Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = pet clothes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2090 KiB  
Article
The Effect of Polyethylene Terephthalate Nanoplastics on Amyloid-β Peptide Fibrillation
by Narmin Bashirova, Franziska Schölzel, Dominik Hornig, Holger A. Scheidt, Martin Krueger, Georgeta Salvan, Daniel Huster, Joerg Matysik and A. Alia
Molecules 2025, 30(7), 1432; https://doi.org/10.3390/molecules30071432 - 24 Mar 2025
Viewed by 1088
Abstract
Exposure of organisms to nanoplastics (NPs) is inevitable given their global abundance and environmental persistence. Polyethylene terephthalate (PET) is a common plastic used in a wide range of products, including clothing and food and beverage packaging. Recent studies suggest that NPs can cross [...] Read more.
Exposure of organisms to nanoplastics (NPs) is inevitable given their global abundance and environmental persistence. Polyethylene terephthalate (PET) is a common plastic used in a wide range of products, including clothing and food and beverage packaging. Recent studies suggest that NPs can cross the blood-brain barrier and cause potential neurotoxicity. It is widely known that aggregation of amyloid beta (Aβ) peptides in the brain is a pathological hallmark of Alzheimer’s disease (AD). While the impact of nanoplastics such as polystyrene (PS) on amyloid aggregation has been studied, the effects of PET NPs remain unexplored. In this study, we examined the effect of PET NPs of different sizes (PET50nm and PET140nm) and concentrations (0, 10, 50, and 100 ppm) on the fibrillation of Aβ1-40. Our results showed that the presence of PET50nm as well as PET140nm decreased the lag phase of the fibrillation processes in a dose- and size-dependent manner from 6.7 ± 0.08 h for Aβ in the absence of PET (Aβcontrol) to 3.1 ± 0.03 h for PET50nm and 3.8 ± 0.06 h for PET140nm. CD spectroscopy showed that PET50nm significantly impacts the structural composition of Aβ aggregates. A significant rise in antiparallel β-sheet content and β-turn structure and a substantial reduction in other structures were observed in the presence of 100 ppm PET50nm. These changes indicate that higher concentrations (100 ppm) of PET50nm promote more rigid and uniform peptide aggregates. Although PET50nm NPs influence the kinetics of aggregation and secondary structure, the overall morphology of the resulting fibrils remains largely unaltered, as seen using transmission electron microscopy. Also, the local cross-β structure of the fibrils was not affected by the presence of PET50nm NPs during fibrillation, as confirmed using 13C solid-state NMR spectroscopy. Overall, these findings show that PET NPs accelerate amyloid fibril formation and alter the secondary structure of Aβ fibrils. These results also indicate that the accumulation of PET-NPs in the brain may facilitate the progression of various neurodegenerative diseases, including Alzheimer’s disease. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

16 pages, 5061 KiB  
Article
Polyethylene Terephthalate Microplastic Exposure Induced Reproductive Toxicity Through Oxidative Stress and p38 Signaling Pathway Activation in Male Mice
by Tianyang Li, Bohao Bian, Rihao Ji, Xiuwen Zhu, Xiaohui Wo, Qiankun Song, Zhigang Li, Feifei Wang and Yuqiao Jia
Toxics 2024, 12(11), 779; https://doi.org/10.3390/toxics12110779 - 25 Oct 2024
Cited by 6 | Viewed by 2612
Abstract
Polyethylene terephthalate (PET) is a type of polymer plastic that is often used to make plastic bags, bottles, and clothes. However, the waste of such plastic products is decomposed into microplastics (MPs), which are plastic fragments smaller than 5 mm, by various external [...] Read more.
Polyethylene terephthalate (PET) is a type of polymer plastic that is often used to make plastic bags, bottles, and clothes. However, the waste of such plastic products is decomposed into microplastics (MPs), which are plastic fragments smaller than 5 mm, by various external forces such as wind, UV radiation, mechanical wear, and biodegradation. PET MPs have been widely detected in the environment and human tissue samples; however, the toxicity and mechanism of PET MPs in mammals are still unclear. In this study, we investigated the male reproductive toxicity of PET MPs and their underlying mechanism. A total of 80 male mice were orally exposed to 0.01, 0.1, and 1 mg/d of PET MPs (with a diameter of 1 μm) for 42 days. The results showed that 1 μm PET MPs induced different degrees of pathological damage to testicular tissues, decreased sperm quality, and increased the apoptosis of spermatogenic cells via oxidative stress and p38 signaling pathway activation. To further illustrate and verify the mechanistic pathway, oxidative stress was antagonized using N-acetylcysteine (NAC), and the activation of the p38 signaling pathway was blocked using SB203580. The results revealed that the male reproductive injury effects after exposure to PET MPs were significantly ameliorated. Specifically, the testicular tissue lesions were relieved, the sperm quality improved, and the apoptosis of spermatogenic cells decreased. These results demonstrated that PET MP exposure induced male reproductive toxicity through oxidative stress and the p38 signaling pathway. This study provides new insights into the reproductive toxicity of MPs in males, as well as valuable references for public health protection strategies. Full article
Show Figures

