Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = phage vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3542 KiB  
Article
Inhibiting Infectious Bronchitis Virus PLpro Using Ubiquitin Variants
by Vera J. E. van Vliet, Olivia Roscow, Kihun Kim, Brian L. Mark, Marjolein Kikkert and Christine Tait-Burkard
Int. J. Mol. Sci. 2025, 26(11), 5254; https://doi.org/10.3390/ijms26115254 - 29 May 2025
Viewed by 456
Abstract
Infectious bronchitis virus (IBV) is a coronavirus first isolated in the 1930s infecting chickens. IBV causes great economic losses to the global poultry industry, as it affects egg production and causes mortality by leaving the host susceptible to secondary bacterial infections. Even though [...] Read more.
Infectious bronchitis virus (IBV) is a coronavirus first isolated in the 1930s infecting chickens. IBV causes great economic losses to the global poultry industry, as it affects egg production and causes mortality by leaving the host susceptible to secondary bacterial infections. Even though vaccines are available, they are poorly cross-protective against new variants of the virus, which are always on the cusp of emerging. Effective antiviral therapies, or possibly the production of transgenic animals immune to IBV infection, are therefore sorely needed. As the papain-like protease (PLpro) of IBV has deubiquitinating activity besides its crucial ability to cleave the viral polyprotein, we have applied a novel strategy of selecting ubiquitin variants (UbVs) from a phage-displayed library that have high affinity to this viral protease. These UbVs were found to inhibit the deubiquitinating activity of PLpro and consequently obstruct the virus’s ability to evade the innate immune response in the host cell. By obstructing the proteolytic activity of PLpro, these UbVs were seemingly able to inhibit viral infection as assessed using immunofluorescence microscopy. Whilst virus infection was detected in around 5% of UbV-expressing cells, the virus was present in around 30–40% of GFP (control)-expressing cells. This suggests that the expression of UbVs indeed seems to inhibit IBV infection, making UbVs a potentially potent and innovative antiviral strategy in the quest for control of IBV infections. Full article
Show Figures

Figure 1

16 pages, 1990 KiB  
Article
Neutralization of the Pandemic Influenza A/H1N1 Virus with Lama glama Humanized Nanobodies (VHH)
by Zeila Yazmín Páez-Hernández, Jose Luis Stephano-Hornedo, Jose Alberto Bolaños-Prats, Iván Córdova-Guerrero, Mariana Macías-Alonso, Joaquín G. Marrero, Angel Pulido Capiz and Victor García González
Antibodies 2025, 14(2), 42; https://doi.org/10.3390/antib14020042 - 16 May 2025
Viewed by 1076
Abstract
Background/Objetives: Nanobodies (VHH) have become an excellent tool for diagnosis, therapy, and research since VHH shows a high capability of recognizing and neutralizing antigens. VHHs are highly soluble and stable at high temperatures, and in the presence of chaotropic agents, they offer significant [...] Read more.
Background/Objetives: Nanobodies (VHH) have become an excellent tool for diagnosis, therapy, and research since VHH shows a high capability of recognizing and neutralizing antigens. VHHs are highly soluble and stable at high temperatures, and in the presence of chaotropic agents, they offer significant advantages over other biological therapeutic agents. This study aimed to identify and humanize VHH fragments with neutralizing potential against the influenza A/H1N1 virus. Methods: A library of VHH antibody fragments was produced by phage display technique against an inactivated influenza A/H1N1 vaccine. Three VHH sequences were selected and humanized. Specifically, the recognition capacity of the antibodies denominated 2-C10 and 2-C10H was confirmed by ELISA and western blot (WB), as well as their microneutralization capacity in a cellular model, suggesting their potential therapeutic use in patients infected with the influenza A/H1N1 virus. Molecular docking assays were used to support the mechanism of viral inhibition. Results: The VHHs 2-C10 and 2-C10H showed specific recognition of influenza A/H1N1 antigens by ELISA and Western Blot and demonstrated neutralizing activity in vitro. The optimal VHH, 2-C10H, showed 75% neutralization capacity at a concentration of 1.56 μg/mL against the A/H1N1 viral strain, potentially through the inactivation of hemagglutinin protein, a phenomenon supported by molecular docking assays. Conclusions: This study presents a strategic approach to identify VHH candidates that may be useful for diagnosing and potentially treating patients already infected by the A/H1N1 virus, as it may reduce the severity of their symptoms. Full article
Show Figures

