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Abstract: The alpine vegetation of the Qinghai–Tibet Plateau (QTP) is extremely vulnerable and
sensitive to climatic fluctuations, making it an ideal area to study the potential impacts of climate
on vegetation dynamics. Fractional vegetation cover (FVC) is regarded as one of the key indicators
in monitoring semiarid and arid ecosystems due to its sensitive responses to vegetation behavior
under climatic changes. Although many studies have analyzed the responses of vegetation on the
QTP to climatic change, limited information is available on the influence of climatic variables on FVC
changes in this area. In this study, we used satellite images and meteorological data to investigate
the spatiotemporal variations of FVC during the growing season (FVCGS) during 1998–2018 and
evaluated the responses to changes in climatic variables. Results showed that FVCGS displayed
an overall fluctuating rise of 0.01/10 a (p < 0.01) over the study period. The FVCGS variation was
spatially heterogeneous, with a general trend of greening in the northern and browning in the
southern QTP. Obvious correlations were observed between the average FVC, average temperature,
and total precipitation of the growing season, with precipitation being the primary controlling
factor for vegetation growth. Some regions in the northwestern and northeastern QTP showed
greening trends due to the positive influence of precipitation. Some areas in the southwestern QTP
experienced browning trends due to water shortages caused, probably, by the weakening of the
Indian monsoon. Browning in the southeastern parts was likely caused by drought and permafrost
degradation resulting from high temperature. The inconsistent trend of vegetation change on the
QTP is relatively high considering the continuous warming and changing atmospheric circulation
patterns. FVC in most regions of the QTP has 0–1 month temporal responses to precipitation and
temperature. Moreover, the one-month lagged effects of temperature and precipitation had a greater
influence on steppe and desert vegetation than on other vegetation types. This research provides
new perspectives for understanding the QTP vegetation response to climatic changes and a basis for
making reasonable vegetation conservation and management policies.

Keywords: fractional vegetation cover; alpine vegetation; spatiotemporal variations; climatic changes;
partial correlation analyses; Qinghai–Tibet Plateau

1. Introduction

The Qinghai–Tibet Plateau (QTP), also regarded as “The Third Pole”, is the highest
plateau in the world, with an average elevation of >4000 m a.s.l., and its powerful thermal
and topographic forcing mechanisms have profoundly shaped the climate of China and
even the whole of Asia [1–3]. The ecosystem of the QTP is extremely susceptible and
fragile to climatic fluctuations and disturbances, so it is an amplifier for revealing impacts
of climatic changes on alpine ecosystems [4,5]. Since the 1960s, the QTP has warmed
remarkably [2], and its warming rate is more rapid than that of its surrounding regions
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due to its high elevation [1,6,7]. As a result of global climatic changes and anthropogenic
disturbance, the plateau is facing serious ecological and environmental problems, including
decreasing snowpack, glacier retreat [2,8], permafrost degradation [2,9], soil exposure [10],
and pasture degradation and overgrazing [2,11].

Vegetation can be a sensitive monitor in reflecting the ecological and environmental
status of the QTP under climatic changes [4,11]. Monitoring vegetation dynamics of the
QTP is essential for exploring its vegetation change patterns, detecting the impact of global
warming, evaluating alpine ecosystem stability, and formulating sustainable protection and
development measures. Satellite-observed vegetation parameters, i.e., fractional vegetation
cover (FVC), can help evaluate vegetation dynamics on the QTP. FVC is defined as the
ratio of the vertical projection area of vegetation (including leaves, stems, and branches)
on the ground to the total statistical area, which reflects the dense degree of vegetation,
growth condition, and the size of the area for photosynthesis [12]. It can effectively grasp
spatiotemporal variations in vegetation cover in a specific region due to its strong sensitivity
to vegetation behavior [13]. Moreover, climate change can cause changes in vegetation
physiological characteristics, growth rate and growth pattern, which ultimately result in
FVC change [14] The underlying connection between FVC and climate factors [14–16]
indicates that FVC may indirectly reflect climate change. Therefore, the spatiotemporal
change in FVC can effectively reveal the characteristics of vegetation growth dynamics,
monitor drought stress, and evaluate ecosystem quality in a warming world [17,18].

Approaches of estimating FVC consist of field measurements and satellite-based
observations. Field measurements have higher accuracy and spatial resolution but are
limited by cost, discontinuous observation time, and smaller areas. Remote sensing ob-
servations are less costly, can cover large areas, and can be used to estimate FVC over
long periods. Methods for estimating FVC based on remote sensing include empirical
models [13], machine learning methods [19,20], physical methods [21], and pixel unmixing
models (PUMs) [22,23], of which the latter are widely used because of their simplicity and
feasibility. The PUMs assume that every image element on a remotely sensed image is
composed of two or more components, and FVC is calculated through decomposing such
mixed components. The dimidiate pixel model (DPM) is a linear form of PUM, assuming
each image element is the combination of vegetation and non-vegetation components, and
it estimates FVC based on these components [19,22]. The DPM does not require field FVC
data and facilitates regional vegetation monitoring [24].

