activation failure and early embryonic arrest. Herein, six infertility-linked PLCζ mutations (I120M, L246F, L277P, S350P, A384V and M578T) spanning different domains of PLCζ were selected for characterization through in vivo assessment of their Ca2+-oscillation-inducing activities and complementary in silico analysis. Our data revealed that five of the investigated PLCζ mutants exhibited reduced or complete loss of in vivo Ca2+-oscillation-inducing activity, with the exception of the L277P, which resulted in increased frequency and duration of Ca2+ oscillations. Molecular modeling of PLCζ mutants was consistent with the in vivo characterization, revealing that most mutations have a deleterious effect on the structural stability. For the first time, we provide evidence that a gain-of-function PLCζ mutation may be a cause of fertilization failure in humans. Our findings suggest that PLCζ enzymatic activity must operate within an optimal range to ensure successful egg activation and early embryonic development. Additionally, we demonstrate the essential role of all PLCζ domains in maintaining the Ca2+ oscillation-inducing activity in eggs and the importance of PLCζ functionality in human fertilization. Full article
(This article belongs to the Special Issue A Molecular Perspective on Reproductive Health, 2nd Edition)
Show Figures

Figure 1

15 pages, 3291 KiB  
Article
Structural Implications of H233L and H398P Mutations in Phospholipase Cζ: A Full-Atom Molecular Dynamics Study on Infertility-Associated Dysfunctions
by Fernando Hinostroza, Sofía Albornoz-Muñoz, Sebastián Vergara, Gabriela Urra, Ingrid Araya-Durán, Rafael A. Fissore, Fernando Danilo González-Nilo, Daniel Bustos and Ingrid Carvacho
Int. J. Mol. Sci. 2025, 26(10), 4706; https://doi.org/10.3390/ijms26104706 - 14 May 2025
Viewed by 503
Abstract
Phospholipase Cζ (PLCζ), a sperm-specific enzyme, plays a critical role in mammalian fertilization. Mutations in PLCζ have been linked to male infertility, as they impair its ability to trigger calcium (Ca2+) oscillations necessary for egg activation and embryo development. During fertilization, [...] Read more.
Phospholipase Cζ (PLCζ), a sperm-specific enzyme, plays a critical role in mammalian fertilization. Mutations in PLCζ have been linked to male infertility, as they impair its ability to trigger calcium (Ca2+) oscillations necessary for egg activation and embryo development. During fertilization, PLCζ is introduced into the egg, where it hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate and diacylglycerol, leading to Ca2+ release from the endoplasmic reticulum. Human infertility-associated mutations include H233L, H398P, and R553P, which disrupt PLCζ function. To elucidate the molecular consequences of the mutations, we employed full-atom molecular dynamics simulations to analyze structural perturbations and their impact on PIP2 and Ca2+ binding. Our results reveal that H233L and H398P mutations significantly reduce interactions with PIP2, disrupting hydrogen bonding and salt bridge formation, leading to misalignment of the substrate. Additionally, these mutations destabilize Ca2+ binding by altering its positioning within the active site. In contrast, the R553P mutation primarily affects intramolecular stability and enzyme dynamics without impairing substrate or ion binding. Free energy calculations indicate an increased affinity for PIP2 in H233L and H398P mutants, leading to an aberrant substrate positioning and compromised hydrolysis. These structural insights help explain the egg activation failure and infertility of patients carrying these mutations. Full article
(This article belongs to the Special Issue Structural Dynamics of Macromolecules)
Show Figures