Figure 1

26 pages, 7008 KiB  
Article
Single-Domain Antibodies That Specifically Recognize Intact Capsids of Multiple Foot-and-Mouth Disease Serotype O Strains
by Michiel M. Harmsen, Nishi Gupta, Quillan Dijkstra, Sandra van de Water, Marga van Setten and Aldo Dekker
Vaccines 2025, 13(5), 500; https://doi.org/10.3390/vaccines13050500 - 8 May 2025
Viewed by 617
Abstract
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific [...] Read more.
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific VHHs that recognize all serotype O strains. Methods: Biopanning was performed with the FMDV strain O/SKR/7/2010 146S, using a secondary library of mutagenized M170F VHH that did not recognize O/SKR/7/2010 or using phage-display libraries from llamas immunized with other serotype O strains. Novel VHHs were yeast-produced and their strain-, particle-, and antigenic-site specificities were determined by ELISA. Results: M170F mutagenesis did not improve the cross-reaction with O/SKR/7/2010. However, selection from immune libraries resulted in four VHHs that exhibited high 146S specificity for all five serotype O strains analyzed. These VHHs presumably recognize all serotype O strains since the five strains analyzed represent different phylogenetic clades. They bind the same antigenic site as M170F, which was previously shown to be a conserved site in serotypes A and O, and which has an altered 3D structure when 146S dissociates into 12S particles. M916F had the lowest limit of detection, which varied from 0.7 to 5.9 ng/mL 146S particles for three serotype O strains. Conclusions: We identified four VHHs (M907F, M910F, M912F, and M916F) that specifically bind 146S particles of probably all serotype O strains. They enable further improved FMDV vaccine quality control. Full article
(This article belongs to the Special Issue Vaccine and Vaccination in Veterinary Medicine)
Show Figures

Figure 1

15 pages, 3599 KiB  
Article
Discovery of Antibodies Against Endemic Coronaviruses with NGS-Based Human Fab Phage Display Platform
by Oscar Chi-Chien Pan, Sean Miller, Ruchin Patel, Shreya Mukhopadhyay, Giancarlo Sarullo, Gwenny Go, Jennifer Galli, Jamie Hessels, Barbara Schlingmann-Molina, Emmanuel Ndashimye, Zhiyun Wen, Christopher Warren, Eberhard Durr, Lan Zhang, Kalpit A. Vora, Arthur Fridman and Zhifeng Chen
Antibodies 2025, 14(2), 28; https://doi.org/10.3390/antib14020028 - 27 Mar 2025
Cited by 1 | Viewed by 1255
Abstract
Background: There is an unmet medical need to develop a vaccine targeting endemic coronaviruses. Antigen-specific monoclonal antibodies (mAbs) are crucial for many assays to support vaccine development. Objective: In this study, we used the HuCal Fab phage display library with a diversity of [...] Read more.
Background: There is an unmet medical need to develop a vaccine targeting endemic coronaviruses. Antigen-specific monoclonal antibodies (mAbs) are crucial for many assays to support vaccine development. Objective: In this study, we used the HuCal Fab phage display library with a diversity of 4.5 × 1010 to identify antibodies specific to the spike proteins of the four endemic coronaviruses: OC43, NL63, 229E, and HKU1. Methods: As proof of concept, we established a newly designed platform using a long-read NGS workflow for antibody discovery and compared the results against the traditional workflow using Sanger sequencing consisting of lengthy and laborious benchwork. Results: The long-read NGS workflow identified most of the antibodies seen from the Sanger sequencing workflow, and many more additional antigen-specific antibodies against the endemic coronaviruses. Overall efficiency improved up to three times, comparing the traditional workflow with the NGS workflow. Of the 113 NGS-derived mAbs isolated to bind the four endemic coronavirus spike proteins, 107/113 (94.7%) had potent ELISA binding affinities (EC50 < 150 ng/mL, or <1 nM), and 61/113 (54%) had extremely potent ELISA binding affinities (EC50 of <15 ng/mL, or <0.1 nM). Conclusions: We successfully developed and incorporated the long-read NGS workflow to generate target-specific antibodies with many antibodies at sub-nanomolar affinities that are likely missed by a traditional workflow. We identified strong neutralizing antibodies, proving that our endemic spike proteins are capable of generating antibodies that could offer protection against the endemic HCoVs. Full article
Show Figures

