Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = permafrost probability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8338 KiB  
Article
The Predictive Skill of a Remote Sensing-Based Machine Learning Model for Ice Wedge and Visible Ground Ice Identification in Western Arctic Canada
by Qianyu Chang, Simon Zwieback and Aaron A. Berg
Remote Sens. 2025, 17(7), 1245; https://doi.org/10.3390/rs17071245 - 1 Apr 2025
Viewed by 508
Abstract
Fine-scale maps of ground ice and related surface features are critical for permafrost-related modelling and management. However, such maps are lacking across almost the entire Arctic. Machine learning provides the potential to automate regional fine-scale ground ice mapping using remote sensing and topographic [...] Read more.
Fine-scale maps of ground ice and related surface features are critical for permafrost-related modelling and management. However, such maps are lacking across almost the entire Arctic. Machine learning provides the potential to automate regional fine-scale ground ice mapping using remote sensing and topographic data. Here, we evaluate the predictive skill of XGBoost models for identifying (1) ice wedge and (2) top-5m visible ground ice in the Tuktoyaktuk Coastlands. We find high predictive skill for ice wedge occurrence (ROC AUC = 0.95, macro F1 = 0.80), with the most important predictors being slope, distance to the coast, and probability of depression. The model accurately predicted regional and local trends in ice wedge occurrence, with an increase in ice wedge polygon (IWP) probability towards the coast and in poorly drained depressions. The model also captured IWP in well-drained uplands of the study area, including locations with poorly visible troughs not contained in the training data. Spatial transferability analyses highlight the regional variability of ice wedge probability, reflecting contrasting climatic and surface conditions. Conversely, the low predictive skill for visible ground ice (ROC AUC = 0.67, macro F1 = 0.53) is attributed to limitations in training data and weak associations with the remotely sensed predictors. The varying predictive accuracy highlights the importance of high-quality reference data and site-specific conditions for improving ground ice studies with data-driven modelling from remote sensing observations. Full article
Show Figures

Figure 1

21 pages, 2950 KiB  
Review
The Main Geohazards in the Russian Sector of the Arctic Ocean
by Artem A. Krylov, Daria D. Rukavishnikova, Mikhail A. Novikov, Boris V. Baranov, Igor P. Medvedev, Sergey A. Kovachev, Leopold I. Lobkovsky and Igor P. Semiletov
J. Mar. Sci. Eng. 2024, 12(12), 2209; https://doi.org/10.3390/jmse12122209 - 2 Dec 2024
Viewed by 1280
Abstract
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to [...] Read more.
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to avoid emergency situations that could result in numerous negative environmental and socio-economic consequences. Therefore, when designing and constructing critical infrastructure facilities in the Arctic, it is necessary to conduct high-quality studies of potential geohazards. This paper reviews and summarizes the scattered information on the main geohazards in the Russian sector of the Arctic Ocean, such as earthquakes, underwater landslides, tsunamis, and focused fluid discharges (gas seeps), and discusses patterns of their spatial distribution and possible relationships with the geodynamic setting of the Arctic region. The study revealed that the main patterns of the mutual distribution of the main geohazards of the Russian sector of the Arctic seas are determined by both the modern geodynamic situation in the region and the history of the geodynamic evolution of the Arctic, namely the formation of the spreading axis and deep-sea basins of the Arctic Ocean. The high probability of the influence of seismotectonic activity on the state of subsea permafrost and massive methane release is emphasized. This review contributes toward better understanding and progress in the zoning of seismic and other geological hazards in the vast Arctic seas of Russia. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