Figure 1

22 pages, 1950 KiB  
Review
Inositol and PIP2/PIP3 Ratio: At the Crossroad of the Biodynamic Interface Between Cells and Their Microenvironment
by Guglielmo Lentini, Alessandro Querqui, Alessandro Giuliani, Roberto Verna and Mariano Bizzarri
Biomolecules 2025, 15(3), 451; https://doi.org/10.3390/biom15030451 - 20 Mar 2025
Viewed by 972
Abstract
Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides—namely PIP2 and PIP3—can accommodate the requirements of the dynamic interface, which mediates the interplay [...] Read more.
Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides—namely PIP2 and PIP3—can accommodate the requirements of the dynamic interface, which mediates the interplay between cells and their microenvironment. The fine-tuned balance between the two phosphoinositides is instrumental in regulating cytoskeleton organization, motility, ion channel activation, and membrane traffic. The balanced expression of PIP2/PIP3 fulfills these functions by activating pathways through several transporter and receptor proteins. These dynamic interactions modulate the interplay with the extracellular environment by decreasing/increasing their exposure on the cell surface. In this way, lipid structures can rapidly either dismiss or recruit specific proteins, eventually favoring their cooperation with membrane receptors and ion channels. Particularly, exposure of proteins can be managed through the internalization of plasma membrane segments, while receptor signaling can be desensitized by their removal from the cell surface. Notably, the equilibrium between PIP2 and PIP3 is largely dependent on inositol availability, as inositol addition enhances PIP2 content while reducing PIP3 via PI3K inhibition. Pharmacological modulation of PIP2/PIP3 balance promises to be an interesting target in different clinical settings. Full article
(This article belongs to the Special Issue Inositol Phosphates in Health and Disease, 2nd Edition)
Show Figures

Figure 1

25 pages, 8224 KiB  
Article
Cell Membrane Fatty Acids and PIPs Modulate the Etiology of Pancreatic Cancer by Regulating AKT
by Carolina Torres, Georgina Mancinelli, Jee-Wei Emily Chen, Jose Cordoba-Chacon, Danielle Pins, Sara Saeed, Ronald McKinney, Karla Castellanos, Giulia Orsi, Megha Singhal, Akshar Patel, Jose Acebedo, Adonis Coleman, Jorge Heneche, Poorna Chandra Rao Yalagala, Papasani V. Subbaiah, Cecilia Leal, Sam Grimaldo, Francisco M. Ortuno, Faraz Bishehsari and Paul J. Grippoadd Show full author list remove Hide full author list
Nutrients 2025, 17(1), 150; https://doi.org/10.3390/nu17010150 - 31 Dec 2024
Viewed by 2040
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. [...] Read more.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10–20 years), prevention strategies represent an effective means to improve outcomes. One of the risk factors for many cancers and for pancreatic cancer in particular is diet. Hence, our objective is to understand how a diet rich in ω3 and ω6 polyunsaturated fatty acids affects the progression of this disease. Methods: We investigated polyunsaturated fatty acid (PUFA) effects on disease progression employing both in vitro (PDAC cell lines) and in vivo (EL-Kras and KC mice) approaches. Also, we gathered data from the National Health and Nutrition Examination Survey (NHANES) and the National Cancer Institute (NCI) from 1999 to 2017 for a retrospective observational study. Results: The consumption of PUFAs in a patient population correlates with increased PDAC incidence, particularly when the ω3 intake increases to a lesser extent than ω6. Our data demonstrate dietary PUFAs can be incorporated into plasma membrane lipids affecting PI3K/AKT signaling and support the emergence of membrane-targeted therapies. Moreover, we show that the phospholipid composition of a lipid nanoparticle (LNP) can impact the cell membrane integrity and, ultimately, cell viability after administration of these LNPs. Conclusions: Cancer prevention is impactful particularly for those with very poor prognosis, including pancreatic cancer. Our results point to the importance of dietary intervention in this disease when detected early and the potential to improve the antiproliferative effect of drug efficacy when combined with these regimens in later stages of pancreatic cancer. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

22 pages, 4670 KiB  
Article
The Potential of PIP3 in Enhancing Wound Healing
by Yossi Blitsman, Etili Hollander, Chen Benafsha, Ksenia M. Yegodayev, Uzi Hadad, Riki Goldbart, Tamar Traitel, Assaf Rudich, Moshe Elkabets and Joseph Kost
Int. J. Mol. Sci. 2024, 25(3), 1780; https://doi.org/10.3390/ijms25031780 - 1 Feb 2024
Cited by 4 | Viewed by 1758
Abstract
Given the role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in modulating cellular processes such as proliferation, survival, and migration, we hypothesized its potential as a novel therapeutic agent for wound closure enhancement. In this study, PIP3 was examined in its free form or as a [...] Read more.
Given the role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in modulating cellular processes such as proliferation, survival, and migration, we hypothesized its potential as a novel therapeutic agent for wound closure enhancement. In this study, PIP3 was examined in its free form or as a complex with cationic starch (Q-starch) as a carrier. The intracellular bioactivity and localization of free PIP3 and the Q-starch/PIP3 complexes were examined. Our results present the capability of Q-starch to form complexes with PIP3, facilitate its cellular membrane internalization, and activate intracellular paths leading to enhanced wound healing. Both free PIP3 and Q-starch/PIP3 complexes enhanced monolayer gap closure in scratch assays and induced amplified collagen production within HaCAT and BJ fibroblast cells. Western blot presented enhanced AKT activation by free or complexed PIP3 in BJ fibroblasts in which endogenous PIP3 production was pharmacologically inhibited. Furthermore, both free PIP3 and Q-starch/PIP3 complexes expedited wound closure in mice, after single or daily dermal injections into the wound margins. Free PIP3 and the Q-starch/PIP3 complexes inherently activated the AKT signaling pathway, which is responsible for crucial wound healing processes such as migration; this was also observed in wound assays in mice. PIP3 was identified as a promising molecule for enhancing wound healing, and its ability to circumvent PI3K inhibition suggests possible implications for chronic wound healing. Full article
(This article belongs to the Special Issue Inositol in Translational Medicine)
Show Figures