Figure 1

21 pages, 342 KiB  
Review
The Application of DNA Viruses to Biotechnology
by Adam J. Schieferecke, Nadia Kuxhausen Ralph and David V. Schaffer
Viruses 2025, 17(3), 414; https://doi.org/10.3390/v17030414 - 14 Mar 2025
Viewed by 1958
Abstract
The delivery of biomolecules to target cells has been a longstanding challenge in biotechnology. DNA viruses naturally evolved the ability to deliver genetic material to cells and modulate cellular processes. As such, they inherently possess requisite characteristics that have led to their extensive [...] Read more.
The delivery of biomolecules to target cells has been a longstanding challenge in biotechnology. DNA viruses naturally evolved the ability to deliver genetic material to cells and modulate cellular processes. As such, they inherently possess requisite characteristics that have led to their extensive study, engineering, and development as biotechnological tools. Here, we overview the application of DNA viruses to biotechnology, with specific implications in basic research, health, biomanufacturing, and agriculture. For each application, we review how an increasing understanding of virology and technological methods to genetically manipulate DNA viruses has enabled advances in these fields. Additionally, we highlight the remaining challenges to unlocking the full biotechnological potential of DNA viral technologies. Finally, we discuss the importance of balancing continued technological progress with ethical and biosafety considerations. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology 3.0)
11 pages, 1359 KiB  
Article
Development of ELISA Using Phage-Displayed Stx2 Mini-Body for Detection of STEC Antigen in Field Farming Pig Samples
by Jin Hur, Ho-Kyoung Jung, Jung-Ho Park, Anoth Maharjan and Seung-Won Park
Microorganisms 2025, 13(2), 382; https://doi.org/10.3390/microorganisms13020382 - 9 Feb 2025
Viewed by 1175
Abstract
Porcine edema disease (ED), which causes enormous economic losses in pig farms, is caused by Shiga toxin type 2e (Stx2e) Escherichia coli (STEC), which frequently occurs in young piglets. In this study, we aimed to express a fused Stx2e peptide on a phage [...] Read more.
Porcine edema disease (ED), which causes enormous economic losses in pig farms, is caused by Shiga toxin type 2e (Stx2e) Escherichia coli (STEC), which frequently occurs in young piglets. In this study, we aimed to express a fused Stx2e peptide on a phage surface to generate an innovative sandwich ELISA for the detection of STEC antigen in field pig farming samples. The amino acid sequences at positions 241–319 were selected for capture antibody (T1D2) production. T1D2 was selected after the third round of biopanning, and it showed a high yield with no major impurities. T1D2-ELISA can detect recombinant modified Stx2e antigen, and the detection limit of the antigen was approximately below 20 pg/mL. The sensitivity of T1D2-ELISA was determined using five different stool samples, with a total of 25 stool samples. Positive Stx2e antigen samples were detected only in one of the 25 samples using T1D2-ELISA. The ELISA values of positive stool samples were >300 pg and <600 pg. In conclusion, we developed an innovative ELISA for the detection of STEC antigens in field pig farming samples. It can also be used to easily detect STEC antigens in porcine stool samples. We anticipate that our novel T1D2-ELISA method will enable the effective monitoring of STEC antigen content during industrial vaccine production. By leveraging this approach, we aimed to enhance production efficiency and ensure high-quality vaccines. Full article
(This article belongs to the Special Issue Shiga-Toxin Producing Escherichia coli and the Animal Host)
Show Figures

Figure 1

21 pages, 3533 KiB  
Article
T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection
by Shenglong Liu, Mengzhou Lin and Xin Zhou
Vaccines 2025, 13(1), 70; https://doi.org/10.3390/vaccines13010070 - 13 Jan 2025
Cited by 4 | Viewed by 1402
Abstract
Background: The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. Methods: In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying [...] Read more.
Background: The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. Methods: In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (SocHocT4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. Results: The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. Conclusions: In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza. Full article
(This article belongs to the Special Issue Next-Generation Vaccines for Animal Infectious Diseases)
Show Figures