Figure 1

33 pages, 7786 KiB  
Review
Recent Advances in Environment-Friendly Polyurethanes from Polyols Recovered from the Recycling and Renewable Resources: A Review
by Mengyuan Pu, Changqing Fang, Xing Zhou, Dong Wang, Yangyang Lin, Wanqing Lei and Lu Li
Polymers 2024, 16(13), 1889; https://doi.org/10.3390/polym16131889 - 2 Jul 2024
Cited by 14 | Viewed by 6740
Abstract
Polyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective [...] Read more.
Polyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective of recycling and environmental friendliness, advanced PU synthesis, using diversified resources as feedstocks, aims to develop versatile products with excellent properties to achieve the transformation from a fossil fuel-driven energy economy to renewable and sustainable ones. This review focuses on the recent development in the synthesis and modification of PU by extracting value-added monomers for polyols from waste polymers and natural bio-based polymers, such as the recycled waste polymers: polyethylene terephthalate (PET), PU and polycarbonate (PC); the biomaterials: vegetable oil, lignin, cashew nut shell liquid and plant straw; and biomacromolecules: polysaccharides and protein. To design these advanced polyurethane formulations, it is essential to understand the structure–property relationships of PU from recycling polyols. In a word, this bottom-up path provides a material recycling approach to PU design for printing and packaging, as well as biomedical, building and wearable electronics applications. Full article
Show Figures

Graphical abstract

12 pages, 4162 KiB  
Article
Macroplastic and Microparticle Pollution in Beach Sediments from Urias Coastal Lagoon (Northwest Mexico)
by Daniela Alvarado-Zambrano, José R. Rivera-Hernández and Carlos Green-Ruiz
Toxics 2024, 12(6), 439; https://doi.org/10.3390/toxics12060439 - 18 Jun 2024
Cited by 4 | Viewed by 2335
Abstract
This study investigates the occurrence and characteristics of macroplastic and polymer microparticles in the Urias coastal lagoon’s beach sediments, in northwest Mexico. Coastal lagoons, productive and vulnerable ecosystems, are impacted significantly by anthropogenic activities, leadings to their pollution by various contaminants, including plastics. [...] Read more.
This study investigates the occurrence and characteristics of macroplastic and polymer microparticles in the Urias coastal lagoon’s beach sediments, in northwest Mexico. Coastal lagoons, productive and vulnerable ecosystems, are impacted significantly by anthropogenic activities, leadings to their pollution by various contaminants, including plastics. Our research involved sampling sediments from four sites within the lagoon that were influenced by different human activities such as fishing, aquaculture, thermoelectric power plant operations, industrial operations, and domestic wastewater discharge. Our methodology included collecting macroplastics and beach sediment samples, followed by laboratory analyses to identify the plastic debris’ size, shape, color, and chemical composition. The results indicated a notable presence of macroplastic items (144), predominantly bags, styrofoam, and caps made of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). The polymer microparticles were mainly fibers, with cotton and polyester as the most common polymers, suggesting a significant contribution from clothing-related waste. The dominant colors of the microparticles were blue and transparent. High densities were observed in areas with slower water exchange. Our findings highlight the urgent need for better waste management practices to mitigate plastic pollution in coastal lagoons, preserving their ecological and economic functions. Full article
Show Figures

