Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = peripheral cholesterol oxygenation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 449 KB  
Article
Association Between Rest–Activity Rhythm and 27-Hydroxycholesterol (27-OH) in Patients with Amnestic Mild Cognitive Impairment (aMCI)
by Seong Jae Kim, Jung Hie Lee, Jae-Won Jang, Minseo Choi and In Bum Suh
J. Clin. Med. 2025, 14(15), 5481; https://doi.org/10.3390/jcm14155481 - 4 Aug 2025
Viewed by 586
Abstract
Background/Objectives: Rest–activity rhythm (RAR) disturbances can contribute to aging and dementia via metabolic dysregulation. Hydroxycholesterol (OH) is thought to mediate the link between hypercholesterolemia and neurodegeneration. This study compared sleep and RAR parameters between amnestic mild cognitive impairment (aMCI) patients and normal [...] Read more.
Background/Objectives: Rest–activity rhythm (RAR) disturbances can contribute to aging and dementia via metabolic dysregulation. Hydroxycholesterol (OH) is thought to mediate the link between hypercholesterolemia and neurodegeneration. This study compared sleep and RAR parameters between amnestic mild cognitive impairment (aMCI) patients and normal controls (NCs), and examined their associations with plasma 27-OH levels, reflecting peripheral cholesterol metabolism. Methods In total, 18 aMCI patients (76.6 ± 6.1 years) and 21 NCs (70.4 ± 6.7 years) underwent five-day actigraphy and dim light melatonin onset assessment. Plasma 27-OH levels were measured via high-performance liquid chromatography-mass spectrometry. Generalized linear models (GLMs) were used to analyze the relationships between sleep, RAR, and 27-OH levels. Results: The aMCI group had significantly lower 27-OH levels and 27-OH/total cholesterol ratios (p < 0.05). GLM revealed that longer sleep onset latency (SOL) was associated with higher 27-OH levels in aMCI, distinguishing them from NCs. Additionally, in aMCI, longer SOL, lower sleep efficiency (SE), and higher fragmentation index (FI) were associated with an increased 27-OH/total cholesterol ratio (p < 0.05). Higher relative amplitude of RAR was linked to lower 27-OH levels across groups (p < 0.01), but RAR parameters showed no significant association with the 27-OH/total cholesterol ratio. Sleep disturbances, including prolonged SOL, reduced SE, and increased FI, were associated with altered peripheral cholesterol oxygenation in aMCI. Conclusions: Greater RAR amplitude correlated with lower 27-OH levels, regardless of cognitive status. These findings suggest that peripheral cholesterol oxygenation in aMCI is related to both sleep disturbances and circadian rhythm dysregulation, highlighting their role in cholesterol metabolism and neurodegeneration. Full article
Show Figures

Figure 1

19 pages, 1586 KB  
Article
The Impact of Weight Loss on Inflammation, Oxidative Stress, and Mitochondrial Function in Subjects with Obesity
by Neus Bosch-Sierra, Carmen Grau-del Valle, Jonathan Hermenejildo, Alberto Hermo-Argibay, Juan Diego Salazar, Marta Garrido, Beatriz Navajas-Porras, Guillermo Sáez, Carlos Morillas and Celia Bañuls
Antioxidants 2024, 13(7), 870; https://doi.org/10.3390/antiox13070870 - 19 Jul 2024
Cited by 12 | Viewed by 4394
Abstract
Inflammation, oxidative stress, and mitochondrial function are implicated in the development of obesity and its comorbidities. The purpose of this study was to assess the impact of weight loss through calorie restriction on the metabolic profile, inflammatory and oxidative stress parameters, and mitochondrial [...] Read more.
Inflammation, oxidative stress, and mitochondrial function are implicated in the development of obesity and its comorbidities. The purpose of this study was to assess the impact of weight loss through calorie restriction on the metabolic profile, inflammatory and oxidative stress parameters, and mitochondrial respiration in an obese population. A total of 109 subjects underwent two cycles of a very low-calorie diet alternated with a low-calorie diet (24 weeks). We analyzed biochemical and inflammatory parameters in serum, as well as oxidative stress markers, mRNA antioxidant gene expression, and mitochondrial respiration in peripheral blood mononuclear cells (PBMCs). After the intervention, there was an improvement in both insulin resistance and lipid profiles, including cholesterol subfractions. Weight loss produced a significant reduction in mitochondrial ROSs content and an increase in glutathione levels, coupled with an enhancement in the mRNA expression of antioxidant systems (SOD1, GSR, and CAT). In addition, a significant improvement in basal oxygen consumption, maximal respiration, and ATP production was observed. These findings demonstrate that moderate weight loss can improve insulin resistance, lipid profiles and subfractions, inflammatory and oxidative stress parameters, and mitochondrial respiration. Therefore, we can affirm that dietary intervention can simultaneously achieve significant weight loss and improve metabolic profile and mitochondrial function in obesity. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