Figure 1

15 pages, 3134 KiB  
Article
Z-Ligustilide Combined with Cisplatin Reduces PLPP1-Mediated Phospholipid Synthesis to Impair Cisplatin Resistance in Lung Cancer
by Pengyu Geng, Jinhui Zhao, Qi Li, Xiaolin Wang, Wangshu Qin, Ting Wang, Xianzhe Shi, Xinyu Liu, Jia Chen, Hongdeng Qiu and Guowang Xu
Int. J. Mol. Sci. 2023, 24(23), 17046; https://doi.org/10.3390/ijms242317046 - 1 Dec 2023
Cited by 7 | Viewed by 2266
Abstract
Lung cancer is a malignant tumor with one of the highest morbidity and mortality rates in the world. Approximately 80–85% of lung cancer is diagnosed as non-small lung cancer (NSCLC), and its 5-year survival rate is only 21%. Cisplatin is a commonly used [...] Read more.
Lung cancer is a malignant tumor with one of the highest morbidity and mortality rates in the world. Approximately 80–85% of lung cancer is diagnosed as non-small lung cancer (NSCLC), and its 5-year survival rate is only 21%. Cisplatin is a commonly used chemotherapy drug for the treatment of NSCLC. Its efficacy is often limited by the development of drug resistance after long-term treatment. Therefore, determining how to overcome cisplatin resistance, enhancing the sensitivity of cancer cells to cisplatin, and developing new therapeutic strategies are urgent clinical problems. Z-ligustilide is the main active ingredient of the Chinese medicine Angelica sinensis, and has anti-tumor activity. In the present study, we investigated the effect of the combination of Z-ligustilide and cisplatin (Z-ligustilide+cisplatin) on the resistance of cisplatin-resistant lung cancer cells and its mechanism of action. We found that Z-ligustilide+cisplatin decreased the cell viability, induced cell cycle arrest, and promoted the cell apoptosis of cisplatin-resistant lung cancer cells. Metabolomics combined with transcriptomics revealed that Z-ligustilide+cisplatin inhibited phospholipid synthesis by upregulating the expression of phospholipid phosphatase 1 (PLPP1). A further study showed that PLPP1 expression was positively correlated with good prognosis, whereas the knockdown of PLPP1 abolished the effects of Z-ligustilide+cisplatin on cell cycle and apoptosis. Specifically, Z-ligustilide+cisplatin inhibited the activation of protein kinase B (AKT) by reducing the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3). Z-ligustilide+cisplatin induced cell cycle arrest and promoted the cell apoptosis of cisplatin-resistant lung cancer cells by inhibiting PLPP1-mediated phospholipid synthesis. Our findings demonstrate that the combination of Z-Ligustilide and cisplatin is a promising approach to the chemotherapy of malignant tumors that are resistant to cisplatin. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 4181 KiB  
Article
Cargo-Dependent Targeted Cellular Uptake Using Quaternized Starch as a Carrier
by Yossi Blitsman, Chen Benafsha, Nir Yarza, Jonathan Zorea, Riki Goldbart, Tamar Traitel, Moshe Elkabets and Joseph Kost
Nanomaterials 2023, 13(13), 1988; https://doi.org/10.3390/nano13131988 - 30 Jun 2023
Cited by 6 | Viewed by 1681
Abstract
The tailored design of drug delivery systems for specific therapeutic agents is a prevailing approach in the field. In this paper, we present a study that highlights the potential of our modified starch, Q-starch, as a universal and adaptable drug delivery carrier for [...] Read more.
The tailored design of drug delivery systems for specific therapeutic agents is a prevailing approach in the field. In this paper, we present a study that highlights the potential of our modified starch, Q-starch, as a universal and adaptable drug delivery carrier for diverse therapeutic agents. We investigate the ability of Q-starch/cargo complexes to target different organelles within the cellular landscape, based on the specific activation sites of therapeutic agents. Plasmid DNA (pDNA), small interfering RNA (siRNA), and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) were chosen as representative therapeutic molecules, acting in the nucleus, cytoplasm, and membrane, respectively. By carrying out comprehensive characterizations, employing dynamic light scattering (DLS), determining the zeta potential, and using cryo-transmitting electron microscopy (cryo-TEM), we reveal the formation of nano-sized, positively charged, and spherical Q-starch complexes. Our results demonstrate that these complexes exhibit efficient cellular uptake, targeting their intended organelles while preserving their physical integrity and functionality. Notably, the intracellular path of the Q-starch/cargo complex is guided by the cargo itself, aligning with its unique biological activity site. This study elucidates the versatility and potency of Q-starch as a versatile drug delivery carrier, paving the way for novel applications offering targeted delivery strategies for potential therapeutic molecules. Full article
Show Figures