23 pages, 6305 KiB  
Article
The Hydration-Dependent Dynamics of Greenhouse Gas Fluxes of Epiphytic Lichens in the Permafrost-Affected Region
by Oxana V. Masyagina, Svetlana Yu. Evgrafova, Natalia M. Kovaleva, Anna E. Detsura, Elizaveta V. Porfirieva, Oleg V. Menyailo and Anastasia I. Matvienko
Forests 2024, 15(11), 1962; https://doi.org/10.3390/f15111962 - 7 Nov 2024
Viewed by 1175
Abstract
Recent studies actively debate oxic methane (CH4) production processes in water and terrestrial ecosystems. This previously unknown source of CH4 on a regional and global scale has the potential to alter our understanding of climate-driving processes in vulnerable ecosystems, particularly [...] Read more.
Recent studies actively debate oxic methane (CH4) production processes in water and terrestrial ecosystems. This previously unknown source of CH4 on a regional and global scale has the potential to alter our understanding of climate-driving processes in vulnerable ecosystems, particularly high-latitude ecosystems. Thus, the main objective of this study is to use the incubation approach to explore possible greenhouse gas (GHG) fluxes by the most widely distributed species of epiphytic lichens (ELs; Evernia mesomorpha Nyl. and Bryoria simplicior (Vain.) Brodo et D. Hawksw.) in the permafrost zone of Central Siberia. We observed CH4 production by hydrated (50%–400% of thallus water content) ELs during 2 h incubation under illumination. Moreover, in agreement with other studies, we found evidence that oxic CH4 production by Els is linked to the CO2 photoassimilation process, and the EL thallus water content regulates that relationship. Although the GHG fluxes presented here were obtained under a controlled environment and are probably not representative of actual emissions in the field, more research is needed to fully comprehend ELs’ function in the C cycle. This particular research provides a solid foundation for future studies into the role of ELs in the C cycle of permafrost forest ecosystems under ongoing climate change (as non-methanogenesis processes in oxic environments). Full article
Show Figures

Figure 1

20 pages, 31830 KiB  
Article
Susceptibility Mapping of Thaw Slumps Based on Neural Network Methods along the Qinghai–Tibet Engineering Corridor
by Pengfei Li, Tianchun Dong, Yanhe Wang, Jing Luo, Huini Wang and Huarui Zhang
Sustainability 2024, 16(12), 5120; https://doi.org/10.3390/su16125120 - 16 Jun 2024
Viewed by 1428
Abstract
Climate warming has induced the thawing of permafrost, which increases the probability of thaw slump occurrences in permafrost regions of the Qinghai–Tibet Engineering Corridor (QTEC). As a key and important corridor, thaw slump distribution is widespread, but research into effectively using neural networks [...] Read more.
Climate warming has induced the thawing of permafrost, which increases the probability of thaw slump occurrences in permafrost regions of the Qinghai–Tibet Engineering Corridor (QTEC). As a key and important corridor, thaw slump distribution is widespread, but research into effectively using neural networks to predict thaw slumping remains insufficient. This study automated the identification of thaw slumps within the QTEC and investigated their environmental factors and susceptibility assessment. We applied a deep learning-based semantic segmentation method, combining U-Net with ResNet101, to high spatial and temporal resolution images captured by the Gaofen-1 images. This methodology enabled the automatic delineation of 455 thaw slumps within the corridor area, covering 40,800 km², with corresponding precision, recall, and F1 scores of 0.864, 0.847, and 0.856, respectively. Subsequently, employing a radial basis function neural network model on this inventory of thaw slumps, we investigated environmental factors that could precipitate the occurrence of thaw slumps and generated sensitivity maps of thaw slumps along the QTEC. The model demonstrated high accuracy, and the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve reached 0.95. The findings of the study indicate that these thaw slumps are predominantly located on slopes with gradients of 1–18°, distributed across mid-elevation regions ranging from 4500 to 5500 m above sea level. Temperature and precipitation were identified as the predominant factors that influenced the distribution of thaw slumps. Approximately 30.75% of the QTEC area was found to fall within high to extremely high susceptibility zones. Moreover, validation processes confirmed that 82.75% of the thaw slump distribution was located within areas of high or higher sensitivity within the QTEC. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