15 pages, 3161 KB  
Article
Glucose and Oxygen Levels Modulate the Pore-Forming Effects of Cholesterol-Dependent Cytolysin Pneumolysin from Streptococcus pneumoniae
by Michelle Salomé Hoffet, Nikola S. Tomov, Sabrina Hupp, Timothy J. Mitchell and Asparouh I. Iliev
Toxins 2024, 16(6), 232; https://doi.org/10.3390/toxins16060232 - 21 May 2024
Cited by 1 | Viewed by 1613
Abstract
A major Streptococcus pneumoniae pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, binding membrane cholesterol and producing permanent lytic or transient pores. During brain infections, vascular damage with variable ischemia occurs. The role of ischemia on pneumolysin’s pore-forming capacity remains unknown. In acute brain [...] Read more.
A major Streptococcus pneumoniae pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, binding membrane cholesterol and producing permanent lytic or transient pores. During brain infections, vascular damage with variable ischemia occurs. The role of ischemia on pneumolysin’s pore-forming capacity remains unknown. In acute brain slice cultures and primary cultured glia, we studied acute toxin lysis (via propidium iodide staining and LDH release) and transient pore formation (by analyzing increases in the intracellular calcium). We analyzed normal peripheral tissue glucose conditions (80 mg%), normal brain glucose levels (20 mg%), and brain hypoglycemic conditions (3 mg%), in combinations either with normoxia (8% oxygen) or hypoxia (2% oxygen). At 80 mg% glucose, hypoxia enhanced cytolysis via pneumolysin. At 20 mg% glucose, hypoxia did not affect cell lysis, but impaired calcium restoration after non-lytic pore formation. Only at 3 mg% glucose, during normoxia, did pneumolysin produce stronger lysis. In hypoglycemic (3 mg% glucose) conditions, pneumolysin caused a milder calcium increase, but restoration was missing. Microglia bound more pneumolysin than astrocytes and demonstrated generally stronger calcium elevation. Thus, our work demonstrated that the toxin pore-forming capacity in cells continuously diminishes when oxygen is reduced, overlapping with a continuously reduced ability of cells to maintain homeostasis of the calcium influx once oxygen and glucose are reduced. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