Figure 1

24 pages, 360 KiB  
Review
Antibiotic Resistance of Staphylococcus aureus Strains—Searching for New Antimicrobial Agents—Review
by Michał Michalik, Adrianna Podbielska-Kubera and Agnieszka Dmowska-Koroblewska
Pharmaceuticals 2025, 18(1), 81; https://doi.org/10.3390/ph18010081 - 11 Jan 2025
Cited by 7 | Viewed by 6055
Abstract
Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. S. aureus a commensal microorganism but [...] Read more.
Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. S. aureus a commensal microorganism but is also responsible for numerous infections. In addition to innate resistance to β-lactam antibiotics, S. aureus strains resistant to methicillin (MRSA) often show resistance to other classes of antibiotics (multidrug resistance). The advancement of phage therapy against MRSA infections offers a promising alternative in the context of increasing antibiotic resistance. Therapeutic phages are easier to obtain and cheaper to produce than antibiotics. However, there is still a lack of standards to ensure the safe use of phages, including purification, dosage, means of administration, and the quantity of phages used. Some bacteria have developed defense mechanisms against phages. The use of phage cocktails or the combination of antibiotics and phages is preferred. For personalized therapy, it is essential to set up large collections to enable phage selection. In the future, the fight against MRSA strains using phages should be based on a multidisciplinary approach, including molecular biology and medicine. Other therapies in the fight against MRSA strains include the use of endolysin antimicrobial peptides (including defensins and cathelicidins). Researchers’ activities also focus on the potential use of plant extracts, honey, propolis, alkaloids, and essential oils. To date, no vaccine has been approved against S. aureus strains. Full article
(This article belongs to the Section Pharmacology)
13 pages, 3243 KiB  
Article
Genetically Engineered Bacterial Ghosts as Vaccine Candidates Against Klebsiella pneumoniae Infection
by Svetlana V. Dentovskaya, Anastasia S. Vagaiskaya, Alexandra S. Trunyakova, Alena S. Kartseva, Tatiana A. Ivashchenko, Vladimir N. Gerasimov, Mikhail E. Platonov, Victoria V. Firstova and Andrey P. Anisimov
Vaccines 2025, 13(1), 59; https://doi.org/10.3390/vaccines13010059 - 10 Jan 2025
Viewed by 1330
Abstract
Background/Objectives Bacterial ghosts (BGs), non-living empty envelopes of bacteria, are produced either through genetic engineering or chemical treatment of bacteria, retaining the shape of their parent cells. BGs are considered vaccine candidates, promising delivery systems, and vaccine adjuvants. The practical use of BGs [...] Read more.
Background/Objectives Bacterial ghosts (BGs), non-living empty envelopes of bacteria, are produced either through genetic engineering or chemical treatment of bacteria, retaining the shape of their parent cells. BGs are considered vaccine candidates, promising delivery systems, and vaccine adjuvants. The practical use of BGs in vaccine development for humans is limited because of concerns about the preservation of viable bacteria in BGs. Methods: To increase the efficiency of Klebsiella pneumoniae BG formation and, accordingly, to ensure maximum killing of bacteria, we exploited previously designed plasmids with the lysis gene E from bacteriophage φX174 or with holin–endolysin systems of λ or L-413C phages. Previously, this kit made it possible to generate bacterial cells of Yersinia pestis with varying degrees of hydrolysis and variable protective activity. Results: In the current study, we showed that co-expression of the holin and endolysin genes from the L-413C phage elicited more rapid and efficient K. pneumoniae lysis than lysis mediated by only single gene E or the low functioning holin–endolysin system of λ phage. The introduction of alternative lysing factors into K. pneumoniae cells instead of the E protein leads to the loss of the murein skeleton. The resulting frameless cell envelops are more reminiscent of bacterial sacs or bacterial skins than BGs. Although such structures are less naive than classical bacterial ghosts, they provide effective protection against infection by a hypervirulent strain of K. pneumoniae and can be recommended as candidate vaccines. For our vaccine candidate generated using the O1:K2 hypervirulent K. pneumoniae strain, both safety and immunogenicity aspects were evaluated. Humoral and cellular immune responses were significantly increased in mice that were intraperitoneally immunized compared with subcutaneously vaccinated animals (p < 0.05). Conclusions: Therefore, this study presents novel perspectives for future research on K. pneumoniae ghost vaccines. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Figure 1