Figure 1

9 pages, 668 KiB  
Communication
Multiple Inositol Polyphosphate Phosphatase Compartmentalization Separates Inositol Phosphate Metabolism from Inositol Lipid Signaling
by Jia Yu, Barbara Leibiger, Shao-Nian Yang, Stephen B. Shears, Ingo B. Leibiger, Per-Olof Berggren and Christopher J. Barker
Biomolecules 2023, 13(6), 885; https://doi.org/10.3390/biom13060885 - 24 May 2023
Cited by 5 | Viewed by 2882
Abstract
Multiple inositol polyphosphate phosphatase (MINPP1) is an enigmatic enzyme that is responsible for the metabolism of inositol hexakisphosphate (InsP6) and inositol 1,3,4,5,6 pentakisphosphate (Ins(1,3,4,5,6)P5 in mammalian cells, despite being restricted to the confines of the ER. The reason [...] Read more.
Multiple inositol polyphosphate phosphatase (MINPP1) is an enigmatic enzyme that is responsible for the metabolism of inositol hexakisphosphate (InsP6) and inositol 1,3,4,5,6 pentakisphosphate (Ins(1,3,4,5,6)P5 in mammalian cells, despite being restricted to the confines of the ER. The reason for this compartmentalization is unclear. In our previous studies in the insulin-secreting HIT cell line, we expressed MINPP1 in the cytosol to artificially reduce the concentration of these higher inositol phosphates. Undocumented at the time, we noted cytosolic MINPP1 expression reduced cell growth. We were struck by the similarities in substrate preference between a number of different enzymes that are able to metabolize both inositol phosphates and lipids, notably IPMK and PTEN. MINPP1 was first characterized as a phosphatase that could remove the 3-phosphate from inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). This molecule shares strong structural homology with the major product of the growth-promoting Phosphatidyl 3-kinase (PI3K), phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and PTEN can degrade both this lipid and Ins(1,3,4,5)P4. Because of this similar substrate preference, we postulated that the cytosolic version of MINPP1 (cyt-MINPP1) may not only attack inositol polyphosphates but also PtdIns(3,4,5)P3, a key signal in mitogenesis. Our experiments show that expression of cyt-MINPP1 in HIT cells lowers the concentration of PtdIns(3,4,5)P3. We conclude this reflects a direct effect of MINPP1 upon the lipid because cyt-MINPP1 actively dephosphorylates synthetic, di(C4:0)PtdIns(3,4,5)P3 in vitro. These data illustrate the importance of MINPP1′s confinement to the ER whereby important aspects of inositol phosphate metabolism and inositol lipid signaling can be separately regulated and give one important clarification for MINPP1′s ER seclusion. Full article
Show Figures