Temperature and precipitation are two important factors that influence vegetation
growth, and their relationships with vegetation are complex and varied in terms of climate
region, season, and vegetation types [11,25]. For alpine ecosystems like the QTP, tempera-
ture is recognized as a major contributor for vegetation growth [25]. Increasing temperature
has been shown to promote vegetation growth remarkably through prolonging the growing
season and promoting the photosynthesis of plants, particularly in regions with sufficient
moisture [26]. For vegetation, the photosynthetic capacity will improve with rising temper-
ature; however, it will decrease sharply once an optimal temperature is approached because
of accelerating aging and the water imbalance in leaves due to excessive temperature [27].
Climate warming has aggravated the degradation of the extensive permafrost layers on the
QTP and resulted in a reduction in the soil moisture content [4,26].

Precipitation also affects vegetation productivity remarkably at high altitudes of the
QTP, leading to an obvious imbalance between a great rate of warming and a small rate of
vegetation greening [28,29]. It has a certain moderating effect on the vegetation response
to temperature, which provokes vegetation growth in hot and dry zones on the QTP and
limits it in colder and wetter areas [30]. Precipitation aggravates soil erosion to some extent
and diminishes soil organic matter content, thereby decreasing primary productivities [10].

Although many studies have analyzed the responses of vegetation on the QTP to
climatic changes [20,26,30–33], limited information is available on the impacts of climatic
factors on FVC changes on the plateau. The scientific question of how climatic variables
affect spatiotemporal vegetation dynamics on the QTP still needs further clarification. The
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available observational data are extremely limited on the QTP because of the vast area, harsh
wilds, and vulnerability and complexity of alpine ecosystems, restricting deep insights into
long-term vegetation variations on the plateau and their link to climatic changes.

Here, we estimated the FVC of the QTP over a relatively long time interval (1998–2018)
and explored the spatiotemporal pattern of the FVC. Then, we analyzed its responses and
sensitivity to contemporary climate changes. The primary goals were: (1) to evaluate the
spatiotemporal variation trends of the average FVC during the growing season; (2) to
quantitatively assess the effects of temperature and precipitation on QTP vegetation and
their spatial heterogeneities; and (3) to explore the lagged effects of temperature and
precipitation on FVC.

2. Materials and Methods
2.1. Study Area

The QTP (26◦–39◦N, 73◦–104◦E) lies in the southwestern part of China (Figure 1),
covering an area of about 2.54 × 106 km2. It contains the whole territory of Xizang and
Qinghai provinces, along with parts of Xinjiang, Gansu, Sichuan and Yunnan provinces in
China. In addition, its terrain is complex, with extensive mountains, valleys, and basins.

The QTP climate is influenced by the interactive effects of atmospheric circulations (e.g.,
the Indian monsoon and Westerlies) and characterized by insufficient thermal resources,
the uneven spatial distribution of precipitation, and abundant insolation [34]. The average
annual temperature in the study areas varies from −15 ◦C to 10 ◦C, and the average annual
precipitation decreases from >1000 mm in the humid southeastern part to <50 mm in the
arid northwestern part [34]. The vegetation of the QTP corresponds to the hydrothermal
gradient from the southeast to northwest, with broadleaf and coniferous forests growing in
humid southeastern mountains, alpine meadow in the east to mid-east, alpine steppe in
the mid-west to west, and desert spreads in the cold and dry northwestern areas.

Table 1. Ecogeographical regions of the QTP following the definition of Yin et al. [35].

ID Climate Condition Ecogeographical Regions

HIB1 Plateau sub-cold sub-humid Guoluo-Naqu Plateau mountain alpine shrub-meadow region

HIC1 Plateau sub-cold semi-arid Southern Qinghai Plateau and wide valley alpine
meadow-steppe region

HIC2 Plateau sub-cold semi-arid Qiangtang Plateau lake basin alpine steppe region

HID1 Plateau sub-cold arid Kunlun high mountain and plateau alpine desert region

HIIA/B1 Plateau temperate humid/sub-humid Western Sichuan and Eastern Xizang high mountain and deep
valley coniferous forest region

HIIC1 Plateau temperate semi-arid Qilian mountains of eastern Qinghai high mountain and basin
coniferous forest and steppe region

HIIC2 Plateau temperate semi-arid Southern Xizang high mountain and valley shrub-steppe region

HIID1 Plateau temperate arid Qaidam Basin desert region

HIID2 Plateau temperate arid North Kunlun mountain desert region

HIID3 Plateau temperate arid Ngari mountains desert region

HIIIA1 Plateau subtropical humid Southern East Himalayas seasonal rainforest and evergreen
broad-leaved forest region
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Figure 1. (a) Geographic location, vegetation distribution and ecogeographical regions of the QTP and
(b) its terrain information. The detailed definitions of ecogeographical regions are shown in Table 1.