31 pages, 3640 KiB  
Review
Helicobacter pylori: Routes of Infection, Antimicrobial Resistance, and Alternative Therapies as a Means to Develop Infection Control
by Ayman Elbehiry, Adil Abalkhail, Nuha Anajirih, Fahad Alkhamisi, Mohammed Aldamegh, Abdullah Alramzi, Riyad AlShaqi, Naif Alotaibi, Abdullah Aljuaid, Hilal Alzahrani, Feras Alzaben, Mohammed Rawway, Mai Ibrahem, Moustafa H. Abdelsalam, Nermin I. Rizk, Mohamed E. A. Mostafa, Moneef Rohail Alfaqir, Husam M. Edrees and Mubarak Alqahtani
Diseases 2024, 12(12), 311; https://doi.org/10.3390/diseases12120311 - 3 Dec 2024
Cited by 5 | Viewed by 5853
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, H. pylori frequently reemerges and [...] Read more.
Helicobacter pylori (H. pylori) is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, H. pylori frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics. This review examines H. pylori infection, encompassing transmission pathways, treatment modalities, antibiotic resistance, and eradication strategies. Additionally, it discusses alternative therapeutic approaches such as probiotics, anti-biofilm agents, phytotherapy, phototherapy, phage therapy, lactoferrin therapy, and vaccine development. These strategies aim to reduce antimicrobial resistance and enhance treatment outcomes for H. pylori infections. While alternative therapies can maintain low bacterial levels, they do not achieve complete eradication of H. pylori. These therapies are designed to bolster the immune response, minimize side effects, and provide gastroprotective benefits, rendering them suitable for adjunctive use alongside conventional treatments. Probiotics may serve as adjunctive therapy for H. pylori; however, their effectiveness as a monotherapy is limited. Photodynamic and phage therapies exhibit potential in targeting H. pylori infections, including those caused by drug-resistant strains, without the use of antibiotics. The development of a reliable vaccine is also critical for the eradication of H. pylori. This review identifies candidate antigens such as VacA, CagA, and HspA, along with various vaccine formulations, including vector-based and subunit vaccines. Some vaccines have demonstrated efficacy in clinical trials, while others have shown robust immune protection in preclinical studies. Nevertheless, each of the aforementioned alternative therapies requires thorough preclinical and clinical evaluation to ascertain their efficacy, side effects, cost-effectiveness, and patient compliance. Full article
Show Figures

Figure 1

32 pages, 1819 KiB  
Review
Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions
by Kuei-Ching Hsiung, Huan-Jung Chiang, Sebastian Reinig and Shin-Ru Shih
Vaccines 2024, 12(12), 1345; https://doi.org/10.3390/vaccines12121345 - 28 Nov 2024
Cited by 4 | Viewed by 3998
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. [...] Read more.
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms’ practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats. Full article
(This article belongs to the Special Issue Experimental Methods in Rational Vaccine Design)
Show Figures