23 pages, 7549 KiB  
Article
Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context
by Petr Semenov, Anfisa Pismeniuk, Anna Kil, Elizaveta Shatrova, Natalia Belova, Petr Gromov, Sergei Malyshev, Wei He, Anastasiia Lodochnikova, Ilya Tarasevich, Irina Streletskaya and Marina Leibman
Geosciences 2024, 14(3), 77; https://doi.org/10.3390/geosciences14030077 - 13 Mar 2024
Cited by 1 | Viewed by 2566
Abstract
Climate-induced changes contribute to the thawing of ice-rich permafrost in the Arctic, which leads to the release of large amounts of organic carbon into the atmosphere in the form of greenhouse gases, mainly carbon dioxide and methane. Ground ice constitutes a considerable volume [...] Read more.
Climate-induced changes contribute to the thawing of ice-rich permafrost in the Arctic, which leads to the release of large amounts of organic carbon into the atmosphere in the form of greenhouse gases, mainly carbon dioxide and methane. Ground ice constitutes a considerable volume of the cryogenically sequestered labile dissolved organic carbon (DOC) subjected to fast mineralization upon thawing. In this work, we collected a unique geochemical database of the ground and glacier ice comprising the samples from various geographic locations in the Russian Arctic characterized by a variety of key parameters, including ion composition, carbon-bearing gases (methane and carbon dioxide), bulk biogeochemical indicators, and fluorescent dissolved organic matter (DOM) fractions. Our results show that interaction with solid material—such as sediments, detritus, and vegetation—is likely the overriding process in enrichment of the ground ice in all the dissolved compounds. Terrigenous humic-like dissolved organic matter was predominant in all the analyzed ice samples except for glacier ice from Bolshevik Island (the Severnaya Zemlya archipelago) and pure (with low sediment content) tabular ground ice from western Yamal. The labile protein-like DOM showed no correlation to humic components and was probably linked to microbial abundance in the ground ice. The sum of the fluorophores deconvoluted by PARAFAC strongly correlates to DOC, which proves the potential of using this approach for differentiation of bulk DOC into fractions with various origins and biogeochemical behaviors. The pure tabular ground ice samples exhibit the highest rate of fresh easily degradable DOM in the bulk DOC, which may be responsible for the amplification of permafrost organic matter decomposition upon thawing. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

24 pages, 39117 KiB  
Article
Simulation of Spatiotemporal Distribution and Variation of 30 m Resolution Permafrost in Northeast China from 2003 to 2021
by Chengcheng Zhang, Wei Shan, Shuai Liu, Ying Guo and Lisha Qiu
Sustainability 2023, 15(19), 14610; https://doi.org/10.3390/su151914610 - 9 Oct 2023
Cited by 9 | Viewed by 1542
Abstract
The high-resolution permafrost distribution maps have a closer relationship with engineering applications in cold regions because they are more relative to the real situation compared with the traditional permafrost zoning mapping. A particle swarm optimization algorithm was used to obtain the index η [...] Read more.
The high-resolution permafrost distribution maps have a closer relationship with engineering applications in cold regions because they are more relative to the real situation compared with the traditional permafrost zoning mapping. A particle swarm optimization algorithm was used to obtain the index η with 30 m resolution and to characterize the distribution probability of permafrost at the field scale. The index consists of five environmental variables: slope position, slope, deviation from mean elevation, topographic diversity, and soil bulk density. The downscaling process of the surface frost number from a resolution of 1000 m to 30 m is achieved by using the spatial weight decomposition method and index η. We established the regression statistical relationship between the surface frost number after downscaling and the temperature at the freezing layer that is below the permafrost active layer base. We simulated permafrost temperature distribution maps with 30 m resolution in the four periods of 2003–2007, 2008–2012, 2013–2017, and 2018–2021, and the permafrost area is, respectively, 28.35 × 104 km2, 35.14 × 104 km2, 28.96 × 104 km2, and 25.21 × 104 km2. The proportion of extremely stable permafrost (<−5.0 °C), stable permafrost (−3.0~−5.0 °C), sub-stable permafrost (−1.5~−3.0 °C), transitional permafrost (−0.5~−1.5 °C), and unstable permafrost (0~−0.5 °C) is 0.50–1.27%, 6.77–12.45%, 29.08–33.94%, 34.52–39.50%, and 19.87–26.79%, respectively, with sub-stable, transitional, and unstable permafrost mainly distributed. Direct and indirect verification shows that the permafrost temperature distribution maps after downscaling still have high reliability, with 83.2% of the residual controlled within the range of ±1 °C and the consistency ranges from 83.17% to 96.47%, with the identification of permafrost sections in the highway engineering geological investigation reports of six highway projects. The maps are of fundamental importance for engineering planning and design, ecosystem management, and evaluation of the permafrost change in the future in Northeast China. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