2.2. Data
2.2.1. Normalized Difference Vegetation Index (NDVI) Time Series and Processing

The NDVI shows a linear relationship with FVC and is sensitive to vegetation growth
and spatial distribution [22,36], so it is a common vegetation index in DPMs [18]. The
SPOT-VGT NDVI dataset is reliable in monitoring vegetation change [37], and has been
proven to show higher FVC levels in desert areas [13]. Therefore, this dataset was employed
for the analysis of spatiotemporal variation patterns of FVC on the QTP during 1998–2018
in this study.

The raw dataset (with a 1 km spatial resolution and a 10-day temporal resolution)
(http://www.vito-eodata.be (accessed on 10 May 2022)) was preprocessed at the Flemish
Institute for Technological Research (VITO) with atmospheric correction, geometric correction,
and cloud removal [37]. The compound dataset for 10 days was acquired by using the
maximum value composite (MVC) approach [29]. Monthly and annual NDVI datasets were
also obtained by applying MVC, and pixels having NDVI < 0 were removed for the purpose
of avoiding the influence of soil background.

2.2.2. Meteorological Data

A meteorological dataset developed by the National Tibetan Plateau Data Center [38]
was adopted. The temporal resolution of the dataset was every 3 h and the spatial resolution
was 0.1◦. To enable a comparison with NDVI data, the temperature and precipitation
datasets were resampled to the same spatial resolution by using a bilinear interpolation
method, and their resultant data were integrated into monthly scale during 1998–2018 to
facilitate subsequent analysis. Average temperature and total precipitation of the growing
season (May–September) of each year were adopted.

2.2.3. Vegetation Data

Dominant vegetations present on the QTP include alpine sparse vegetation, desert,
steppe, meadow, shrubland, coniferous forest, and broadleaf forest (Figure 1). The vegeta-
tion cover of the QTP was extracted from the detailed 1: 1,000,000 vegetation map [39].

http://www.vito-eodata.be
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2.2.4. FVC Validation Data

To validate the calculated FVC of this study, a published FVC dataset (with a 250 m
spatial resolution and a 1-month temporal resolution) developed by the National Tibetan
Plateau Data Center [40] was adopted as validation data. The validation data were resam-
pled to the spatial resolution of 1 km by using a bilinear interpolation method to match the
resolution of the FVC dataset of this study.

2.3. Methods
2.3.1. FVC Calculation

The FVC values were calculated by using the DPM. The DPM assumed that the infor-
mation S captured by remote sensing images was only composed of vegetation information
(SV) and soil information (SS) [41]. These components were calculated as below:

S = SV + SS (1)

SV = FVC × Sveg (2)

SS = (1 − FVC) × Ssoil (3)

where Sveg and Ssoil represent pure vegetation and soil pixels, respectively.
Correspondingly, the FVC was calculated as below:

FVC =
S − Ssoil

Sveg − Ssoil
(4)

S can be replaced by vegetation indicators (VIs) to improve the applicability of this
formula [42]. In this case, the SPOT-VGT NDVI dataset was utilized as the VI to estimate
the FVC by using the following equation:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(5)

where NDVIveg and NDVIsoil are regarded as NDVI values of pure vegetation and pure
soil pixels, respectively. They were estimated based on the vegetation NDVI values with
accumulating frequencies of 95% and 5%, respectively. Calculated values of FVC range
from 0 to 1.

We calculated the monthly FVC values of the QTP from 1998 to 2018 and selected the
mean values of monthly FVC from May to September of each year as FVC values of the
growing season, namely, FVCGS.

2.3.2. Trends Analyses

Spatial variation trends of the FVCGS time series were analyzed by applying Theil–Sen
analysis. This is a non-parametric statistical approach and suitable for analyzing trends of
long sequences [43,44]. The formula works as below:

β = Median
(

Xj − Xi

j − i

)
, 1998 ≤ i < j ≤ 2018 (6)

where β is the median of the slope of the FVCGS dataset; Xj and Xi are the FVCGS in years j
and i. If β > 0, the FVCGS displays an increasing trend; if β < 0, the sequence displays a
decreasing trend.
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The Mann–Kendall test, which is a non-parametric test not affected by data distribution
and outliers [45], was adopted to evaluate the significance of the vegetation trend. The
equation works as below:

Z =


S − 1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0
(7)

S = ∑n−1
i=1 ∑n

j=i+1 sign (X j − Xi) (8)

var(S) =
n(n − 1)(2n + 5)

18
(9)

sign
(
Xj − Xi ) =


1, Xj − Xi > 0
0, Xj − Xi = 0
−1, Xj − Xi < 0

(10)

where Xj and Xi are the FVCGS values of years j and i; n is the time span. Given an α

significance level, when |Z| > u(1−α)/2, the FVCGS sequence varies significantly at α

confidence level. For this study, a |Z| higher than 1.96 means a significant FVCGS variation
trend at the 0.05 level, otherwise no significant change is observed.