Figure 1

12 pages, 3222 KiB  
Article
Asymmetrically Wettable, PET/PA6, Hollow, Segmented-Pie, Microfiber Nonwovens for a Synthetic Leather Base
by Baobao Zhao, Chunbiao Liu, Zhen Wang, Quan Feng, Xu Han, Jin Zhang, Chenggong Hu and Dongxu Han
Molecules 2024, 29(12), 2891; https://doi.org/10.3390/molecules29122891 - 18 Jun 2024
Viewed by 1090
Abstract
PET/PA6, hollow, segmented-pie, microfiber nonwovens (PET/PA6 HSMNs) play an important role in a microfiber, synthetic leather base. Most of the current PET/PA6 HSMNs generally lack in hygiene performance. Moreover, there is an urgent need for the asymmetric wettability of PET/PA6 HSMNs to ensure [...] Read more.
PET/PA6, hollow, segmented-pie, microfiber nonwovens (PET/PA6 HSMNs) play an important role in a microfiber, synthetic leather base. Most of the current PET/PA6 HSMNs generally lack in hygiene performance. Moreover, there is an urgent need for the asymmetric wettability of PET/PA6 HSMNs to ensure the comfort of clothing. In this work, a novel, asymmetrically wettable, PET/PA6 HSMN with a gradient structure is proposed, which can regulate liquid adsorption and directional transport. An MOF-303 was successfully synthesized and loaded onto the PET/PA6 HSMN, which had been pre-treated with gradient hydrolysis under sulfuric acid. The droplet quickly permeated the modified PET/PA6 HSMN, and the droplet disappearance time decreased to 62.40 ms. The liquid strikethrough time of the modified PET/PA6 HSMN reached 5.16 s. The maximum adsorption capacity of the modified PET/PA6 HSMN was 68.161 mg/g, which was improved by 122.83%. In addition, the air permeability of the pre-treated PET/PA6 HSMN increased from 308.70 mm/s to 469.97 mm/s, with the sulfuric acid concentrations increasing from 0% to 20%, and the air permeability of the modified PET/PA6 HSMN decreased gradually from 247.37 mm/s to 161.50 mm/s. Furthermore, the tensile strength of the modified PET/PA6 HSMN treated with sulfuric acid and MOF-303 was also obviously enhanced compared with the PET/PA6 HSMN treated with pure sulfuric acid. This PET/PA6 HSMN, with asymmetric wettability, owing to its high hygiene performance and water transport capabilities, is promising and able to extend the application of a microfiber synthetic leather base for clothing. Full article
Show Figures

Graphical abstract

17 pages, 5747 KiB  
Article
Investigation and Prediction of Outdoor Thermal Comfort under Different Protection and Activity Intensity Conditions in Summer in Wuhan
by Xiaoyu Cai, Xiaofang Shan, Zeng Zhou, Xin Kang and Qinli Deng
Sustainability 2024, 16(9), 3628; https://doi.org/10.3390/su16093628 - 26 Apr 2024
Cited by 7 | Viewed by 1687
Abstract
In the context of normalized epidemic prevention and control, the impact of masks and protective clothing on personal thermal comfort cannot be overlooked. To investigate the thermal comfort of outdoor personnel under various protective conditions, this study took Wuhan as an example and [...] Read more.
In the context of normalized epidemic prevention and control, the impact of masks and protective clothing on personal thermal comfort cannot be overlooked. To investigate the thermal comfort of outdoor personnel under various protective conditions, this study took Wuhan as an example and evaluated the outdoor thermal comfort of subjects under different protection and activity conditions through thermal environment monitoring, physiological measurements, and thermal comfort questionnaires. The results show significant differences in the PET thermal comfort baseline under various protective conditions. To address the problem that most areas have not yet established state-specific thermal comfort baselines, a State Outdoor Comfort Index (SOCI) model was developed to correct the insensitivity of PET indicators to clothing thermal resistance and metabolic rate. Finally, the performance of the SOCI model was evaluated through statistical indicators, demonstrating its good predictive capability. This study provides appropriate quantitative indicators to improve the thermal comfort of outdoor personnel. Full article
Show Figures