22 pages, 4471 KiB  
Article
Permafrost Probability Mapping at a 30 m Resolution in Arxan Based on Multiple Characteristic Variables and Maximum Entropy Classifier
by Ying Guo, Shuai Liu, Lisha Qiu, Yan Wang, Chengcheng Zhang and Wei Shan
Appl. Sci. 2023, 13(19), 10692; https://doi.org/10.3390/app131910692 - 26 Sep 2023
Cited by 4 | Viewed by 1491
Abstract
High-resolution permafrost mapping is an important direction in permafrost research. Arxan is a typical area with permafrost degradation and is situated on the southern boundary of the permafrost region in Northeast China. With the help of Google Earth Engine (GEE), the maximum entropy [...] Read more.
High-resolution permafrost mapping is an important direction in permafrost research. Arxan is a typical area with permafrost degradation and is situated on the southern boundary of the permafrost region in Northeast China. With the help of Google Earth Engine (GEE), the maximum entropy classifier (MaxEnt) is used for permafrost mapping using the land surface temperature (LST) of different seasons, deviation from mean elevation (DEV), solar radiation (SR), normalized difference vegetation index (NDVI), and normalized difference water index (NDWI) as the characteristic variables. The prior data of permafrost distribution were primarily based on 201 borehole data and field investigation data. A permafrost probability (PP) distribution map with a resolution of 30 m was obtained. The receiver operating characteristic (ROC) curve was used to test the distribution results, with an area under the curve (AUC) value of 0.986. The results characterize the distribution of permafrost at a high resolution. Permafrost is mainly distributed in the Greater Khingan Mountains (GKM) in the research area, which run from the northeast to the southwest, followed by low-altitude area in the northwest. According to topographic distribution, permafrost is primarily found on slope surfaces, with minor amounts present in peaks, ridges, and valleys. The employed PP distribution mapping method offers a suggestion for high-resolution permafrost mapping in permafrost degradation areas. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Earth Sciences—2nd Edition)
Show Figures

Figure 1

25 pages, 8458 KiB  
Article
The Taconnaz Rockfall (Mont-Blanc Massif, European Alps) of November 2018: A Complex and At-Risk Rockwall-Glacier-Torrent Morphodynamic Continuum
by Ludovic Ravanel, Pierre-Allain Duvillard, Laurent Astrade, Thierry Faug, Philip Deline, Johan Berthet, Maëva Cathala, Florence Magnin, Alexandre Baratier and Xavier Bodin
Appl. Sci. 2023, 13(17), 9716; https://doi.org/10.3390/app13179716 - 28 Aug 2023
Cited by 4 | Viewed by 5259
Abstract
The glacial and torrential basin of Taconnaz (Mont-Blanc massif, France) dominates the Chamonix valley. It is one of the major paths for snow avalanches in the Alps, often triggered by serac falls from the Taconnaz glacier. On 24 November 2018, the basin’s multi-risk [...] Read more.
The glacial and torrential basin of Taconnaz (Mont-Blanc massif, France) dominates the Chamonix valley. It is one of the major paths for snow avalanches in the Alps, often triggered by serac falls from the Taconnaz glacier. On 24 November 2018, the basin’s multi-risk nature was further accentuated by a new type of hazard with a rockfall triggered at c. 2700 m a.s.l. It travelled down over a distance of 1.85 km and stopped 165 m away from the construction site of a micro-hydroelectric power station. We studied the triggering conditions at the permafrost lower limit, the effects of the supra-glacial path on the flow patterns, and the fate of the scar and the deposit on torrential activity. By comparing a pre-event Structure from Motion model with a post-event LiDAR model, we estimated the volume of the scar to be 42,900 m3 (±5%). A numerical model was employed to simulate the rapid runout. It revealed the complexity of the flow, attributed to the sequestration of a part of the deposit in crevasses, the incorporation of a significant volume of ice resulting in a transition from a dry granular flow to a mud-like flow, and the presence of numerous deposit zones. Subsequent monitoring of the area after the event allowed for the documentation of the scar’s evolution, including a landslide, as well as the progressive degradation and evacuation of the deposit by the torrent without producing debris flow. The study of the triggering factors indicated glacial retreat as the probable main cause, assisted by the melting of ice lenses left by the permafrost disappearance. Finally, we present replicable methods for managing risks at the site following the event. This event improves the understanding of cascading processes that increasingly impact Alpine areas in the context of climate change. Full article
Show Figures