16 pages, 1122 KB  
Article
Impact of Adherence to the Mediterranean Diet on Antioxidant Status and Metabolic Parameters in NAFLD Patients: A 24-Month Lifestyle Intervention Study
by Maria Magdalena Quetglas-Llabrés, Margalida Monserrat-Mesquida, Cristina Bouzas, Silvia García, Emma Argelich, Miguel Casares, Lucía Ugarriza, Isabel Llompart, Josep A. Tur and Antoni Sureda
Antioxidants 2024, 13(4), 480; https://doi.org/10.3390/antiox13040480 - 17 Apr 2024
Cited by 12 | Viewed by 2901
Abstract
Background: The Mediterranean Diet (MedDiet) is recognized as a healthy dietary pattern. Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive accumulation of fat in the liver. Objectives: To assess the antioxidant status in erythrocytes, plasma, and peripheral blood mononuclear cells (PBMCs) [...] Read more.
Background: The Mediterranean Diet (MedDiet) is recognized as a healthy dietary pattern. Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive accumulation of fat in the liver. Objectives: To assess the antioxidant status in erythrocytes, plasma, and peripheral blood mononuclear cells (PBMCs) of NAFLD patients following a 24-month lifestyle intervention based on the MedDiet. Adult patients (n = 40; aged 40–60 years) diagnosed with NAFLD by magnetic resonance imaging were divided into two groups based on their adherence to the MedDiet. Consumption was assessed using a validated 143-item semiquantitative Food Frequency Questionnaire. Anthropometrics, biochemistry parameters, intrahepatic fat contents (IFC), antioxidants, and inflammatory biomarkers were measured in plasma and erythrocytes before and after the intervention. Results: After the intervention, body mass index (BMI) and plasma levels of total cholesterol, low-density lipoprotein cholesterol (LDL-chol), triglycerides, malondialdehyde (MDA), and cytokeratin-18 (CK18) decreased, and high-density lipoprotein cholesterol (HDL-chol) increased. Participants with high adherence to MedDiet showed lower IFC, hepatic enzyme (AST, ALT, and GGT), glycemia, oxidase LDL (oxLDL) plasma levels, and erythrocyte MDA levels. Higher antioxidant activity (erythrocyte catalase-CAT, superoxide dismutase-SOD, glutathione peroxidase-GPx, glutathione reductase-GRd, and total glutathione-GSH as well as PBMCs-CAT gene expression) was observed in these patients, along with a reduction of PBMCs reactive oxygen species production and Toll-like receptor 4 (TLR4) expression. Inverse associations were observed between adherence to the MedDiet and BMI, glycemia, AST, IFC, and CK18 plasma levels and oxLDL, CAT, SOD, and GRd activities in erythrocytes. A significant linear regression was observed between adherence to the MedDiet and antioxidant score. Conclusions: Adherence to the MedDiet is associated with improved plasma and PBMC antioxidant and inflammatory biomarker profiles and high antioxidant defences in erythrocytes. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Non-Alcoholic Fatty Liver Disease)
Show Figures

Graphical abstract

12 pages, 2865 KB  
Article
In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes
by Tomislav Bulum, Neva Brkljačić, Angelika Tičinović Ivančić, Maja Čavlović, Ingrid Prkačin and Martina Tomić
Biomedicines 2024, 12(2), 381; https://doi.org/10.3390/biomedicines12020381 - 7 Feb 2024
Cited by 2 | Viewed by 1730
Abstract
Type 2 diabetes mellitus (T2DM) significantly increases the risk of peripheral artery disease (PAD), and diabetes is the leading cause of nontraumatic amputations. This study investigated the risk factors for transcutaneous oxygen pressure (TcPO2) in T2DM, a noninvasive method to quantify skin oxygenation [...] Read more.
Type 2 diabetes mellitus (T2DM) significantly increases the risk of peripheral artery disease (PAD), and diabetes is the leading cause of nontraumatic amputations. This study investigated the risk factors for transcutaneous oxygen pressure (TcPO2) in T2DM, a noninvasive method to quantify skin oxygenation and the underlying microvascular circulation. The study included 119 T2DM patients (91 male/28 female). TcPO2 measurements were conducted with the Tina TCM4 Series transcutaneous monitor (Radiometer, Copenhagen, Sweden) and skin electrodes. Patients with TcPO2 < 40 mmHg were younger (p = 0.001), had significantly higher systolic blood pressure (SBP) (p = 0.023), glycated hemoglobin (HbA1c) (p = 0.013), fasting plasma glucose (fPG) (p = 0.038), total cholesterol (p = 0.006), LDL cholesterol (p = 0.004), and had more frequent smoking habits (p = 0.001) than those with TcPO2 ≥ 40 mmHg. The main predictors for the TcPO2 value (R2 = 0.211) obtained via stepwise regression analysis were age, smoking, SBP, HbA1c, fPG, and total and LDL cholesterol. Among all the listed predictors, smoking, HbA1c, and LDL cholesterol were found to be the most significant, with negative parameter estimates of −3.051310 (p = 0.0007), −2.032018 (p = 0.0003), and −2.560353 (p = 0.0046). The results of our study suggest that in association with other risk factors, smoking is the main predictor for lower TcPO2 in T2DM. Full article
(This article belongs to the Special Issue New Advances in Insulin—100 Years since Its Discovery)
Show Figures