Figure 1

14 pages, 2080 KiB  
Article
Phospholipid Scramblase 4 (PLSCR4) Regulates Adipocyte Differentiation via PIP3-Mediated AKT Activation
by Lisa A. G. Barth, Michèle Nebe, Hermann Kalwa, Akhil Velluva, Stephanie Kehr, Florentien Kolbig, Patricia Prabutzki, Wieland Kiess, Diana Le Duc, Antje Garten and Anna S. Kirstein
Int. J. Mol. Sci. 2022, 23(17), 9787; https://doi.org/10.3390/ijms23179787 - 29 Aug 2022
Cited by 7 | Viewed by 3532
Abstract
Phospholipid scramblase 4 (PLSCR4) is a member of a conserved enzyme family with high relevance for the remodeling of phospholipid distribution in the plasma membrane and the regulation of cellular signaling. While PLSCR1 and -3 are involved in the regulation of adipose-tissue expansion, [...] Read more.
Phospholipid scramblase 4 (PLSCR4) is a member of a conserved enzyme family with high relevance for the remodeling of phospholipid distribution in the plasma membrane and the regulation of cellular signaling. While PLSCR1 and -3 are involved in the regulation of adipose-tissue expansion, the role of PLSCR4 is so far unknown. PLSCR4 is significantly downregulated in an adipose-progenitor-cell model of deficiency for phosphatase and tensin homolog (PTEN). PTEN acts as a tumor suppressor and antagonist of the growth and survival signaling phosphoinositide 3-kinase (PI3K)/AKT cascade by dephosphorylating phosphatidylinositol-3,4,5-trisphosphate (PIP3). Patients with PTEN germline deletion frequently develop lipomas. The underlying mechanism for this aberrant adipose-tissue growth is incompletely understood. PLSCR4 is most highly expressed in human adipose tissue, compared with other phospholipid scramblases, suggesting a specific role of PLSCR4 in adipose-tissue biology. In cell and mouse models of lipid accumulation, we found PLSCR4 to be downregulated. We observed increased adipogenesis in PLSCR4-knockdown adipose progenitor cells, while PLSCR4 overexpression attenuated lipid accumulation. PLSCR4 knockdown was associated with increased PIP3 levels and the activation of AKT. Our results indicated that PLSCR4 is a regulator of PI3K/AKT signaling and adipogenesis and may play a role in PTEN-associated adipose-tissue overgrowth and lipoma formation. Full article
Show Figures

Figure 1

19 pages, 3457 KiB  
Review
The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels
by Rita Gutorov, Ben Katz, Elisheva Rhodes-Mordov, Rachel Zaguri, Tal Brandwine-Shemmer and Baruch Minke
Biomolecules 2022, 12(3), 382; https://doi.org/10.3390/biom12030382 - 28 Feb 2022
Cited by 4 | Viewed by 4370
Abstract
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to [...] Read more.
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3). However, the events required for channel gating downstream of PLC activation are still under debate and led to several hypotheses regarding the mechanisms by which lipids gate the channels. Despite many efforts, compelling evidence of the involvement of DAG accumulation, PIP2 depletion or IP3-mediated Ca2+ release in light activation of the TRP/TRPL channels are still lacking. Exogeneous application of poly unsaturated fatty acids (PUFAs), a product of DAG hydrolysis was demonstrated as an efficient way to activate the Drosophila TRP/TRPL channels. However, compelling evidence for the involvement of PUFAs in physiological light-activation of the TRP/TRPL channels is still lacking. Light-induced mechanical force generation was measured in photoreceptor cells prior to channel opening. This mechanical force depends on PLC activity, suggesting that the enzymatic activity of PLC converting PIP2 into DAG generates membrane tension, leading to mechanical gating of the channels. In this review, we will present the roles of membrane lipids in light activation of Drosophila TRP channels and present the many advantages of this model system in the exploration of TRP channel activation under physiological conditions. Full article
(This article belongs to the Special Issue Lipid-Gating and Lipid-Protein Interactions in Ion Channels)
Show Figures