Figure 1

16 pages, 3776 KiB  
Article
Sea Coast of the Western Part of the Russian Arctic under Climate Change: Dynamics, Technogenic Influence and Potential Economic Damage
by Stanislav Ogorodov, Svetlana Badina and Daria Bogatova
Climate 2023, 11(7), 143; https://doi.org/10.3390/cli11070143 - 10 Jul 2023
Cited by 7 | Viewed by 2161
Abstract
The Arctic coast dynamics has been an urgent problem over the last years, from both a practical and a fundamental point of view. In this research, for the first time for the Russian Arctic coast, we assessed the damage from the loss of [...] Read more.
The Arctic coast dynamics has been an urgent problem over the last years, from both a practical and a fundamental point of view. In this research, for the first time for the Russian Arctic coast, we assessed the damage from the loss of territories in the western part of the Russian Arctic, where the active production and transportation of hydrocarbon material are carried out. Most of the studied coastline is composed of frozen unlithified soils with inclusions of underground ice. In this regard, the coastal zone is highly sensitive to climate change and its economic consequences. According to our investigation and literature data, the erosion rates could rich up to 2–3 m/year in some part of the coastline. Having estimated the cadastral cost of land and the area of the possible loss of territory, as well as the cost of transport infrastructure in the risk zone, we tried to predict the damage from changes in the total structure of the area under consideration. In particular, the economic damages from coastal permafrost processes were estimated. The assessment was conducted for the middle of the 21st century, taking into account the current climatic trend, erosion rate and probable maximum warming in this region. Full article
(This article belongs to the Section Climate and Economics)
Show Figures

Figure 1

19 pages, 4498 KiB  
Article
Thermal Insulation, Antifreeze, and Anti-Drainage Technology for Tunnels in the Cold Area of Jinpen Bay
by Tu Ha, Shengjun Liu, Libin Lin, Wei Liu, Hongwei Zhang, Lijun Sun and Xuemin Zhao
Buildings 2023, 13(6), 1377; https://doi.org/10.3390/buildings13061377 - 25 May 2023
Cited by 3 | Viewed by 2276
Abstract
There are a large number of tunnels built in permafrost regions every year in China. When investigating the road tunnels that have been in operation in cold regions, it was found that most of these tunnels have various freezing damages. Therefore, in the [...] Read more.
There are a large number of tunnels built in permafrost regions every year in China. When investigating the road tunnels that have been in operation in cold regions, it was found that most of these tunnels have various freezing damages. Therefore, in the design, construction, operation, and maintenance of tunnels in cold regions, there are still many technical problems that need to be solved urgently. Among them, the problems of heat preservation, anti-freezing, and anti-drainage are the key technical problems to determine whether the tunnels in cold regions are affected by freezing damage. The project was based on the completed highway tunnels in Inner Mongolia. Given a series of special problems faced by the construction and management of tunnels in cold regions, a large number of reference documents were consulted. This paper designed thermal insulation, antifreeze, and anti-drainage technology for tunnels in the cold area of Jinpen Bay. The research in this paper can effectively reduce the probability of the occurrence of tunnel freezing damage, ensure the safety of the long-term operation of the tunnel lining structure, and greatly reduce maintenance costs, which have good economic and social benefits. Full article
Show Figures