Figure 1

15 pages, 1523 KB  
Review
Red Blood Cell Membrane Cholesterol May Be a Key Regulator of Sickle Cell Disease Microvascular Complications
by Eric J. Niesor, Elie Nader, Anne Perez, François Lamour, Renée Benghozi, Alan Remaley, Swee Lay Thein and Philippe Connes
Membranes 2022, 12(11), 1134; https://doi.org/10.3390/membranes12111134 - 11 Nov 2022
Cited by 11 | Viewed by 5421
Abstract
Cell membrane lipid composition, especially cholesterol, affects many functions of embedded enzymes, transporters and receptors in red blood cells (RBC). High membrane cholesterol content affects the RBCs’ main vital function, O2 and CO2 transport and delivery, with consequences on peripheral tissue [...] Read more.
Cell membrane lipid composition, especially cholesterol, affects many functions of embedded enzymes, transporters and receptors in red blood cells (RBC). High membrane cholesterol content affects the RBCs’ main vital function, O2 and CO2 transport and delivery, with consequences on peripheral tissue physiology and pathology. A high degree of deformability of RBCs is required to accommodate the size of micro-vessels with diameters significantly lower than RBCs. The potential therapeutic role of high-density lipoproteins (HDL) in the removal of cholesterol and its activity regarding maintenance of an optimal concentration of RBC membrane cholesterol have not been well investigated. On the contrary, the focus for HDL research has mainly been on the clearance of cholesterol accumulated in atherosclerotic macrophages and plaques. Since all interventions aiming at decreasing cardiovascular diseases by increasing the plasma level of HDL cholesterol have failed so far in large outcome studies, we reviewed the potential role of HDL to remove excess membrane cholesterol from RBC, especially in sickle cell disease (SCD). Indeed, abundant literature supports a consistent decrease in cholesterol transported by all plasma lipoproteins in SCD, in addition to HDL, low- (LDL) and very low-density lipoproteins (VLDL). Unexpectedly, these decreases in plasma were associated with an increase in RBC membrane cholesterol. The concentration and activity of the main enzyme involved in the removal of cholesterol and generation of large HDL particles—lecithin cholesterol ester transferase (LCAT)—are also significantly decreased in SCD. These observations might partially explain the decrease in RBC deformability, diminished gas exchange and tendency of RBCs to aggregate in SCD. We showed that incubation of RBC from SCD patients with human HDL or the HDL-mimetic peptide Fx5A improves the impaired RBC deformability and decreases intracellular reactive oxygen species levels. We propose that the main physiological role of HDL is to regulate the cholesterol/phospholipid ratio (C/PL), which is fundamental to the transport of oxygen and its delivery to peripheral tissues. Full article
(This article belongs to the Special Issue Recent Studies on the Behaviour of Lipid Membranes)
Show Figures

Figure 1

13 pages, 1219 KB  
Article
Cardiac Rehabilitation and Mortality Risk Reduction in Peripheral Artery Disease at 6-Month Outcome
by Razvan Anghel, Cristina Andreea Adam, Ovidiu Mitu, Dragos Traian Marius Marcu, Viviana Onofrei, Mihai Roca, Alexandru Dan Costache, Radu Stefan Miftode, Grigore Tinica and Florin Mitu
Diagnostics 2022, 12(6), 1500; https://doi.org/10.3390/diagnostics12061500 - 20 Jun 2022
Cited by 7 | Viewed by 2919
Abstract
The management of patients with peripheral artery disease (PAD) is integrative and multidisciplinary, in which cardiac rehabilitation (CR) plays a prognostic role in terms of functional status, quality of life, and long-term impact on morbidity and mortality. We conducted a prospective cohort study [...] Read more.
The management of patients with peripheral artery disease (PAD) is integrative and multidisciplinary, in which cardiac rehabilitation (CR) plays a prognostic role in terms of functional status, quality of life, and long-term impact on morbidity and mortality. We conducted a prospective cohort study on 97 patients with PAD admitted to a single tertiary referral center. Based on a prognostic index developed to stratify long-term mortality risk in PAD patients, we divided the cohort into two groups: low and low-intermediate risk group (45 cases) and high-intermediate and high risk group (52 cases). We analyzed demographics, clinical parameters, and paraclinical parameters in the two groups, as well as factors associated with cardiological reassessment prior to the established deadline of 6 months. Obesity (p = 0.048), renal dysfunction (p < 0.001), dyslipidemia (p < 0.001), tobacco use (p = 0.048), and diabetes mellitus (p < 0.001) are comorbidities with long-term prognostic value. Low-density lipoprotein cholesterol (p = 0.002), triglycerides (p = 0.032), fasting glucose (p = 0.011), peak oxygen uptake (p = 0.005), pain-free walking distance (p = 0.011), maximum walking time (p < 0.001), and maximum walking distance (p = 0.002) influence the outcome of PAD patients by being factors associated with clinical improvement at the 6-month follow-up. PAD patients benefit from enrollment in CR programs, improvement of clinical signs, lipid and carbohydrate profile, and weight loss and maintenance of blood pressure profile within normal limits, as well as increased exercise capacity being therapeutic targets. Full article
Show Figures

Figure 1

16 pages, 1190 KB  
Article
Inflammatory and Oxidative Stress Markers Related to Adherence to the Mediterranean Diet in Patients with Metabolic Syndrome
by Maria Magdalena Quetglas-Llabrés, Margalida Monserrat-Mesquida, Cristina Bouzas, Cristina Gómez, David Mateos, Tomàs Ripoll-Vera, Josep A. Tur and Antoni Sureda
Antioxidants 2022, 11(5), 901; https://doi.org/10.3390/antiox11050901 - 1 May 2022
Cited by 29 | Viewed by 4559
Abstract
Metabolic syndrome (MetS) is characterized by increased pro-oxidative stress and a pro-inflammatory state. Several studies emphasized the protective effect of the Mediterranean dietary pattern (MDP). To assess the oxidative and inflammatory state according to the adherence to MDP using biomarkers in patients with [...] Read more.
Metabolic syndrome (MetS) is characterized by increased pro-oxidative stress and a pro-inflammatory state. Several studies emphasized the protective effect of the Mediterranean dietary pattern (MDP). To assess the oxidative and inflammatory state according to the adherence to MDP using biomarkers in patients with MetS. Antioxidant and pro-inflammatory biomarkers were determined in plasma, peripheral blood mononuclear cells (PBMCs), and neutrophils of adults (aged 55–75 years old; 60% women) with MetS living in Mallorca (Spain). Anthropometrics, dietary intake by a validated semi-quantitative 143-item food frequency questionnaire, and a Dietary Inflammatory Index were measured. Patients with low adherence to MDP showed higher levels of glycated haemoglobin A1c and triglycerides, and lower levels of HDL cholesterol. Plasma levels of interleukin-1β, IL-6, IL-15, tumour necrosis factor α, xanthine oxidase, and ghrelin, and activities of superoxide dismutase, and myeloperoxidase were higher in subjects with low adherence to the MDP. Reactive oxygen species production in PBMCs and neutrophils stimulated with lipopolysaccharide was higher in participants with low adherence to the MDP. Patients with MetS and higher adherence to the MDP showed less altered anthropometric parameters, blood biochemical profile, and better oxidative and inflammatory status. Full article
(This article belongs to the Special Issue Frontiers in Oxidative Stress and Metabolic Diseases)
Show Figures