Figure 1

13 pages, 5565 KiB  
Article
The Influence of Textile Type, Textile Weight, and Detergent Dosage on Microfiber Emissions from Top-Loading Washing Machines
by Pongsiri Julapong, Palot Srichonphaisarn, Thidarat Meekoch, Carlito Baltazar Tabelin, Onchanok Juntarasakul and Theerayut Phengsaart
Toxics 2024, 12(3), 210; https://doi.org/10.3390/toxics12030210 - 12 Mar 2024
Cited by 14 | Viewed by 3681
Abstract
The use of washing machines to wash textiles gradually breaks down synthetic fibers like polyethylene terephthalate (PET) or polyester (PES) in diverse clothing materials, a process that is growing in notoriety because it generates microplastics (MPs). In this study, we investigated the emission [...] Read more.
The use of washing machines to wash textiles gradually breaks down synthetic fibers like polyethylene terephthalate (PET) or polyester (PES) in diverse clothing materials, a process that is growing in notoriety because it generates microplastics (MPs). In this study, we investigated the emission of microfibers, including both microplastic fibers (MPFs) and natural fibers (MFs), from top-loading washing machines. Our investigation focused on four popular textiles with prevalent weave structures (plain, satin, and twill): (i) PES, (ii) tetron cotton (TC), (iii) chief value cotton (CVC), and (iv) cotton (CO) fabrics. This study also examined the effects of textile weight and detergent dosage on MF emissions. After washing, MFs were collected through filtration, and their concentrations were determined using micro-Fourier Transform Interferometry (μFTIR). The results showed varying concentrations of MFs in the washing effluent depending on the type of textile. Specifically, CVC exhibited the highest emission at 4022 particles/L, followed by TC, PES, and CO at 2844 particles/L, 2382 particles/L, and 2279 particles/L, respectively. The hydrophobic nature of PES makes this type of textile prone to rapid degradation in detergent-rich environments, leading to high MF emissions. Additionally, the mechanical properties of textiles, such as tensile and bending strengths, may play a crucial role in the generation of MFs in washing machines. Textiles made of CO with twill weaves demonstrated superior strength and correlated with lower emissions of MFs. In comparison, textiles made of CVC and satin weave exhibited lower mechanical properties, which could explain their high emissions of MFs. Finally, the MF emissions of textiles composed of PES and TC, which are plain weaved, could be attributed to their intermediate mechanical properties compared with those of CVC and CO. Full article
Show Figures