2.3.3. Hurst Exponent Index

The consistency of the changing trends in sequences can be quantitatively evaluated
with the Hurst exponent index (H), which has been applied in many scientific fields [46].
Rescaled range analysis is a common approach for estimating H [47]. The calculation steps
were as below:

Given {FVCGS (t)} sequence (t = 1, 2, . . . , n), the average sequence of {FVCGS (t)} was
given by:

FVCGS(τ) =
1
τ ∑τ

t=1 FVCGS (τ), τ = 1, 2, . . . , n (11)

The cumulative deviation was expressed as:

X(t, τ) = ∑t
t=1 (FVCGS(t) − FVCGS(τ)), 1 ≤ t ≤ τ (12)

The range sequence was created as:

R(τ) =
max

1 5 t 5 τ
X(t, τ) − min

1 5 t 5 τ
X(t, τ), τ = 1, 2, . . . , n (13)

The standard deviation series was generated as:

S(τ) = [
1
τ ∑τ

t=1 (FVCGS(t) − FVCGS(τ)

)2
]

1
2
, τ = 1, 2, . . . , n (14)

The calculation formula of H was:

R(τ)
S(τ)

= (cτ)H (15)

Wang et al. [46] considered that H has a range of value from 0 to 1, and the H value in
different intervals means different changing trends of time series. In the case of H = 0.5,
the FVCGS series should vary randomly, demonstrating that the change trend in the future
is not associated with that of the past. In the case of H < 0.5, the FVCGS change trend is
anti-consistent, and the lower the H value, the greater the degree of inconsistency. On the
other hand, FVCGS change trends are consistent if H is in the range of 0.5–1, and the higher
the H value, the greater the degree of consistency.
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2.3.4. Multicollinearity Analysis and Sensitivity Analysis

The variance inflation factor (VIF) was used to measure the degree of collinearity
among independent variables. The higher the VIF, the greater the collinearity. A VIF greater
than 10 is generally considered to indicate the presence of severe collinearity.

The standard deviation ratio (StdR) of FVC to climate factors was used to evaluate the
sensitivity of vegetation to climate factors. The StdR was calculated as below:

StdR = Std (FVC)/Std (Climate factor) (16)

where Std (FVC) is the standard deviation of the FVC; Std (Climate factor) refers to the
standard deviation of an individual climate factor (temperature or precipitation). A higher
StdR value indicates a higher sensitivity of FVC to the climate factor.

2.3.5. Partial Correlation Analyses

Partial correlation analyses were applied in assessing correlations between climatic
factors and FVC because they can effectively describe relationships between two vari-
ables while avoiding the interference of remaining variables [44]. The equation of partial
correlation coefficient (PCC) works as below:

Rxy•z =
Rxy − Rxz × Ryz√

(1 − R2
xy) × (1 − R2

yz

) (17)

where Rxy•z is the PCC between variable x and variable y after excluding the influence of
variable z. The PCC ranges from −1 to 1. The significance of the PCC was assessed through
a t-test. Rxy refers to a simple correlation between variable x and variable y. The equation
works as below:

Rxy =
∑n

i=1[(x i − x )(y i − y )]√
∑n

i=1 (x i − x )2
√

∑n
i=1 (y i − y )2

(18)

where xi and yj are the pixel FVCGS of year i and year j; x and y refer to mean values
during this studied period. Similarly, simple correlation between variables x and z (Rxz)
and y and z (Ryz) can be obtained.

2.3.6. Time-Lag Effects Analyses

We calculated the PCC between FVCGS, temperature, and precipitation in the range
of 0–3 months to analyze the lagged effects (lag1: 1-month lagged effect; lag2: 2-month
lagged effect; lag3: 3-month lagged effect). The time scale of the maximum PCC was used
to describe the lagged scale. Previous studies pointed out that vegetation dynamics during
the growing season are clearly affected by the precipitation of other months [8,11]. Thus, we
examined the time-lag effects of temperature and precipitation on vegetation throughout
the whole study interval.