Figure 1

19 pages, 12883 KiB  
Article
Spatiotemporal Variations in Fractional Vegetation Cover and Their Responses to Climatic Changes on the Qinghai–Tibet Plateau
by Haoshuang Han, Yunhe Yin, Yan Zhao and Feng Qin
Remote Sens. 2023, 15(10), 2662; https://doi.org/10.3390/rs15102662 - 19 May 2023
Cited by 22 | Viewed by 2731
Abstract
The alpine vegetation of the Qinghai–Tibet Plateau (QTP) is extremely vulnerable and sensitive to climatic fluctuations, making it an ideal area to study the potential impacts of climate on vegetation dynamics. Fractional vegetation cover (FVC) is regarded as one of the key indicators [...] Read more.
The alpine vegetation of the Qinghai–Tibet Plateau (QTP) is extremely vulnerable and sensitive to climatic fluctuations, making it an ideal area to study the potential impacts of climate on vegetation dynamics. Fractional vegetation cover (FVC) is regarded as one of the key indicators in monitoring semiarid and arid ecosystems due to its sensitive responses to vegetation behavior under climatic changes. Although many studies have analyzed the responses of vegetation on the QTP to climatic change, limited information is available on the influence of climatic variables on FVC changes in this area. In this study, we used satellite images and meteorological data to investigate the spatiotemporal variations of FVC during the growing season (FVCGS) during 1998–2018 and evaluated the responses to changes in climatic variables. Results showed that FVCGS displayed an overall fluctuating rise of 0.01/10 a (p < 0.01) over the study period. The FVCGS variation was spatially heterogeneous, with a general trend of greening in the northern and browning in the southern QTP. Obvious correlations were observed between the average FVC, average temperature, and total precipitation of the growing season, with precipitation being the primary controlling factor for vegetation growth. Some regions in the northwestern and northeastern QTP showed greening trends due to the positive influence of precipitation. Some areas in the southwestern QTP experienced browning trends due to water shortages caused, probably, by the weakening of the Indian monsoon. Browning in the southeastern parts was likely caused by drought and permafrost degradation resulting from high temperature. The inconsistent trend of vegetation change on the QTP is relatively high considering the continuous warming and changing atmospheric circulation patterns. FVC in most regions of the QTP has 0–1 month temporal responses to precipitation and temperature. Moreover, the one-month lagged effects of temperature and precipitation had a greater influence on steppe and desert vegetation than on other vegetation types. This research provides new perspectives for understanding the QTP vegetation response to climatic changes and a basis for making reasonable vegetation conservation and management policies. Full article
Show Figures

Graphical abstract

15 pages, 2323 KiB  
Article
Thermal Hazards Evaluation Based on Weight of Evidence Method in the Resource Area of Datong River in Qinghai-Tibetan Plateau
by Shengting Wang, Yu Sheng, Shuming Jia and Yongzhong Ren
Atmosphere 2023, 14(5), 885; https://doi.org/10.3390/atmos14050885 - 18 May 2023
Viewed by 1408
Abstract
With global warming and increasingly frequent human activities in permafrost regions, it is of great significance to accurately and scientifically evaluate the probability and scope of thermal hazards in permafrost regions. Based on remote sensing image interpretation and field survey, the weight of [...] Read more.
With global warming and increasingly frequent human activities in permafrost regions, it is of great significance to accurately and scientifically evaluate the probability and scope of thermal hazards in permafrost regions. Based on remote sensing image interpretation and field survey, the weight of evidence method (WoEM) was used to comprehensively evaluate the risk of thermal hazards in the source area of the Datong River. There were 10 factors, such as ground ice, mean annual ground temperature, mean annual air temperature, and ground soil type etc., selected in the WoEM. The results showed that the thermal hazard occurrences were closely influenced by ground ice, mean annual ground temperature, ground soil type, etc. The thermal hazards mainly occurred in the unstable permafrost with MAGT of –0.5 to –1.5 °C, accounting for 54.72% of the thermal hazards. The distribution area of thermal hazards in ground ice Level I and II accounts for 66.42%. Thermal hazards mainly occur in the soil types of bog soil and sapropel bog soil, accounting for 41.24% and 29.62% of the total thermal hazards area, respectively. Based on the influence factors and WoEM of thermal hazards occurrence, the probability map of thermal hazards occurrence in the source area was obtained. Additionally, the characteristics of the region with a high probability of thermal hazards occurrence and their causes were also comprehensively analyzed. Full article
(This article belongs to the Special Issue Interactions of Atmosphere and Permafrost)
Show Figures