Figure 1

13 pages, 1301 KiB  
Review
Redox Regulation of PTEN by Peroxiredoxins
by Thang Nguyen Huu, Jiyoung Park, Ying Zhang, Iha Park, Hyun Joong Yoon, Hyun Ae Woo and Seung-Rock Lee
Antioxidants 2021, 10(2), 302; https://doi.org/10.3390/antiox10020302 - 16 Feb 2021
Cited by 42 | Viewed by 5456
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is known as a tumor suppressor gene that is frequently mutated in numerous human cancers and inherited syndromes. PTEN functions as a negative regulator of PI3K/Akt signaling pathway by dephosphorylating phosphatidylinositol (3, [...] Read more.
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is known as a tumor suppressor gene that is frequently mutated in numerous human cancers and inherited syndromes. PTEN functions as a negative regulator of PI3K/Akt signaling pathway by dephosphorylating phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3) to phosphatidylinositol (4, 5)-bisphosphate (PIP2), which leads to the inhibition of cell growth, proliferation, cell survival, and protein synthesis. PTEN contains a cysteine residue in the active site that can be oxidized by peroxides, forming an intramolecular disulfide bond between Cys124 and Cys71. Redox regulation of PTEN by reactive oxygen species (ROS) plays a crucial role in cellular signaling. Peroxiredoxins (Prxs) are a superfamily of peroxidase that catalyzes reduction of peroxides and maintains redox homeostasis. Mammalian Prxs have 6 isoforms (I-VI) and can scavenge cellular peroxides. It has been demonstrated that Prx I can preserve and promote the tumor-suppressive function of PTEN by preventing oxidation of PTEN under benign oxidative stress via direct interaction. Also, Prx II-deficient cells increased PTEN oxidation and insulin sensitivity. Furthermore, Prx III has been shown to protect PTEN from oxidation induced by 15s-HpETE and 12s-HpETE, these are potent inflammatory and pro-oxidant mediators. Understanding the tight connection between PTEN and Prxs is important for providing novel therapies. Herein, we summarized recent studies focusing on the relationship of Prxs and the redox regulation of PTEN. Full article
(This article belongs to the Special Issue Peroxiredoxin)
Show Figures

Figure 1

13 pages, 2238 KiB  
Article
Chlorogenic Acid Targeting of the AKT PH Domain Activates AKT/GSK3β/FOXO1 Signaling and Improves Glucose Metabolism
by Jie Gao, Xin He, Yuejiao Ma, Xuezhi Zhao, Xiaotao Hou, Erwei Hao, Jiagang Deng and Gang Bai
Nutrients 2018, 10(10), 1366; https://doi.org/10.3390/nu10101366 - 23 Sep 2018
Cited by 41 | Viewed by 5477
Abstract
Chlorogenic acid (CGA), a bioactive component in the human diet, is reported to exert beneficial effects on the regulation of glucose metabolism. This study was designed to investigate the specific target of CGA, and explore its underlying mechanisms. Beneficial effects of CGA in [...] Read more.
Chlorogenic acid (CGA), a bioactive component in the human diet, is reported to exert beneficial effects on the regulation of glucose metabolism. This study was designed to investigate the specific target of CGA, and explore its underlying mechanisms. Beneficial effects of CGA in glucose metabolism were confirmed in insulin-treated human hepatocarcinoma HepG2 cells. Protein fishing, via CGA-modified functionalized magnetic microspheres, demonstrated the binding of CGA with protein kinase B (AKT). Immunofluorescence using a CGA molecular probe further demonstrated the co-localization of CGA with AKT. A competitive combination test and hampering of AKT membrane translocation showed that CGA might bind to the pleckstrin homology (PH) domain of AKT. The specific binding did not lead to the membrane translocation to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), but directly activated the phosphorylation of AKT on Ser-473, induced the phosphorylation of the downstream molecules, glycogen synthase kinase 3β (GSK3β) and forkhead box O1 (FOXO1), and improved glucose metabolism. Collectively, our data demonstrate that CGA exerts regulatory effects on glucose metabolism via direct targeting the PH domain of AKT. This study clarifies the mechanism of the potential benefits of nutrients containing CGA in the complementary therapy of glucose metabolism disorders. Full article
Show Figures