Figure 1

13 pages, 1855 KiB  
Article
Preliminary Research on Outdoor Thermal Comfort Evaluation in Severe Cold Regions by Machine Learning
by Tianyu Xi, Ming Wang, Enjia Cao, Jin Li, Yong Wang and Salanke Umar Sa’ad
Buildings 2024, 14(1), 284; https://doi.org/10.3390/buildings14010284 - 20 Jan 2024
Cited by 10 | Viewed by 2846
Abstract
The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on thermal comfort evaluation indexes such as PMV, PET, SET, UTCI, etc. These thermal comfort index evaluation models are complex in the [...] Read more.
The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on thermal comfort evaluation indexes such as PMV, PET, SET, UTCI, etc. These thermal comfort index evaluation models are complex in the calculation process and poor in operability, which makes it difficult for people who lack a relevant knowledge background to understand, calculate, and apply them. The purpose of this study is to provide a simple, efficient, and easy-to-operate outdoor thermal comfort evaluation model for severe cold areas in China using a machine learning method. In this study, the physical environment parameters are obtained by field measurement, and individual information is obtained by a field questionnaire survey. The applicability of four machine learning models in outdoor thermal comfort evaluation is studied. A total of 320 questionnaires are collected. The results show that the correlation coefficients between predicted values and voting values of the extreme gradient lifting model, gradient lifting model, random forest model, and neural network model are 0.9313, 0.7148, 0.9115, and 0.5325, respectively. Further analysis of the extreme gradient model with the highest correlation coefficient shows that individual factors (such as residence time, distance between hometown and residence, clothing, age, height, and weight) and environmental factors (such as air humidity (RH), wind speed (v), air temperature (Ta), and black bulb temperature (Tg)) have different influences on thermal comfort evaluation. In summary, using a machine learning method to evaluate outdoor thermal comfort is simpler, more direct, and more efficient, and it can make up for the lack of consideration of complex individual factors in the evaluation method of thermal comfort index. The results have reference value and application value for the research of outdoor thermal comfort evaluation in severe cold areas of China. Full article
Show Figures

Figure 1

18 pages, 8829 KiB  
Article
Construction Strategy for Flexible and Breathable SiO2/Al/NFs/PET Composite Fabrics with Dual Shielding against Microwave and Infrared–Thermal Radiations for Wearable Protective Clothing
by Hui Ye, Qiongzhen Liu, Xiao Xu, Mengya Song, Ying Lu, Liyan Yang, Wen Wang, Yuedan Wang, Mufang Li and Dong Wang
Polymers 2024, 16(1), 6; https://doi.org/10.3390/polym16010006 - 19 Dec 2023
Cited by 3 | Viewed by 1790
Abstract
Microwave and infrared–thermal radiation-compatible shielding fabrics represent an important direction in the development of wearable protective fabrics. Nevertheless, effectively and conveniently integrating compatible shielding functions into fabrics while maintaining breathability and moisture permeability remains a significant challenge. Here, we take hydrophilic PVA-co [...] Read more.
Microwave and infrared–thermal radiation-compatible shielding fabrics represent an important direction in the development of wearable protective fabrics. Nevertheless, effectively and conveniently integrating compatible shielding functions into fabrics while maintaining breathability and moisture permeability remains a significant challenge. Here, we take hydrophilic PVA-co-PE nanofibrous film-coated PET fabric (NFs/PET) as a flexible substrate and deposit a dielectric/conductive (SiO2/Al) bilayer film via magnetron sputtering. This strategy endows the fabric surface with high electrical conductivity, nanoscale roughness comparable to visible and infrared waves, and a dielectric–metal contact interface possessing localized plasmon resonance and Mie scattering effects. The results demonstrate that the optimized SiO2/Al/NFs/PET composite conductive fabric (referred to as S4-1) possesses favorable X-band electromagnetic interference (EMI) shielding effectiveness (50 dB) as well as excellent long-wave infrared (LWIR) shielding or IR stealth performance (IR emissivity of 0.60). Notably, the S4-1 fabric has a cooling effect of about 12.4 °C for a heat source (80 °C) and an insulating effect of about 17.2 °C for a cold source (−20 °C), showing excellent shielding capability for heat conduction and heat radiations. Moreover, the moisture permeability of the S4-1 fabric is about 300 g/(m2·h), which is better than the requirement concerning moisture permeability for wearable fabrics (≥2500–5000 g/(m2·24 h)), indicating excellent heat and moisture comfort. In short, our fabrics have lightweight, thin, moisture-permeable and excellent shielding performance, which provides novel ideas for the development of wearable multi-band shielding fabrics applied to complex electromagnetic environments. Full article
(This article belongs to the Special Issue Smart Textiles: Synthesis, Characterization and Application)
Show Figures