Figure 1

20 pages, 5016 KiB  
Article
Colloids in Thermokarst Lakes along a Permafrost and Climate Gradient of Permafrost Peatlands in Western Siberia Using In Situ Dialysis Procedure
by Rinat M. Manasypov, Artem G. Lim, Ivan V. Kriсkov, Tatiana V. Raudina, Danil G. Kurashev, Liudmila S. Shirokova and Oleg S. Pokrovsky
Water 2023, 15(9), 1783; https://doi.org/10.3390/w15091783 - 6 May 2023
Cited by 6 | Viewed by 2589
Abstract
Thermokarst lakes in the Western Siberian Lowland (WSL) are major environmental factors controlling organic carbon and trace metal storage in inland waters and greenhouse gas emissions to the atmosphere. In contrast to previously published research devoted to lake hydrochemistry, hydrobiology, sedimentary carbon, and [...] Read more.
Thermokarst lakes in the Western Siberian Lowland (WSL) are major environmental factors controlling organic carbon and trace metal storage in inland waters and greenhouse gas emissions to the atmosphere. In contrast to previously published research devoted to lake hydrochemistry, hydrobiology, sedimentary carbon, and processes controlling the lake total dissolved (<0.45 μm) solute composition, the colloidal forms of organic carbon (ОC), and related elements remain poorly known, especially across the permafrost gradient in this environmentally important region. Here we sampled 38 thermokarst lakes in the WSL, from the continuous to the permafrost-free zone, and we assessed both the total (<0.45 μm) and low-molecular-weight (<1 kDa) concentrations of 50 major and trace elements using conventional filtration and in situ dialysis. We aimed at quantifying the relationships between the colloidal content of an element and the lake surface area, permafrost coverage (absent, sporadic, isolated, discontinuous, and continuous), pH, and the concentrations of the main colloidal constituents, such as OC, Fe, and Al. There was a positive correlation between the lake area and the contents of the colloidal fractions of DOC, Ni, rare earth elements (REE), and Hf, which could be due to the enhanced mobilization of OC, trace metals, and lithogenic elements from silicate minerals in the soil porewater within the lake watershed and peat abrasion at the lake border. In all permafrost zones, the colloidal fractions of alkalis and alkaline-earth metals decreased with an increase in lake size, probably due to a decrease in the DOC concentration in large lakes. There was an increase in the colloidal fractions of DOC, Fe, Al, trivalent and tetravalent trace cations, Mn, Co, Ni, As, V, and U from the southern, permafrost-free zone to the northern, permafrost-bearing zones. This observation could be explained by an enhanced feeding of thermokarst lakes by suprapermafrost flow and the thawing of dispersed peat ice in the northern regions. Considering the large permafrost gradient of thermokarst lakes sampled in the present study, and applying a space-for-time substitution approach, we do not anticipate sizable changes in the colloidal status of DOC or major or trace elements upon climate warming and the permafrost boundary shifting northwards. For incorporating the obtained results into global biogeochemical models of OC, metal micronutrients, and toxicant migration in the permafrost regions, one has to consider the connectivity among lakes, soil waters, and rivers. For this, measurements of lake colloids across the main hydrological seasons, notably the winter period, are necessary. Full article
Show Figures