Figure 1

13 pages, 565 KiB  
Article
A Virome and Proteomic Analysis of Placental Microbiota in Pregnancies with and without Fetal Growth Restriction
by Aleksandra Stupak, Maciej Kwiatek, Tomasz Gęca, Anna Kwaśniewska, Radosław Mlak, Robert Nawrot, Anna Goździcka-Józefiak and Wojciech Kwaśniewski
Cells 2024, 13(21), 1753; https://doi.org/10.3390/cells13211753 - 23 Oct 2024
Cited by 1 | Viewed by 1817
Abstract
Introduction: Metagenomic research has allowed the identification of numerous viruses present in the human body. Viruses may significantly increase the likelihood of developing intrauterine fetal growth restriction (FGR). The goal of this study was to examine and compare the virome of normal and [...] Read more.
Introduction: Metagenomic research has allowed the identification of numerous viruses present in the human body. Viruses may significantly increase the likelihood of developing intrauterine fetal growth restriction (FGR). The goal of this study was to examine and compare the virome of normal and FGR placentas using proteomic techniques. Methods: The study group of 18 women with late FGR was compared with 18 control patients with physiological pregnancy and eutrophic fetus. Proteins from the collected afterbirth placentas were isolated and examined using liquid chromatography linked to a mass spectrometer. Results: In this study, a group of 107 viral proteins were detected compared to 346 in the controls. In total, 41 proteins were common in both groups. In total, 64 proteins occurred only in the study group and indicated the presence of bacterial phages: E. coli, Bacillus, Mediterranenean, Edwardsiella, Propionibacterium, Salmonella, Paenibaciilus and amoebae Mimiviridae, Acanthamoeba polyphaga, Mimivivirus, Pandoravirdae, Miroviridae, Pepper plant virus golden mosaic virus, pol proteins of HIV-1 virus, and proteins of Pandoravirdae, Microviridae, and heat shock proteins of the virus Faustoviridae. Out of 297 proteins found only in the control group, only 2 viral proteins occurred statistically significantly more frequently: 1/hypothetical protein [uncultured Mediterranean phage uvMED] and VP4 [Gokushovirus WZ-2015a]. Discussion: The detection of certain viral proteins exclusively in the control group suggests that they may play a protective role. Likewise, the proteins identified only in the study group could indicate a potentially pathogenic function. A virome study may be used to identify an early infection, evaluate its progress, and possible association with fetal growth restriction. Utilizing this technology, an individualized patient therapy is forthcoming, e.g., vaccines. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Reproductive System Diseases)
Show Figures

Figure 1

15 pages, 3792 KiB  
Article
Second-Generation Phage Lambda Platform Employing SARS-CoV-2 Fusion Proteins as a Vaccine Candidate
by Alexis Catala, Bennett J. Davenport, Thomas E. Morrison and Carlos E. Catalano
Vaccines 2024, 12(11), 1201; https://doi.org/10.3390/vaccines12111201 - 22 Oct 2024
Cited by 1 | Viewed by 1427
Abstract
The recent SARS-CoV-2 (COVID-19) pandemic exemplifies how newly emerging and reemerging viruses can quickly overwhelm and cripple global infrastructures. Coupled with synergistic factors such as increasing population densities, the constant and massive mobility of people across geographical areas and substantial changes to ecosystems [...] Read more.
The recent SARS-CoV-2 (COVID-19) pandemic exemplifies how newly emerging and reemerging viruses can quickly overwhelm and cripple global infrastructures. Coupled with synergistic factors such as increasing population densities, the constant and massive mobility of people across geographical areas and substantial changes to ecosystems worldwide, these pathogens pose serious health concerns on a global scale. Vaccines form an indispensable defense, serving to control and mitigate the impact of devastating outbreaks and pandemics. Towards these efforts, we developed a tunable vaccine platform that can be engineered to simultaneously display multiple viral antigens. Here, we describe a second-generation version wherein chimeric proteins derived from SARS-CoV-2 and bacteriophage lambda are engineered and used to decorate phage-like particles with defined surface densities and retention of antigenicity. This streamlines the engineering of particle decoration, thus improving the overall manufacturing potential of the system. In a prime-boost regimen, mice immunized with particles containing as little as 42 copies of the chimeric protein on their surface develop potent neutralizing antibody responses, and immunization protects mice against virulent SARS-CoV-2 challenge. The platform is highly versatile, making it a promising strategy to rapidly develop vaccines against a potentially broad range of infectious diseases. Full article
Show Figures