Figure 1

2 pages, 204 KB  
Abstract
A Greater Reduction in Intrahepatic Fat Content after a Lifestyle Intervention Is Related to a Better Inflammatory and Oxidative Status
by Margalida Monserrat Mesquida, Maria Magdalena Quetglas-Llabrés, Sofía Montemayor, Catalina Maria Mascaró, Silvia Tejada, Antoni Pons, Josep A. Tur and Antoni Sureda
Biol. Life Sci. Forum 2022, 12(1), 9; https://doi.org/10.3390/IECN2022-12374 - 14 Mar 2022
Viewed by 1083
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by the excessive accumulation of lipids in the liver parenchyma. To date, there is no effective pharmacological treatment against NAFLD; however, lifestyle modifications, including physical activity and the adoption of healthy eating habits, are [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by the excessive accumulation of lipids in the liver parenchyma. To date, there is no effective pharmacological treatment against NAFLD; however, lifestyle modifications, including physical activity and the adoption of healthy eating habits, are therapeutic approaches against this disease. The aim of this study was to evaluate the relationship between the improvement of the intrahepatic fat content (IFC) in patients with NAFLD and metabolic syndrome and biomarkers of oxidative stress and inflammation after 6 months of lifestyle intervention, which included a hypocaloric diet and the promotion of physical activity. Patients diagnosed with NAFLD (n = 60 adults; 40–60 years old) living in the Balearic Islands, Spain were classified in tertiles according to the improvement of IFC measured by Magnetic Resonance Imaging (MRI). Pro/antioxidant and inflammatory biomarkers were determined in plasma before and after the lifestyle intervention. The greatest improvement in IFC was directly related to a better cardiorespiratory fitness, determined with the Chester step test. Significant greater reductions in weight, body mass index, alanine aminotransferase and triglycerides were observed in the group with the greatest improvement in IFC compared to the one that improved the least after the intervention. No significant differences were detected in glucose, cholesterol and in aspartate aminotransferase. Similarly, the reduction in catalase plasma activity, irisin and cytokeratin 18 levels were significantly higher in the group with the highest degree of IFC reduction, whereas no differences were observed in superoxide dismutase activity and in malondialdehyde and protein carbonyl levels. A progressive decrease in reactive oxygen species production by peripheral blood mononuclear cells activated with lipopolysaccharide was observed after the lifestyle intervention. The present data show that a greater reduction in IFC is related to an improvement in pro/antioxidant and pro-inflammatory status and better cardiorespiratory fitness in NAFLD patients. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Nutrients)
12 pages, 1416 KB  
Article
Peripheral Blood Mononuclear Cells Oxidative Stress and Plasma Inflammatory Biomarkers in Adults with Normal Weight, Overweight and Obesity
by Margalida Monserrat-Mesquida, Magdalena Quetglas-Llabrés, Cristina Bouzas, Xavier Capó, David Mateos, Lucía Ugarriza, Josep A. Tur and Antoni Sureda
Antioxidants 2021, 10(5), 813; https://doi.org/10.3390/antiox10050813 - 20 May 2021
Cited by 17 | Viewed by 4597
Abstract
Background: Obesity is an important pathology in public health worldwide. Obese patients are characterized by higher cardiovascular risk and a pro-inflammatory profile. Objective: To assess the oxidative stress in peripheral blood mononuclear cells (PBMCs) and inflammatory biomarkers in plasma in adults with normal [...] Read more.
Background: Obesity is an important pathology in public health worldwide. Obese patients are characterized by higher cardiovascular risk and a pro-inflammatory profile. Objective: To assess the oxidative stress in peripheral blood mononuclear cells (PBMCs) and inflammatory biomarkers in plasma in adults with normal weight, overweight and obesity. Methods: One hundred and fifty adults (55-80-years-old; 60% women) from the Balearic Islands, Spain, were recruited and classified according to body mass index (BMI). Anthropometric measurements were carried out, fasting blood samples were collected and plasma and PBMCs were obtained. Biochemical parameters, hemogram, antioxidant enzyme activities and protein levels, reactive oxygen species production (ROS), malondialdehyde (MDA), and cytokine (tumour necrosis factor, TNFα, and interleukin 6, IL-6) levels were measured. Results: Glycaemia, triglyceridemia, abdominal obesity, and waist-to-height ratio (WHtR) were higher, and HDL-cholesterol was lower in obese patients. MDA and TNFα plasma levels were higher in the obese compared to normal-weight group, while the levels of IL-6 were higher in both obese and overweight subjects with respect to normal-weight peers. The activities of all antioxidant enzymes in PBMCs as well as the production ROS progressively increased with BMI. The protein levels of catalase in PBMCs were higher in obese and glutathione reductase in obese and overweight subjects compared to normal-weight peers. No other differences were observed. Conclusion: The current results show that overweight and obesity are related to an increase in pro-oxidant and proinflammatory status in plasma and PBMCs. The studied biomarkers may be useful for monitoring the progression/reversal of obesity. Full article
(This article belongs to the Special Issue Oxidative Stress in Liver Diseases)
Show Figures