Figure 1

23 pages, 8477 KiB  
Article
Geochemical Features of Ground Ice from the Faddeevsky Peninsula Eastern Coast (Kotelny Island, East Siberian Arctic) as a Key to Understand Paleoenvironmental Conditions of Its Formation
by Anfisa Pismeniuk, Petr Semenov, Alexandra Veremeeva, Wei He, Anna Kozachek, Sergei Malyshev, Elizaveta Shatrova, Anastasiia Lodochnikova and Irina Streletskaya
Land 2023, 12(2), 324; https://doi.org/10.3390/land12020324 - 24 Jan 2023
Cited by 3 | Viewed by 2740
Abstract
Understanding paleoenvironmental conditions of the permafrost formation allows us to estimate the permafrost carbon pool and its behavior upon thawing in a changing climate. In order to classify different types of ground ice and to reconstruct paleoenvironments, we examined geochemical data of ice [...] Read more.
Understanding paleoenvironmental conditions of the permafrost formation allows us to estimate the permafrost carbon pool and its behavior upon thawing in a changing climate. In order to classify different types of ground ice and to reconstruct paleoenvironments, we examined geochemical data of ice wedges (IWs), tabular ground ice (TGI), and lens ice from the eastern coast of the Faddeevsky Peninsula (East Siberian Arctic). We analyzed isotope and ion composition, molecular composition of the gas phase, bulk biogeochemical parameters and dissolved organic matter (DOM) composition in ground ice samples. IWs formed in the Late Pleistocene under the coldest winter conditions and in the Holocene in proximity to the sea. The Holocene IWs have the highest mean d-excess (11–13‰) and a heavier isotope composition by an average of 6‰ compared with the Late Pleistocene IWs. We observe predominance of sea-salt fractions in ion composition of the Holocene IWs, while the Late Pleistocene IW shows enrichment in non-sea-salt component of SO42− (nssSO42−), which is probably associated with mineral leaching of deposits. Higher dissolved organic carbon (DOC) content in the Late Pleistocene IW (to 17.7 mg/L) may indicate more favorable vegetation conditions or lower degree of organic matter mineralization compared to Holocene IWs and TGI. CH4 concentrations were relatively low with a maximum value of 2.27 μmol/L. DOM composition, supposed to record the paleoenvironment of the freezing process, was for the first time tried as a biomarker for paleoenvironmental reconstructions of ground ice formation. Parallel factor (PARAFAC) analysis of EEM (Excitation-Emission matrix) of fluorescent DOM decomposes four components: P1–P3, which are related to allochthonous humic-like constituents, and P4, which is relevant to autochthonous fraction associated with microbial activity. The distribution of fluorescent DOM tracked the variability in both paleoclimate conditions of the IW formation (discriminating the Holocene and the Late Pleistocene IWs) and types of ground ice (IW and TGI), which demonstrates the potential of the used approach. Full article
(This article belongs to the Special Issue Permafrost Landscape Response to Global Change)
Show Figures

Figure 1

19 pages, 18039 KiB  
Article
Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain
by Jie Chen, Jing Zhang, Tonghua Wu, Junming Hao, Xiaodong Wu, Xuyan Ma, Xiaofan Zhu, Peiqing Lou and Lina Zhang
Remote Sens. 2022, 14(19), 5059; https://doi.org/10.3390/rs14195059 - 10 Oct 2022
Cited by 8 | Viewed by 2812
Abstract
The increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very sensitive to climate warming, [...] Read more.
The increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very sensitive to climate warming, slope failures and their kinematics remain barely characterized or understood in these regions. Here, we apply multisource remote sensing and field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred to as “twin landslides”) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau. After failure, there is no obvious change in the area corresponding to the twin landslides. Based on InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of downslope movements during both pre- and post-failure stages suggest that the occurrence and development of the twin landslide are strongly influenced by freeze–thaw processes. Based on meteorological data, we infer that the occurrence of twin landslides are related to extensive precipitation and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer that new slope failure or collapse may occur in the near future, which will probably block the Datong River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms of slopes at the boundaries of permafrost and seasonally frozen ground. Full article
(This article belongs to the Special Issue Remote Sensing for Natural Hazards Assessment and Control)
Show Figures

Figure 1

Back to TopTop