Graphical abstract

16 pages, 7092 KiB  
Article
Comparative Ability of Various Immunosuppressants as Adjuvants on the Activity of T1D Vaccine
by Xinyi Wang, Mengxin Xie, Tengjiao Li, Jiandong Shi, Meini Wu, Shihan Zhang, Jing Sun and Yunzhang Hu
Vaccines 2024, 12(10), 1117; https://doi.org/10.3390/vaccines12101117 - 29 Sep 2024
Cited by 1 | Viewed by 1352
Abstract
Background: Type 1 diabetes (T1D) is an autoimmune disorder characterised by the destruction of insulin-producing beta cells in the pancreatic islets, resulting from a breakdown in immunological tolerance. Currently, T1D treatment primarily relies on insulin replacement or immunosuppressive therapies. However, these approaches often [...] Read more.
Background: Type 1 diabetes (T1D) is an autoimmune disorder characterised by the destruction of insulin-producing beta cells in the pancreatic islets, resulting from a breakdown in immunological tolerance. Currently, T1D treatment primarily relies on insulin replacement or immunosuppressive therapies. However, these approaches often have significant drawbacks, including adverse effects, high costs, and limited long-term efficacy. Consequently, there is a pressing need for innovative immunotherapeutic strategies capable of inducing antigen-specific tolerance and protecting beta cells from autoimmune destruction. Among the various antigens, β-cell antigens like 65 kDa glutamic acid decarboxylase (GAD65) have been explored as vaccine candidates for T1D. Despite their potential, their effectiveness in humans remains modest, necessitating the use of appropriate adjuvants to enhance the vaccine’s protective effects. Methods: In this study, we evaluated the therapeutic potential of kynurenine (KYN), dexamethasone (DXMS), tacrolimus (FK506), and aluminium hydroxide (Alum) in combination with the GAD65 phage vaccine as adjuvants. Results: Our findings demonstrate that KYN, when used in conjunction with the GAD65 vaccine, significantly enhances the vaccine’s immunosuppressive effects. Compared to dexamethasone, FK506, and Alum adjuvants, KYN more effectively reduced the incidence and delayed the onset of T1D, preserved β-cell function, and promoted the induction of regulatory T cells and antigen-specific tolerance. These results suggest that KYN combined with vaccines could offer superior preventive and therapeutic benefits for T1D compared to existing treatments. Additionally, we investigated the dose-dependent effects of the GAD65 vaccine by including a low-dose group in our study. The results indicated that reducing the vaccine dose below 1010 plaque-forming units (pfu) did not confer any protective advantage or therapeutic benefit in combination with KYN. This finding underscores that 1010 pfu is the minimum effective dose for the GAD65 vaccine in achieving a protective response. In conclusion, KYN shows considerable promise as an adjuvant for the GAD65 vaccine in T1D therapy, potentially offering a more effective and durable treatment option than current immunosuppressive strategies. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

21 pages, 1365 KiB  
Review
Recent Advances and Mechanisms of Phage-Based Therapies in Cancer Treatment
by Vivian Y. Ooi and Ting-Yu Yeh
Int. J. Mol. Sci. 2024, 25(18), 9938; https://doi.org/10.3390/ijms25189938 - 14 Sep 2024
Cited by 10 | Viewed by 5914
Abstract
The increasing interest in bacteriophage technology has prompted its novel applications to treat different medical conditions, most interestingly cancer. Due to their high specificity, manipulability, nontoxicity, and nanosize nature, phages are promising carriers in targeted therapy and cancer immunotherapy. This approach is particularly [...] Read more.
The increasing interest in bacteriophage technology has prompted its novel applications to treat different medical conditions, most interestingly cancer. Due to their high specificity, manipulability, nontoxicity, and nanosize nature, phages are promising carriers in targeted therapy and cancer immunotherapy. This approach is particularly timely, as current challenges in cancer research include damage to healthy cells, inefficiency in targeting, obstruction by biological barriers, and drug resistance. Some cancers are being kept at the forefront of phage research, such as colorectal cancer and HCC, while others like lymphoma, cervical cancer, and myeloma have not been retouched in a decade. Common mechanisms are immunogenic antigen display on phage coats and the use of phage as transporters to carry drugs, genes, and other molecules. To date, popular phage treatments being tested are gene therapy and phage-based vaccines using M13 and λ phage, with some vaccines having advanced to human clinical trials. The results from most of these studies have been promising, but limitations in phage-based therapies such as reticuloendothelial system clearance or diffusion inefficiency must be addressed. Before phage-based therapies for cancer can be successfully used in oncology practice, more in-depth research and support from local governments are required. Full article
(This article belongs to the Special Issue Bacteriophages Biology and Bacteriophage-Derived Technologies)
Show Figures

Graphical abstract

Back to TopTop