Figure 1

32 pages, 2709 KiB  
Review
Advancements in PET Packaging: Driving Sustainable Solutions for Today’s Consumer Demands
by Beenu Raj, Jitin Rahul, Pramod K. Singh, Velidandi V. L. Kanta Rao, Jagdish Kumar, Neetu Dwivedi, Pravita Kumar, Diksha Singh and Karol Strzałkowski
Sustainability 2023, 15(16), 12269; https://doi.org/10.3390/su151612269 - 11 Aug 2023
Cited by 11 | Viewed by 7093
Abstract
This work provides an overview of the importance of recycling PET waste to reduce the environmental impact of plastic waste, conserve natural resources and energy, and create jobs in the recycling industry. Many countries have implemented regulations and initiatives to promote the recycling [...] Read more.
This work provides an overview of the importance of recycling PET waste to reduce the environmental impact of plastic waste, conserve natural resources and energy, and create jobs in the recycling industry. Many countries have implemented regulations and initiatives to promote the recycling of PET waste and reduce plastic pollution, such as extended producer responsibility (EPR) systems, bans on certain single-use plastics, and deposit–return systems for plastic bottles. The article further underscores the versatility of recycled PET, as it can be transformed into various products such as fibers, sheets, film, and strapping. These recycled materials find applications in numerous sectors including clothing, carpets, upholstery, and industrial fibers. Recognizing the importance of collaboration among governments, industries, and individuals, we emphasize the need for sustainable PET waste management practices and the promotion of recycled materials. The article also provides information on India’s experiences with PET waste management and regulations in other countries. It is important to note that the global production and consumption of PET have increased significantly in recent years, with the packaging industry being the largest consumer of PET. This has resulted in a significant increase in the generation of PET waste, which poses a significant environmental and health hazard if not managed properly. PET waste can end up in landfills, where it can take hundreds of years to decompose, or it can end up in the oceans, where it can harm marine life and the environment. Therefore, the proper management and recycling of PET waste are essential to mitigate these negative impacts. In terms of India’s experiences with PET waste management, several initiatives have been implemented to promote the recycling of PET waste. For example, the government has launched the Swachh Bharat Abhiyan campaign, which aims to promote cleanliness and sanitation in the country to promote waste segregation and recycling. Full article
Show Figures

Figure 1

14 pages, 4140 KiB  
Article
Visual-Based Children and Pet Rescue from Suffocation and Incidence of Hyperthermia Death in Enclosed Vehicles
by Mona M. Moussa, Rasha Shoitan, Young-Im Cho and Mohamed S. Abdallah
Sensors 2023, 23(16), 7025; https://doi.org/10.3390/s23167025 - 8 Aug 2023
Cited by 4 | Viewed by 3384
Abstract
Over the past several years, many children have died from suffocation due to being left inside a closed vehicle on a sunny day. Various vehicle manufacturers have proposed a variety of technologies to locate an unattended child in a vehicle, including pressure sensors, [...] Read more.
Over the past several years, many children have died from suffocation due to being left inside a closed vehicle on a sunny day. Various vehicle manufacturers have proposed a variety of technologies to locate an unattended child in a vehicle, including pressure sensors, passive infrared motion sensors, temperature sensors, and microwave sensors. However, these methods have not yet reliably located forgotten children in the vehicle. Recently, visual-based methods have taken the attention of manufacturers after the emergence of deep learning technology. However, the existing methods focus only on the forgotten child and neglect a forgotten pet. Furthermore, their systems only detect the presence of a child in the car with or without their parents. Therefore, this research introduces a visual-based framework to reduce hyperthermia deaths in enclosed vehicles. This visual-based system detects objects inside a vehicle; if the child or pet are without an adult, a notification is sent to the parents. First, a dataset is constructed for vehicle interiors containing children, pets, and adults. The proposed dataset is collected from different online sources, considering varying illumination, skin color, pet type, clothes, and car brands for guaranteed model robustness. Second, blurring, sharpening, brightness, contrast, noise, perspective transform, and fog effect augmentation algorithms are applied to these images to increase the training data. The augmented images are annotated with three classes: child, pet, and adult. This research concentrates on fine-tuning different state-of-the-art real-time detection models to detect objects inside the vehicle: NanoDet, YOLOv6_1, YOLOv6_3, and YOLO7. The simulation results demonstrate that YOLOv6_1 presents significant values with 96% recall, 95% precision, and 95% F1. Full article
(This article belongs to the Special Issue Application of Semantic Technologies in Sensors and Sensing Systems)
Show Figures