Graphical abstract

15 pages, 1836 KiB  
Article
Timp1 Promotes Cell Survival by Activating the PDK1 Signaling Pathway in Melanoma
by Mariana Toricelli, Fabiana H. M. Melo, Aline Hunger, Daniela Zanatta, Bryan E. Strauss and Miriam G. Jasiulionis
Cancers 2017, 9(4), 37; https://doi.org/10.3390/cancers9040037 - 21 Apr 2017
Cited by 28 | Viewed by 7283
Abstract
High TIMP1 expression is associated with poor prognosis in melanoma, where it can bind to CD63 and β1 integrin, inducing PI3-kinase pathway and cell survival. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), generated under phosphatidylinositol-3-kinase (PI3K) activation, enables the recruitment and activation of protein kinase B (PKB/AKT) [...] Read more.
High TIMP1 expression is associated with poor prognosis in melanoma, where it can bind to CD63 and β1 integrin, inducing PI3-kinase pathway and cell survival. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), generated under phosphatidylinositol-3-kinase (PI3K) activation, enables the recruitment and activation of protein kinase B (PKB/AKT) and phosphoinositide-dependent kinase 1 (PDK1) at the membrane, resulting in the phosphorylation of a host of other proteins. Using a melanoma progression model, we evaluated the impact of Timp1 and AKT silencing, as well as PI3K, PDK1, and protein kinase C (PKC) inhibitors on aggressiveness characteristics. Timp1 downregulation resulted in decreased anoikis resistance, clonogenicity, dacarbazine resistance, and in vivo tumor growth and lung colonization. In metastatic cells, pAKTThr308 is highly expressed, contributing to anoikis resistance. We showed that PDK1Ser241 and PKCβIISer660 are activated by Timp1 in different stages of melanoma progression, contributing to colony formation and anoikis resistance. Moreover, simultaneous inhibition of Timp1 and AKT in metastatic cells resulted in more effective anoikis inhibition. Our findings demonstrate that Timp1 promotes cell survival with the participation of PDK1 and PKC in melanoma. In addition, Timp1 and AKT act synergistically to confer anoikis resistance in advanced tumor stages. This study brings new insights about the mechanisms by which Timp1 promotes cell survival in melanoma, and points to novel perspectives for therapeutic approaches. Full article
(This article belongs to the Special Issue PI3K/PDK1/Akt Pathways in Cancer)
Show Figures

Figure 1

18 pages, 4320 KiB  
Article
Porcine Circovirus Type 2 Activates CaMMKβ to Initiate Autophagy in PK-15 Cells by Increasing Cytosolic Calcium
by Yuanxing Gu, Baozhu Qi, Yingshan Zhou, Xiaowu Jiang, Xian Zhang, Xiaoliang Li and Weihuan Fang
Viruses 2016, 8(5), 135; https://doi.org/10.3390/v8050135 - 20 May 2016
Cited by 22 | Viewed by 6487
Abstract
Porcine circovirus type 2 (PCV2) induces autophagy via the 5′ adenosine monophosphate-activated protein kinase (AMPK)/extracellular signal-regulated kinase (ERK)/tuberous sclerosis complex 2 (TSC2)/mammalian target of rapamycin (mTOR) pathway in pig kidney PK-15 cells. However, the underlying mechanisms of AMPK activation in autophagy induction remain [...] Read more.
Porcine circovirus type 2 (PCV2) induces autophagy via the 5′ adenosine monophosphate-activated protein kinase (AMPK)/extracellular signal-regulated kinase (ERK)/tuberous sclerosis complex 2 (TSC2)/mammalian target of rapamycin (mTOR) pathway in pig kidney PK-15 cells. However, the underlying mechanisms of AMPK activation in autophagy induction remain unknown. With specific inhibitors and RNA interference (RNAi), we show that PCV2 infection upregulated calcium/calmodulin-dependent protein kinase kinase-beta (CaMKKβ) by increasing cytosolic Ca2+ via inositol 1,4,5-trisphosphate receptor (IP3R). Elevation of cytosolic calcium ion (Ca2+) did not seem to involve inositol 1,4,5-trisphosphate (IP3) release from phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide phospholipase C-gamma (PLC-γ). CaMKKβ then activated both AMPK and calcium/calmodulin-dependent protein kinase I (CaMKI). PCV2 employed CaMKI and Trp-Asp (WD) repeat domain phosphoinositide-interacting protein 1 (WIPI1) as another pathway additional to AMPK signaling in autophagy initiation. Our findings could help better understanding of the signaling pathways of autophagy induction as part of PCV2 pathogenesis. Further research is warranted to study if PCV2 interacts directly with IP3R or indirectly with the molecules that antagonize IP3R activity responsible for increased cytosolic Ca2+ both in PK-15 cells and PCV2-targeted primary cells from pigs. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop