Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (149)

Search Parameters:
Keywords = performance analysis of inductor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4616 KiB  
Article
A Novel Wide-Gain-Range Variable-Structure DC/DC Converter Based on an LLC Resonant Converter
by Qingqing He, Shun Tang, Dan Ren, Zhaoyang Tang, Qisheng Zhu, Chao Tang and Keliang Zhou
Energies 2025, 18(14), 3664; https://doi.org/10.3390/en18143664 - 10 Jul 2025
Viewed by 304
Abstract
The LLC resonant converter, as an isolated DC-DC conversion topology, has been widely adopted in industrial applications. However, when operating under wide input/output voltage ranges, a broad switching frequency range is required to achieve the desired voltage gain. This wide frequency variation complicates [...] Read more.
The LLC resonant converter, as an isolated DC-DC conversion topology, has been widely adopted in industrial applications. However, when operating under wide input/output voltage ranges, a broad switching frequency range is required to achieve the desired voltage gain. This wide frequency variation complicates the design of magnetic components, causes loss of soft-switching characteristics, and deteriorates electromagnetic interference (EMI) performance. To address these challenges, this paper presents a detailed analysis of the L-LCLC resonant converter. By controlling the connection/disconnection of additional inductors and capacitors through switching devices, the topology achieves structural reconfiguration to enhance the voltage gain range. Optimal mode transition points are selected to ensure stable operation during mode transitions, thereby reducing design complexity, minimizing transition losses, and suppressing voltage/current stress. The parameter design methodology for the additional reactive components is systematically developed. The converter’s performance is validated with Simulink, and the experimental prototype is established with 100 W. Both simulation and experimental results confirm that the L-LCLC resonant converter achieves a wide voltage gain range within a narrow frequency band while maintaining stable mode transitions. Full article
(This article belongs to the Special Issue Reliability of Power Electronics Devices and Converter Systems)
Show Figures

Figure 1

21 pages, 5304 KiB  
Article
High-Gain Coupled-Inductor Boost Converters Using Voltage-Doubling and Continuous Input Current Design
by Yuliang Ji, Shuai Ji and Yiqi Liu
Electronics 2025, 14(13), 2659; https://doi.org/10.3390/electronics14132659 - 30 Jun 2025
Viewed by 219
Abstract
This paper proposes a family of high-efficiency DC-DC boost converters employing voltage-doubling coupled-inductor technology with a low component count. By varying the homonymous winding connections of the coupled inductor, three topologies are developed: parallel (PWCDVD-CLBC), series (SWCDVD-CLBC), and flipped-parallel (FPWCDVD-CLBC). These converters achieve [...] Read more.
This paper proposes a family of high-efficiency DC-DC boost converters employing voltage-doubling coupled-inductor technology with a low component count. By varying the homonymous winding connections of the coupled inductor, three topologies are developed: parallel (PWCDVD-CLBC), series (SWCDVD-CLBC), and flipped-parallel (FPWCDVD-CLBC). These converters achieve high-voltage gain, continuous input current, and low-voltage stress across components. The PWCDVD-CLBC and FPWCDVD-CLBC configurations exhibit voltage gains proportional to the turn ratio, while the SWCDVD-CLBC shows an inverse relation, enabling reduced turn ratios. Detailed operational principles, mathematical analysis, and performance advantages are presented. A comparative evaluation demonstrates a higher voltage gain, realizes continuous input current, and has lower voltage stresses. The experimental results validate the theoretical analysis and confirm the feasibility and efficiency of the proposed designs. Full article
Show Figures

Figure 1

15 pages, 2620 KiB  
Article
Proposal and Validation of a Pyro Conductor Switch-Based FCL for DC Distribution System Protection
by Il Kwon, Yu-Jin Kwak, Jeong-Cheol Lee and Bang-Wook Lee
Energies 2025, 18(13), 3441; https://doi.org/10.3390/en18133441 - 30 Jun 2025
Viewed by 190
Abstract
With the increasing deployment of DC power systems, particularly in DC distribution systems, there is a growing demand for rapid and effective fault current limiting solutions. Conventional fault current limiters (FCLs) often suffer from limitations in terms of response time, size, and operational [...] Read more.
With the increasing deployment of DC power systems, particularly in DC distribution systems, there is a growing demand for rapid and effective fault current limiting solutions. Conventional fault current limiters (FCLs) often suffer from limitations in terms of response time, size, and operational complexity. As a solution to these challenges, this paper proposes a hybrid FCL based on a pyro conductor switch (PCS), which combines passive limiting elements with an active switching mechanism. The proposed PCS FCL consists of a pyro fuse, an IGBT switch, a limiting inductor, and a damping resistor. Upon fault detection, the IGBT switch is first turned off to initiate current transfer into the limiting branch. Subsequently, the pyro fuse operates by explosively severing the embedded conductor using a pyrotechnic charge, thereby providing galvanic isolation and reinforcing current commutation into a high-impedance path. This operational characteristic enables effective fault current suppression without requiring complex control or real-time sensing. A detailed analysis using PSCAD/EMTDC simulations was conducted to evaluate the current limiting characteristics under fault conditions, and a prototype was subsequently developed to validate its performance. The simulation results were verified through experimental testing, indicating the limiter’s ability to reduce peak fault current. Furthermore, the results demonstrated that the degree of current limitation can be effectively designed through the selection of appropriate current limiting parameters. This demonstrates that the proposed PCS-based FCL provides a practical and scalable solution for improving protection in DC power distribution systems. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

17 pages, 5463 KiB  
Article
The Effect of Forced Melt Flow by a Rotating Magnetic Field and Solid/Liquid Front Velocity on the Size and Morphology of Primary Si in a Hypereutectic Al-18 wt.% Si Alloy
by Dimah Zakaraia, András Roósz, Arnold Rónaföldi and Zsolt Veres
Materials 2025, 18(11), 2581; https://doi.org/10.3390/ma18112581 - 31 May 2025
Viewed by 425
Abstract
Hypereutectic Al-Si alloys containing primary Si exhibit unique material properties that make them suitable for various industrial applications. Understanding the characteristics of primary Si is crucial for predicting the effect of solidification conditions on the microstructure of these alloys. This paper presents a [...] Read more.
Hypereutectic Al-Si alloys containing primary Si exhibit unique material properties that make them suitable for various industrial applications. Understanding the characteristics of primary Si is crucial for predicting the effect of solidification conditions on the microstructure of these alloys. This paper presents a comprehensive characterisation study of primary Si in hypereutectic alloys. This study provides a detailed analysis of the size, distribution, and morphology of primary Si, providing valuable insights into the alloy structure, mechanical properties, and even the performance of the production process. The effect of forced melt flow by a rotating magnetic field (RMF) and solid/liquid front velocity on the size and morphology of primary Si in a hypereutectic Al-18 wt.% Si alloy was investigated. The purpose of using the RMF technique during the solidification process of Al-Si alloys is to enhance the alloy’s microstructure by inducing electromagnetic stirring. The hypereutectic samples were solidified at five different front velocities (0.02, 0.04, 0.08, 0.2, and 0.4 mm/s), under an average temperature gradient (G) of 8 K/mm, in a crystalliser equipped with an RMF inductor. Each sample was divided into two parts: the first solidified without stirring, while the second underwent electromagnetic stirring using RMF at an induction (B) of 7.2 mT. The results revealed that increasing the front velocity during solidification refined the primary Si in stirred and non-stirred parts. In non-stirred parts, it decreased dendritic forms and increased star-like Si, while polyhedral shapes remained nearly constant. Stirred parts showed stable Si morphology across velocities. Higher velocities also promoted equiaxed over elongated Si forms in both parts. Full article
Show Figures

Figure 1

18 pages, 16409 KiB  
Article
Research on the Degradation and Failure Mechanisms of the Unclamped-Inductive-Switching Characteristics of p-GaN HEMT Devices
by Li Liu, Yulu Zhen, Siqiao Li, Bo Pang and Kai Zeng
Micromachines 2025, 16(5), 514; https://doi.org/10.3390/mi16050514 - 27 Apr 2025
Viewed by 462
Abstract
Single UIS and repetitive UIS experiments are performed in this article to expound physical failure mechanisms in P-GaN HEMT devices. Vpeak and Ipeak are used as metrics to evaluate the degradation of electrical parameters. In the single UIS tests, different load [...] Read more.
Single UIS and repetitive UIS experiments are performed in this article to expound physical failure mechanisms in P-GaN HEMT devices. Vpeak and Ipeak are used as metrics to evaluate the degradation of electrical parameters. In the single UIS tests, different load inductors, off-gate voltages, and ambient temperatures are chosen as variables to observe the failure phenomena in the device under test (DUT), while in the repeated UIS tests, the threshold voltage, on-state resistance, blocking characteristics, and gate leakage current degradation and recovery are analyzed, and it is concluded that Vth presents a negative shift, Ron and BV are restored to their initial value, and gate leakage shows a significant reduction at first and then, after a duration of lagging, gradually recovers to some extent, but is unable to achieve its initial value. Combining failure point analysis via decapping with TCAD simulation and validation, it is found that hole trapping and detrapping in the p-GaN region dominate Vth and Igss degradation, while electron traps in the buffer dominate Ron and BV degradation. Full article
Show Figures

Figure 1

33 pages, 1233 KiB  
Review
Silicon Carbide Converter Design: A Review
by Asif Rasul, Rita Teixeira and José Baptista
Energies 2025, 18(8), 2140; https://doi.org/10.3390/en18082140 - 21 Apr 2025
Cited by 1 | Viewed by 1659
Abstract
To achieve lower switching losses and higher frequency capabilities in converter design, researchers worldwide have been investigating Silicon carbide (SiC) modules and MOSFETs. In power electronics, wide bandgap devices such as Silicon carbide are essential for creating more efficient, higher-density, and higher-power-rated converters. [...] Read more.
To achieve lower switching losses and higher frequency capabilities in converter design, researchers worldwide have been investigating Silicon carbide (SiC) modules and MOSFETs. In power electronics, wide bandgap devices such as Silicon carbide are essential for creating more efficient, higher-density, and higher-power-rated converters. Devices like SiC and Gallium nitride (GaN) offer numerous advantages in power electronics, particularly by influencing parasitic capacitance and inductance in printed circuit boards (PCBs). A review paper on Silicon carbide converter designs using coupled inductors provides a comprehensive analysis of the advancements in SiC-based power converter technologies. Over the past decade, SiC converter designs have demonstrated both efficiency and reliability, underscoring significant improvements in performance and design methodologies over time. This review paper examines developments in Silicon carbide converter design from 2014 to 2024, with a focus on the research conducted in the past ten years. It highlights the advantages of SiC technology, techniques for constructing converters, and the impact on other components. Additionally, a bibliometric analysis of prior studies has been conducted, with a particular focus on strategies to minimize switching losses, as discussed in the reviewed articles. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

35 pages, 5603 KiB  
Article
Zero–Average Dynamics Technique Applied to the Buck–Boost Converter: Results on Periodicity, Bifurcations, and Chaotic Behavior
by Diego A. Londoño Patiño, Simeón Casanova Trujillo and Fredy E. Hoyos
Energies 2025, 18(8), 2051; https://doi.org/10.3390/en18082051 - 16 Apr 2025
Viewed by 293
Abstract
This study addresses chaos control in a Buck–Boost converter using ZAD technique and FPIC. The system analysis identified 1-periodic orbits and observed the occurrence of flip bifurcations, indicating chaotic behavior characterized by sensitivity to initial conditions. To mitigate these instabilities, FPIC was successfully [...] Read more.
This study addresses chaos control in a Buck–Boost converter using ZAD technique and FPIC. The system analysis identified 1-periodic orbits and observed the occurrence of flip bifurcations, indicating chaotic behavior characterized by sensitivity to initial conditions. To mitigate these instabilities, FPIC was successfully applied, stabilizing periodic orbits and significantly reducing chaos in the system. Numerical simulations verified the presence of chaos, confirmed by positive Lyapunov exponents, and demonstrated the effectiveness of the applied control methods. Steady-state and transient responses of the open-loop model and experimental system were evaluated, showing a strong correlation between them. Under varying load conditions, the numerical model accurately predicted the converter’s real dynamics, validating the proposed approach. Additionally, closed-loop control with ZAD exhibited robust performance, maintaining stable inductor current even during abrupt load changes, thus achieving effective control in non-minimum phase systems. This work contributes to the design of robust control strategies for power converters, optimizing their stability and dynamic response in applications that require precise management of power under variable conditions. Finally, a comparison was made between the performance of the Buck–Boost converter controlled with ZAD and the one controlled by PID. It was observed that both controllers effectively regulate the current, with a steady-state error of less than 1%. However, the system controlled with ZAD maintains a fixed switching frequency, whereas the PID-controlled system lacks a fixed switching frequency and operates with a very high PWM frequency. This high frequency in the PID-controlled system presents a disadvantage, as it leads to issues such as chattering, duty cycle saturation, and consequently, overheating of the MOSFET. Full article
Show Figures

Figure 1

25 pages, 12753 KiB  
Article
Fractional-Order Modeling and Control of HBCS-MG in Off-Grid State
by Yingjie Ding, Xinggui Wang, Lingxia Zhao, Hailiang Wang and Jinjian Li
Fractal Fract. 2025, 9(4), 202; https://doi.org/10.3390/fractalfract9040202 - 26 Mar 2025
Viewed by 323
Abstract
Half-bridge converter series microgrid (HBCS-MG) is susceptible to a variety of uncertainties and disturbances during operation, and therefore, the use of the traditional integer-order models cannot accurately reflect the effects of environmental variations on internal components of the off-grid system, such as converters, [...] Read more.
Half-bridge converter series microgrid (HBCS-MG) is susceptible to a variety of uncertainties and disturbances during operation, and therefore, the use of the traditional integer-order models cannot accurately reflect the effects of environmental variations on internal components of the off-grid system, such as converters, filters, and loads, including factors like time delays, memory effects, and multi-scale coupling. The fractional-order control method is better equipped to deal with these disturbances, thereby enhancing the robustness and stability of the system. In the off-grid state, a fractional-order PI (FOPI) controller is employed for double-closed-loop control, and the load voltage feedforward control is utilized to offset the impact of load voltage fluctuations on the system. A new simplified equivalent circuit calculation method for the fractional-order inductor is proposed, and a complete fractional mathematical model of the system in the dq rotating coordinate system is established to obtain the transfer function between the load voltage and the input voltage. Furthermore, the impact of the fractional-order variation of the FOPI controllers and the fractional elements on system performance in the frequency domain and time domain is described in detail. The simulation results are compared with the theoretical analysis to demonstrate the accuracy of the mathematical model. The overshoot of the load voltage at the switching instant of 0.7 s is reduced by 4.2% compared with the integer-order PI controller, which proves that the fractional-order controller can improve the system control accuracy. Full article
Show Figures

Figure 1

17 pages, 3547 KiB  
Article
Optimization of Passive Damping for LCL-Filtered AC Grid-Connected PV-Storage Integrated Systems
by Yue Zhang, Chenchen Song, Tao Wang and Kai Wang
Electronics 2025, 14(4), 801; https://doi.org/10.3390/electronics14040801 - 19 Feb 2025
Cited by 2 | Viewed by 995
Abstract
This paper conducts an in-depth study on the application of inductor-capacitor-inductor (LCL) filters in grid-connected photovoltaic (PV) inverters. First, the resonance issues associated with LCL filters are analyzed, and solutions are discussed, with a focus on the implementation of passive damping strategies. Various [...] Read more.
This paper conducts an in-depth study on the application of inductor-capacitor-inductor (LCL) filters in grid-connected photovoltaic (PV) inverters. First, the resonance issues associated with LCL filters are analyzed, and solutions are discussed, with a focus on the implementation of passive damping strategies. Various passive damping schemes, based on the placement of resistors (R), are compared and analyzed, ultimately selecting the capacitor branch series resistor as the optimal solution. During the design process, multiple parameters, such as total inductance, inverter-side inductance, grid-side inductance, capacitance, and damping resistors, are considered in light of their mutual constraints. Detailed analysis and optimization of these parameters are performed based on steady-state operation, current ripple, and power loss limitations. Finally, it is concluded that the passive damping solution using a series resistor in the capacitor branch meets the requirements for stable operation and efficient filtering. The optimal solutions are identified as R1 = 0, R2 = ∞, R3 ≠ 0, and R4 = ∞, providing a reliable and effective filtering solution for grid-connected PV inverter systems. Full article
(This article belongs to the Special Issue Technology and Approaches of Battery Energy Storage System)
Show Figures

Figure 1

29 pages, 7650 KiB  
Article
Optimal Control Study of CCM SITO Buck Converter Based on Objective Holographic Feedback
by Jiyong Li, Hao Dong, Peiwen Chen and Pengcheng Zhou
Electronics 2025, 14(4), 717; https://doi.org/10.3390/electronics14040717 - 12 Feb 2025
Viewed by 524
Abstract
With the rapid development of new energy sources, distributed power supplies are widely used in DC microgrid systems. The DC–DC converter, as the hub for transmitting energy between the distributed power supply and the DC bus, plays an important role in the stability [...] Read more.
With the rapid development of new energy sources, distributed power supplies are widely used in DC microgrid systems. The DC–DC converter, as the hub for transmitting energy between the distributed power supply and the DC bus, plays an important role in the stability of the whole system performance. Due to the complexity of the actual working environment, the DC bus voltage is often affected by uncertainties such as fluctuations of distributed power supply and random changes in load, so the reliability of DC–DC converters is increasingly required, and it is difficult for traditional linear controllers to ensure that a DC–DC converter operates stably over a wide range. In order to solve this problem, this paper takes the Single-Inductor Triple-Output (SITO) Buck converter, which represents the multi-input and multi-output system, as the research object, analyzes the respective operating characteristics and control difficulties, and proposes Objective Holographic Feedback Nonlinear Control (OHFNC) to improve the stability of the research system. The optimal control based on objective holographic feedback is proposed to address the cross-influence factors between the multiple output branches of the Buck converter and the inability of accurate feedback linearization. Finally, the validity of the model and theoretical analysis is verified by simulation and experimental results. Full article
Show Figures

Figure 1

31 pages, 6043 KiB  
Review
Low-Loss Soft Magnetic Materials and Their Application in Power Conversion: Progress and Perspective
by Weiwang Wang, Jiaqi Fan, Changshen Li, Yue Yu, Anding Wang, Shengtao Li and Jinjun Liu
Energies 2025, 18(3), 482; https://doi.org/10.3390/en18030482 - 22 Jan 2025
Cited by 1 | Viewed by 2631
Abstract
Amorphous and nanocrystalline alloys, as novel soft magnetic materials, can enable high efficiency in a wide range of power conversion techniques. Their wide application requires a thorough understanding of the fundamental material mechanisms, typical characteristics, device design, and applications. The first part of [...] Read more.
Amorphous and nanocrystalline alloys, as novel soft magnetic materials, can enable high efficiency in a wide range of power conversion techniques. Their wide application requires a thorough understanding of the fundamental material mechanisms, typical characteristics, device design, and applications. The first part of this review briefly overviews the development of amorphous and nanocrystalline alloys, including the structures of soft magnetic composites (SMCs), the key performance, and the underlying property-structure correction mechanisms. The second part discusses three kinds of high-power conversion applications of amorphous and nanocrystalline alloys, such as power electronics transformers (PETs), high-power inductors, and high-power electric motors. Further detailed analysis of these materials and applications are reviewed. Finally, some critical issues and future challenges for material tailoring, device design, and power conversion application are also highlighted. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