Figure 1

18 pages, 3653 KiB  
Article
First Evidence of Microplastic Occurrence in the Marine and Freshwater Environments in a Remote Polar Region of the Kola Peninsula and a Correlation with Human Presence
by Anita Kaliszewicz, Ninel Panteleeva, Kamil Karaban, Tomasz Runka, Michał Winczek, Ewa Beck, Agnieszka Poniatowska, Izabella Olejniczak, Paweł Boniecki, Elena V. Golovanova and Jerzy Romanowski
Biology 2023, 12(2), 259; https://doi.org/10.3390/biology12020259 - 6 Feb 2023
Cited by 14 | Viewed by 3680
Abstract
Microplastics (MPs) have even been detected in remote environments, including high-latitude regions, where human activities are restricted or strongly limited. We investigated the surface water of the bays of the Barents Sea and the freshwater lakes that are located close to and several [...] Read more.
Microplastics (MPs) have even been detected in remote environments, including high-latitude regions, where human activities are restricted or strongly limited. We investigated the surface water of the bays of the Barents Sea and the freshwater lakes that are located close to and several kilometers from a year-round resident field station in the remote tundra region of the Kola Peninsula. The microplastics’ presence in aquatic environments in this region has not been indicated yet. Microplastics were detected in all samples collected from the Barents Sea (<4800 items·m−3) and the lakes (<3900 items·m−3). Fibers made from polyethylene terephthalate (PET)—the most common thermoplastic polymer of the polyester family—and semi-synthetic cellulosic rayon were the most dominant. This indicated that the source of fiber contamination may come from protective clothes, ropes, ship equipment, and fishing nets. Small microplastics can spread through current and atmospheric transport. The Norwegian Current is likely responsible for the lack of correlations found between MP contamination and the distance from the field station between the studied bays of the Barents Sea. On the contrary, a significant correlation with human presence was observed in the concentration of microfibers in the water of the tundra lakes. The number of MP fibers decreased with an increase in the distance from the field station. This is the first study, to the best of our knowledge, that reports such a correlation in a remote region. We also discuss implications for animals. Our results show that even the most isolated ecosystems are not free from microplastic pollution. Full article
Show Figures

Graphical abstract

16 pages, 5749 KiB  
Article
Anti-Mold Protection of Textile Surfaces with Cold Plasma Produced Biocidal Nanocoatings
by Ewa Tyczkowska-Sieroń, Agnieszka Kiryszewska-Jesionek, Ryszard Kapica and Jacek Tyczkowski
Materials 2022, 15(19), 6834; https://doi.org/10.3390/ma15196834 - 1 Oct 2022
Viewed by 3705
Abstract
The permanent anti-mold protection of textile surfaces, particularly those utilized in the manufacture of outdoor sporting goods, is still an issue that requires cutting-edge solutions. This study attempts to obtain antifungal nanocoatings on four selected fabrics used in the production of high-mountain clothing [...] Read more.
The permanent anti-mold protection of textile surfaces, particularly those utilized in the manufacture of outdoor sporting goods, is still an issue that requires cutting-edge solutions. This study attempts to obtain antifungal nanocoatings on four selected fabrics used in the production of high-mountain clothing and sleeping bags, and on PET foil as a model substrate, employing the cold plasma technique for this purpose. Three plasma treatment procedures were used to obtain such nanocoatings: plasma-activated graft copolymerization of a biocidal precursor, deposition of a thin-film matrix by plasma-activated graft copolymerization and anchoring biocidal molecules therein, and plasma polymerization of a biocidal precursor. The precursors used represented three important groups of antifungal agents: phenols, amines, and anchored compounds. SEM microscopy and FTIR-ATR spectrometry were used to characterize the produced nanocoatings. For testing antifungal properties, four species of common mold fungi were selected: A. niger, A. fumigatus, A. tenuissima, and P. chrysogenum. It was found that the relatively best nanocoating, both in terms of plasma process performance, durability, and anti-mold activity, is plasma polymerized 2-allylphenol. The obtained results confirm our belief that cold plasma technology is a great tool for modifying the surface of textiles to provide them with antifungal properties. Full article
(This article belongs to the Special Issue Antimicrobial Textile)
Show Figures

Graphical abstract

16 pages, 3345 KiB  
Article
Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection
by Małgorzata Cieślak, Dorota Kowalczyk, Małgorzata Krzyżowska, Martyna Janicka, Ewa Witczak and Irena Kamińska
Materials 2022, 15(17), 6164; https://doi.org/10.3390/ma15176164 - 5 Sep 2022
Cited by 15 | Viewed by 2747
Abstract
Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton [...] Read more.
Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton (CO) modified by magnetron sputtering with copper (Cu) on bioactive properties against Gram-positive and Gram-negative bacteria and four viruses and also on the some comfort parameters. PET/Cu and CO/Cu fabrics have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia. CO/Cu fabric has good antiviral activity in relation to vaccinia virus (VACV), herpes simplex virus type 1 (HSV-1) and influenza A virus H1N1 (IFV), while its antiviral activity against mouse coronavirus (MHV) is weak. PET/Cu fabric showed weak antiviral activity against HSV-1 and MHV. Both modified fabrics showed no significant toxicity in comparison to the control medium and pristine fabrics. After Cu sputtering, fabric surfaces became hydrophobic and the value of the surface free energy was over four times lower than for pristine fabrics. The modification improved thermal conductivity and thermal diffusivity, facilitated water vapour transport, and air permeability did not decrease. Full article
(This article belongs to the Special Issue Bioactive and Functional Materials)
Show Figures

Figure 1

12 pages, 2942 KiB  
Article
A Study on Preparation and Property Evaluations of Composites Consisting of TPU/Triclosan Membranes and Tencel®/LMPET Nonwoven Fabrics
by Bing-Chiuan Shiu, Po-Wen Hsu, Jian-Hong Lin, Ling-Fang Chien, Jia-Horng Lin and Ching-Wen Lou
Polymers 2022, 14(12), 2514; https://doi.org/10.3390/polym14122514 - 20 Jun 2022
Cited by 8 | Viewed by 3185
Abstract
This study investigated eco-friendly antibacterial medical protective clothing via the nonwoven process and characteristic evaluations. Firstly, Tencel® fibers and low melting point polyester (LMPET) fibers (re-sliced and granulated from recycled PET bottles) were mixed at different ratios and then needle punched at [...] Read more.
This study investigated eco-friendly antibacterial medical protective clothing via the nonwoven process and characteristic evaluations. Firstly, Tencel® fibers and low melting point polyester (LMPET) fibers (re-sliced and granulated from recycled PET bottles) were mixed at different ratios and then needle punched at diverse needle rolling depths. The influences of manufacturing parameters on the Tencel®/LMPET nonwoven fabrics were examined in terms of mechanical properties, water vapor transmission rate, and stiffness. Next, Tencel®/LMPET nonwoven fabrics were combined with thermoplastic polyurethane (TPU)/Triclosan antibacterial membranes that contained different contents of triclosan using melt processing technology. The resulting Tencel®/LMPET/TPU/Triclosan composites were characterized via different measurements; an optimal bursting strength of 86.86 N, an optimal horizontal tensile strength of 41.90 N, and an optimal stiffness along the MD and CD of 8.60 cm were recorded. Furthermore, the Tencel®/LMPET/TPU/Triclosan composites exhibited a distinct inhibition zone in the antibacterial measurement, and the hydrostatic pressure met the requirements of the EN 14126:2003 and GB 19082-200 disposable medical protective gear test standards. Full article
(This article belongs to the Special Issue Recent Development in Textiles and Fibers)
Show Figures

Graphical abstract

Back to TopTop