3. Results
3.1. FVCGS Validation

As shown in the density scatter plot (Figure 2), the fitting accuracy of the FVC cal-
culated in this study and the validation dataset during 2000–2018 was high (R2 = 0.92),
which indicates that the calculated FVC in this study is reliable. Moreover, the FVC of this
study was calculated within the QTP, which should be relatively more accurate to reflect
the vegetation in the study region.
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3.2. Analyses of Vegetation Variation Trends
3.2.1. The Temporal Variations of FVCGS

The FVCGS time series reflected the temporal change characteristics of vegetation on
the QTP. The annual FVCGS ranged from 0.36 to 0.42 and displayed an overall fluctuating
rise of 0.01/10 a (0.01 per decade) (p < 0.01) during 1998–2018 (Figure 3a). Before 2005,
the FVCGS values changed between 0.36 and 0.38, and the growth rate was relatively slow.
After 2005, FVCGS increased rapidly and fluctuated greatly. During 2006–2013, the FVCGS
values remained high, except in 2009, and reached a peak in 2012. A rapid decrease trend
occurred until 2018.
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3.2.2. The Spatial Variations and Consistency of FVCGS Trends

The annual average FVCGS values were high in the southeastern QTP, and showed a
decreased trend from the eastern to western areas (Figure 4a). High annual FVCGS values
at the 0.7–1.0 level were mainly distributed in the northeastern to southeastern QTP (e.g.,
HIIC1, HIB1, HIIA/B1, and HIIIA1 ecogeographical regions). The values at the 0–0.3 level
were mainly found in the steppe and desert regions in the western and northwestern QTP
(e.g., HIC2, HID1, HIID1, HIID2, and HIID3).
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Trend analyses indicated that the FVCGS change trends varied with various vegetation
types and regions (Figure 4b and Table 2). Areas showing greening and browning tendency
occupied 45% and 31% of the QTP, respectively. Significant (p < 0.05) greening areas (16%
of the QTP) primarily spread in the northern QTP (e.g., HID1, HIIC1, HIID1, and HIID2).
Significant browning areas (8% of the QTP) largely spread in the middle QTP, where
meadow prevails (e.g., HIB1 and the southern HIC1). Some areas in the southeastern QTP
(e.g., HIIA/B1) also exhibited significant browning trends.
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Table 2. Proportion of trends to the total QTP area (%) in FVCGS, average temperature, and total
precipitation of the growing season during 1998–2018.

Increase Significant Increase (p < 0.05) Decrease Significant Decrease (p < 0.05)

FVCGS 45 16 31 8
Temperature 58 31 31 9
Precipitation 47 7 42 9

In terms of vegetation types, steppe, desert, and alpine sparse vegetation mainly
showed greening trends, with their significant greening areas accounting for 46%, 16%, and
13% of the total significant greening areas, respectively. Meadow, shrubland, and needleleaf
forest showed browning trends, with their significant browning areas accounting for 49%,
11%, and 3% of the total significant browning areas, respectively (Figure 5).
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Regions with H between 0.1 and 0.5 occupied 52% of the whole QTP, and were mostly
located in the eastern and southwestern areas (e.g., HIIC1, HIIA/B1, and HIC2) (Figure 6).
Regions with H between 0.5 and 0.9 accounted for 25%, and most of them were located in
the middle and southern areas (e.g., HIC1 and HIB1). A trend analysis showed that FVCGS
of the mid-northern parts (e.g., the southern HIID1) experienced a continuous increase,
accounting for about 13% of the QTP. The continuous decrease mainly occurred in the
middle areas (e.g., the eastern HIC1), accounting for 10% of the QTP. About 29% of the QTP
experienced a shift from increasing to decreasing, mostly occurring in the northwestern
and northeastern regions (the southern HID1, northeastern HIID1, and southern HIIC1).
By contrast, 16% of the QTP, mainly in the southern areas, experienced a change from
decreasing to increasing (the southern HIC2, HIIC2, and HIIA/B1). The future change
trend of FVCGS on the QTP will show obvious spatial differentiation characteristics.
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3.3. Correlation Analyses of FVCGS with Climatic Variables

Multicollinearity analysis yielded a VIF of 1.16 (<10) between temperature and pre-
cipitation, which indicated that there was no obvious collinearity between the two climate
factors. Therefore, both factors were included in further analyses concerning the vegetation
response to climate change.

Spatially, the correlation analyses between average FVC values and average temper-
ature, and between average FVC and total precipitation of the growing season, varied
greatly (Figure 7).
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during 1998–2018. The inset maps show significant (p < 0.05) positive correlations (red) and negative
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Approximately 46% of the plateau displayed positive correlations between FVCGS and
temperature. Significant positive correlations (p < 0.05) were found in the northwestern
and mid-eastern areas (e.g., HIID3, HIC1, and HIB1), accounting for 4% of the QTP. On the
other hand, areas with negative coefficients accounted for 42% of the QTP. About 5% of the
plateau had significant negative correlations (p < 0.05), which were primarily distributed
in the southwestern areas (e.g., the southern HIC2 and HIIC2). Proportions of positive
and negative relationships of FVCGS and precipitation occupied 49% and 40% of the QTP,
respectively. Precipitation had significant positive impacts on FVCGS in about 6% of the QTP,
mainly in the northeastern and western QTP (e.g., HIC1, HIIC1, HIC2, HID1, and HIID2).
Significantly negative correlations (p < 0.05) between precipitation and FVCGS, occupying
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3% of the QTP, were mainly found in the Hengduan Mountains (the eastern HIIA/B1).
These results showed that FVGGS displayed significant positive correlations (p < 0.05) with
precipitation more frequently than with temperature.

3.4. Lagged Responses of FVC to Climatic Variables

Correlation analyses between climatic variables and FVC within 0–3 months showed
that various vegetation types exhibited distinct temporal reactions to the same climatic
variable (Figure 8), and that the same vegetation also showed different temporal responses
to different climatic variables (Figure 9).
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Lagged effects of temperature on vegetation mostly happened in the western QTP
and southeastern margins of the QTP. Pixels without temporal effects and with lag1 effects
of temperature on vegetation accounted for 41% and 24% of the QTP, respectively. This
proportion was much larger compared with lag2 and lag3 effects. Steppe primarily showed
no temporal effects or lag1 effects, covering 30% and 33% of the steppe areas, respectively.
The temporal effects of temperature on desert vegetation were dominated by lag1 effects,
covering 55% of total desert areas. Other vegetation types were sensitive to the temperature
of current months.

The lagged responses of vegetation to precipitation exhibited a spatial distribution pattern
similar to that of temperature. The no temporal effects and lag1 effects of precipitation on
vegetation were evident, accounting for 36% and 32% of the QTP, respectively. Alpine sparse
vegetation showed no temporal effects or lag1 effects of precipitation, accounting for 35%
and 34%, respectively. The lag1 effects of precipitation were obvious in steppe and desert
vegetation, whereas other vegetation types had no obvious time-lag responses to precipitation.

4. Discussion
4.1. Temporal Variations and Driving Climatic Variables of FVCGS on the QTP

FVCGS generally showed a fluctuating upward trend during 1998–2018, with a rapid
growth after 2005, but a shift from increasing to decreasing trend occurred around 2012
(Figure 3). The temperature and precipitation series showed overall upward trends, which
were consistent with the vegetation change trend. However, their coupling effects may lead
to complex responses of FVCGS dynamics.

Before 2005, vegetation growth on the QTP may have been affected by low temperature,
leading to low FVCGS values and a flat growth trend. By contrast, the temperature rebound
after 2005 may have promoted the rapid increase in FVCGS (Figure 3). Except for climatic
changes, the rapid increase in FVCGS after 2005 may also be associated with changes in
regional ecological policies, e.g., “grassland restoration”, “returning pasture to grass”,
and “ecological migration” [48]. Since 2003, grazing bans and fencing enclosure have
been implemented and promoted on the QTP, which has been conducive to restoring
grassland ecology [49]. For example, fenced grazing was implemented across a large area of
northern Tibet (e.g., the northern HIC2, the southern HID1 and HIID3) during 2004–2012 [50].
However, continuous increases in temperature may increase evapotranspiration and reduce
soil moisture, which can negatively affect alpine vegetation growth [51,52]. This negative
effect should have resulted in the obvious decrease in FVCGS after 2012 (Figure 3).

The decrease in precipitation on the QTP may lead to drought events, which can
deepen the vegetation water stress problem [53]. In this study, particularly low precipita-
tion in individual years was observed (e.g., 2006, 2009, and 2015), which was related to
the El Niño events in 2006, 2009, and 2015 [54]. The QTP may face the risk of drought in
El Niño years, so FVCGS showed relatively low values in 2009 and 2015. An exception was
found in 2006, when low precipitation did not lead to low FVCGS. A possible explanation
is that a larger meltwater supply from snow and glaciers induced by higher temperatures
in this year may have attenuated the pressure of reduced precipitation. The sharp decline
in precipitation in 2015 should have further restrained vegetation greening despite the re-
bound of precipitation thereafter. After 2015, anthropogenic activities (such as overgrazing)
affected vegetation remarkably and may also have caused grassland degradation on the
QTP [52]. Thus, the ameliorating climate conditions after 2015 (overall rising temperature
and precipitation) did not lead to an improvement in vegetation.

4.2. Spatial Patterns and Driving Climatic Variables of FVCGS on the QTP

The FVCGS change on the QTP during 1998–2018 showed obvious spatial heterogeneity
with a general trend of greening in the northern and browning in the southern QTP
(Figure 4b). Wang et al. [51] proposed that vegetation had a general trend of browning in
the southern areas and greening in the northern areas of the QTP during 2000–2015, which
was consistent with the spatial change pattern in this study.



Remote Sens. 2023, 15, 2662 14 of 19

Specifically, most parts of the northeastern and northwestern QTP, which are dom-
inated by steppe and desert, exhibited obvious greening, and the FVCGS values had
significant positive correlations with precipitation (Figures 4b and 7b). Meanwhile, high
StdR values also indicated a high sensitivity of FVCGS to precipitation in these regions
(Figure 10). These regions are arid or semiarid regions with low precipitation, and precipi-
tation is the key factor controlling FVCGS dynamics [4]. During 1998–2018, precipitation
in these regions increased significantly and contributed considerably to the vegetation
greening. Precipitation is also a primary driving factor for the vegetation growth in other
semiarid areas of China. During 1982–2018, Di et al. [55] found that precipitation positively
enhanced the grassland growth in some areas of the northern China which are exposed to
water stress. The low values and large variation range of FVCGS may also contribute to the
increase in FVCGS in the northern QTP [44,56]. Vegetation in the northeastern QTP may
be at risk of browning in the future (Figure 6b). Vegetation in the southern corner of the
northeastern QTP (e.g., the northern HIB1 and northeastern HIC1) may face continuous
degradation. Li et al. [4] hypothesized that the decreased precipitation of the northeastern
QTP caused by the weakened Westerlies may deepen the vegetation degradation trend,
and our results supported this view. Except for climatic influence, vegetation in this region
may be influenced by anthropogenic disturbance, such as overgrazing [53]. However,
vegetation showed a low sensitivity to temperature and precipitation in some regions of
the northern QTP (e.g., the eastern HID1) and was negatively correlated with two climate
factors. The greening of vegetation in these regions may have resulted from the effective
implementation of management policies [49,50]. For instance, the number of livestock in
Qinghai province has decreased remarkably and remained stable since the 1990s [11].
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Vegetation in the middle and southwestern QTP (e.g., the western HIB1, southeastern
HIC2, and northeastern HIIC2) showed significant browning. This browning trend had
positive correlations with precipitation and negative correlations with temperature. During
the study period, the southwestern QTP experienced a significant rise in temperature and a
decline in precipitation (Figure 4c,d). A sensitivity analysis indicated that vegetation in
this region was more sensitive to rising temperature (Figure 10). This finding indicated
that the browning of vegetation in the region was due to water shortage. Rainfalls of the
southwestern QTP are obviously subject to the changing intensity of the Indian monsoon [4].
According to Yao et al. [57], a weakened Indian monsoon during the period 1979–2010
resulted in less precipitation in the southwestern QTP and may have led to the observed
vegetation browning in the region. Li et al. [33] noticed that vegetation of the southwestern
QTP displayed a greening trend with the strengthening of the Indian monsoon during
2010–2018. This study showed a shift from browning to greening in most areas of the
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southwestern QTP during 1998–2018 (Figure 6b), indicating that the Indian monsoon may
have strengthened.

In humid and subhumid regions on the southeastern QTP (e.g., HIB1 and HIIA/B1),
temperature and precipitation both showed negative effects on vegetation growth in most
cases, but precipitation had a more obvious negative influence on vegetation than those
of temperature (Figure 7). However, the sensitivity of vegetation to temperature was
much higher than that of precipitation, so the temperature change had a greater impact on
vegetation growth (Figure 10). Consequently, significantly increased temperature during
the study period in the southeastern QTP (Figure 4c,d) may cause drought problems and
result in a decline in vegetation growth there. Yang et al. [58] proposed that the weakened
East Asian monsoon may have resulted in a decline in precipitation in the southern and
eastern QTP, exacerbating the water shortage in recent decades. According to the anal-
ysis of two drought indices, the southeastern corner on the QTP was revealed to have
become drier than its vicinities during 2000–2015 [51]. Kuang and Jiao [34] demonstrated
that the southeastern part of the QTP has turned warmer and drier over the past half
century. Therefore, further attention should be paid to the characteristics and mechanisms
of vegetation response to drought on the southeastern QTP, and local environmental and
forestry departments should be concerned about the influence of extreme drought events.
Moreover, high temperatures can increase the depth of frozen soil, causing the degradation
of vegetation to varying degrees [59–62]. Yang et al. [63] pointed out that the increase
in the permafrost active layer had negative impacts on meadow growth. These factors
may be responsible for the browning of vegetation in the southeastern QTP. In addition,
urbanization in the central and eastern parts of the QTP developed steadily from 2000 to
2018, and urban land expansion [49] should have negative impacts on vegetation greening.

With the impact of global warming and uneven precipitation, alpine vegetation all over
the world may be faced with a similar water shortage situation as the QTP. It is necessary to
identify the spatial differences in vegetation response to climate factors, and to determine
the primary limiting factor of vegetation growth in alpine ecosystems. This knowledge
should provide the basis for policymakers to adopt properly targeted conservation and
management measures. In addition, alpine ecosystems are vulnerable to the impact of
human activities, and require reasonable conservation and management.

4.3. The Time Response of Vegetation to Climatic Variables

The time scale of vegetation responses to climatic variables is usually below three
on a monthly scale [64,65]. Vegetation growth on the QTP shows obvious responses to
the temperature and precipitation conditions of the previous and current months. By
contrast, the effects with a lag of 2–3 months are much weaker (Figure 8). Lagged effects
of temperature and precipitation occur for various reasons. Vegetation has a certain level
of resistance and resilience to climatic changes, and its stability will remain until climatic
variables exceed the tolerance threshold [44,66]. The water in deep soil, which is crucial
for vegetation growth, takes some time to accumulate and rise to the surface [32,67]. Mo
et al. [68] proposed that the spatial pattern of vegetation dynamics is closely related to soil
moisture storage in previous year in the Horqin Sands.

Vegetation types of the plateau showed different lagged responses to climatic vari-
ables. The time-lag effects of precipitation and temperature affected steppe, alpine sparse
vegetation, and desert vegetation obviously (Figure 9). Vegetation in cold regions has
relatively obvious time-lag responses to temperature [44]. Steppe in semiarid/arid areas
has relatively well-developed root systems and needs more accumulated water (deep soil
moisture) to achieve important changes [69,70]. Desert vegetation also needs to accumulate
enough water to maintain growth due to low soil water content [71,72].

4.4. Limitations

This study focused primarily on the impact of temperature and precipitation on
vegetation, and other driving factors (e.g., solar radiation, wind speed, soil characteristics)
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may also influence vegetation growth on the QTP. The spatial variations of vegetation on
the southeastern QTP showed inconsistent patterns with temperature and precipitation,
suggesting that other factors also affect vegetation growth. Some studies have reported
that solar radiation is becoming increasingly important for vegetation growth on the
southeastern QTP [73,74]. Nevertheless, the impacts of other factors (solar radiation, wind
speed, and soil characteristics) fall out of the scope of this research, and their significance
to vegetation dynamics of the QTP needs further assessment in the future.

In addition, time-lag effects were assessed on a monthly scale in this research, which
was insufficient in detecting shorter time-lags. Future study may improve the understand-
ing of the temporal effect on a daily scale by examining vegetation dynamics at a finer
temporal resolution. It is also noteworthy that, for some areas with complex topography,
the 1 km spatial resolution may lead to information loss and additional uncertainty. How-
ever, high spatial resolution may lead to information redundancy and increased difficulty
in data processing. The spatial resolution of a study should be determined by considering
this trade-off and the main aim of the study.

5. Conclusions

The spatiotemporal variations of the FVCGS on the QTP during 1998–2018 and their cor-
relation and sensitivity with temperature and precipitation were analyzed in this study. This
work represents the first attempt at using FVC to monitor the QTP vegetation dynamics and
their responses to climate change. The findings provide further insights into understanding
the trends of alpine vegetation changes of the QTP over long time scales, and into clarifying
the regional differences in the effects of climate factors on vegetation dynamics.

The FVCGS values were low, and the growth trend was relatively flat due to low
temperatures before 2005. The warmer climate after 2005 led to a rapid increase in FVCGS,
which may also have been influenced by changes in ecological policy. After 2012, FVCGS
decreased to levels similar to those before 2005, probably attributable to composite effects
of multiple climatic factors.

Spatially, areas of the northwestern and northeastern QTP showed greening trends
due to the positive effect of precipitation. Some areas in the southwestern QTP showed
obvious browning trends, probably due to water shortages caused by the weakened Indian
monsoon. The southeastern QTP, dominated by meadow, shrubland, and forest, showed
browning trends that may be attributed to drought and permafrost degradation resulting
from high temperatures.

A relatively high degree of inconsistency was revealed in the trends of future vegetation
changes, probably due to continuous warming and changing atmospheric circulation pat-
terns. Specifically, vegetation in the northeastern QTP may be at risk of browning, whereas
most areas in the southwestern QTP are showing a shift from browning to greening.

The 0–1 month temporal impacts of temperature and precipitation had obvious influ-
ences on vegetation in most areas of the QTP. The responses of steppe and desert ecosystems
to temperature and precipitation lagged by one month. Other vegetation types were more
sensitive to the climatic conditions of current months.

These findings indicate that FVC is a good vegetation indicator in semiarid and
arid regions, and is beneficial for evaluating the spatiotemporal dynamics of alpine
ecosystems. Monitoring the FVC variation on the QTP can provide a reliable surveillance
system for alpine ecosystem dynamics, while exploring the relationship between FVC and
climate factors can form the basis for formulating sustainable vegetation conservation and
management policies. In addition, the browning trend detected in the southeastern QTP
implies the possibility of vegetation degradation with increasing drought risk induced
by continuous global warming, which should attract the attention of policymakers, land
managers, and conservationists.
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