Graphical abstract

17 pages, 2852 KB  
Article
Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes
by Cristian Vergallo, Elisa Panzarini, Bernardetta Anna Tenuzzo, Stefania Mariano, Ada Maria Tata and Luciana Dini
Molecules 2020, 25(6), 1398; https://doi.org/10.3390/molecules25061398 - 19 Mar 2020
Cited by 6 | Viewed by 3296
Abstract
One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface [...] Read more.
One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface ligand attachment, etc. AgNPs cellular uptake involves different endocytosis mechanisms, including lipid raft-mediated endocytosis. Since static magnetic fields (SMFs) exposure induces plasma membrane perturbation, including the rearrangement of lipid rafts, we investigated whether SMF could increase the amount of AgNPs able to pass the peripheral blood lymphocytes (PBLs) plasma membrane. To this purpose, the effect of 6-mT SMF exposure on the redistribution of two main lipid raft components (i.e., disialoganglioside GD3, cholesterol) and on AgNPs uptake efficiency was investigated. Results showed that 6 mT SMF: (i) induces a time-dependent GD3 and cholesterol redistribution in plasma membrane lipid rafts and modulates gene expression of ATP-binding cassette transporter A1 (ABCA1), (ii) increases reactive oxygen species (ROS) production and lipid peroxidation, (iii) does not induce cell death and (iv) induces lipid rafts rearrangement, that, in turn, favors the uptake of AgNPs. Thus, it derives that SMF exposure could be exploited to enhance the internalization of NPs-loaded therapeutic or diagnostic molecules. Full article
Show Figures

Figure 1

19 pages, 889 KB  
Review
The Role and Function of HDL in Patients with Chronic Kidney Disease and the Risk of Cardiovascular Disease
by Jacek Rysz, Anna Gluba-Brzózka, Magdalena Rysz-Górzyńska and Beata Franczyk
Int. J. Mol. Sci. 2020, 21(2), 601; https://doi.org/10.3390/ijms21020601 - 17 Jan 2020
Cited by 84 | Viewed by 11476
Abstract
Chronic kidney disease (CKD) is a worldwide health problem with steadily increasing occurrence. Significantly elevated cardiovascular morbidity and mortality have been observed in CKD. Cardiovascular diseases are the most important and frequent cause of death of CKD patients globally. The presence of CKD [...] Read more.
Chronic kidney disease (CKD) is a worldwide health problem with steadily increasing occurrence. Significantly elevated cardiovascular morbidity and mortality have been observed in CKD. Cardiovascular diseases are the most important and frequent cause of death of CKD patients globally. The presence of CKD is related to disturbances in lipoprotein metabolism whose consequences are dyslipidemia and the accumulation of atherogenic particles. CKD not only fuels the reduction of high-density lipoprotein (HDL) cholesterol concentration, but also it modifies the composition of this lipoprotein. The key role of HDL is the participation in reverse cholesterol transport from peripheral tissues to the liver. Moreover, HDL prevents the oxidation of low-density lipoprotein (LDL) cholesterol by reactive oxygen species (ROS) and protects against the adverse effects of oxidized LDL (ox-LDL) on the endothelium. Numerous studies have demonstrated the ability of HDL to promote the production of nitric oxide (NO) by endothelial cells (ECs) and to exert antiapoptotic and anti-inflammatory effects. Increasing evidence suggests that in patients with chronic inflammatory disorders, HDLs may lose important antiatherosclerotic properties and become dysfunctional. So far, no therapeutic strategy to raise HDL, or alter the ratio of HDL subfractions, has been successful in slowing the progression of CKD or reducing cardiovascular disease in patients either with or without CKD. Full article
Show Figures

Figure 1

Back to TopTop