16 pages, 5952 KiB  
Article
Hardware Design for Cascade-Structure, Dual-Stage, Current-Limiting, Solid-State DC Circuit Breaker
by Can Ding, Yinbo Ji and Zhao Yuan
Appl. Sci. 2025, 15(1), 341; https://doi.org/10.3390/app15010341 - 1 Jan 2025
Viewed by 890
Abstract
Solid-state DC circuit breakers provide crucial support for the safe and reliable operation of low-voltage DC distribution networks. A hardware topology based on a cascaded structure with dual-stage, current-limiting, small-capacity, solid-state DC circuit breakers has been proposed. The hardware topology uses a series–parallel [...] Read more.
Solid-state DC circuit breakers provide crucial support for the safe and reliable operation of low-voltage DC distribution networks. A hardware topology based on a cascaded structure with dual-stage, current-limiting, small-capacity, solid-state DC circuit breakers has been proposed. The hardware topology uses a series–parallel configuration of cascaded SCR (thyristors) and MOSFETs (metal oxide semiconductor field-effect transistors) in the transfer branch, which enhances the breaking capacity of the transfer branch. Additionally, a secondary current-limiting circuit composed of an inductor and resistor in parallel is integrated at the front end of the transfer branch to effectively improve the current-limiting performance of the circuit breaker. Meanwhile, a dissipation branch is introduced on the fault side to reduce the energy consumption burden on surge arresters. For the power supply system of the hardware part, a capacitor-powered method is adopted for safety and efficiency, with a capacitor switch serially connected to the capacitor power supply for high-precision control of the power supply. Current detection branches are introduced into each branch to provide conditions for the on–off control of semiconductor switching devices and experimental data analysis. The high-frequency control of semiconductor devices is achieved using optocoupler signal isolation chips and high-speed drive chips through a microcontroller STM32. Simulation verification based on MATLAB/SIMULINK software and experimental prototype testing have been conducted, and the results show that the hardware topology is correct and effective. Full article
Show Figures

Figure 1

12 pages, 5022 KiB  
Article
Dual-Loop Constant Voltage Regulation in Wireless Power Transfer Systems Using Phase-Shift and Duty Cycle Modulation
by Zhiheng Zhao and Jinhong Sun
Electronics 2024, 13(24), 4920; https://doi.org/10.3390/electronics13244920 - 13 Dec 2024
Viewed by 841
Abstract
This study investigates the single transmitter and single receiver (STSR) with dual-output capability. This methodology utilizes dual half-wave rectification. Initially, the system topology of the STSR multi-channel voltage output is presented with the inductor-capacitor-capacitor-series (LCC-S) compensation topology, followed by an in-depth analysis of [...] Read more.
This study investigates the single transmitter and single receiver (STSR) with dual-output capability. This methodology utilizes dual half-wave rectification. Initially, the system topology of the STSR multi-channel voltage output is presented with the inductor-capacitor-capacitor-series (LCC-S) compensation topology, followed by an in-depth analysis of its double-channel voltage output characteristics. Through detailed analysis and empirical validation, the system is shown to maintain high efficiency and stable performance, making it well-suited for applications demanding reliable dual-voltage outputs under dynamic conditions. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

25 pages, 18988 KiB  
Article
A Robust Controller for a Novel Single-Switch Non-Isolated Converter with Low-Order Ripples for Electric Vehicle Chargers
by V. Rajeswari and Nalin Kant Mohanty
Sustainability 2024, 16(23), 10463; https://doi.org/10.3390/su162310463 - 28 Nov 2024
Viewed by 970
Abstract
High-efficiency non-isolated converters play a predominant role in electric vehicle on-board chargers to enhance the sustainability of EV charging stations. A novel single-switch configuration connected in a new parallel structure offering a higher efficiency than recently reported topologies is introduced in this article. [...] Read more.
High-efficiency non-isolated converters play a predominant role in electric vehicle on-board chargers to enhance the sustainability of EV charging stations. A novel single-switch configuration connected in a new parallel structure offering a higher efficiency than recently reported topologies is introduced in this article. A PV source powered single switch–switched capacitor–single inductor (SS–SC–SL) arrangement employing an intelligent, robust controller (MPC) is proposed to build a sustainable framework for electric vehicles. Notable features of this topology include improved voltage regulation, a high output gain, and maintaining a ripple-free continuous load current at a nominal duty cycle range which is commonly applicable for electric vehicle on-board chargers. In addition, several factors are included, as follows: design considerations, theoretical analysis, converter performance in CCM, and comparison with existing configurations. The converter simulation results are executed using the MATLAB software 2022a, and to verify the system performance, an experimental setup of 150 W is built and tested. The hardware results of a higher efficiency at 96.9% and a ripple-less continuous load current are achieved and validated in the laboratory. Full article
Show Figures

Figure 1

23 pages, 5702 KiB  
Article
Fault Detection Algorithms in Medium-Voltage Direct-Current (MVDC) Grids
by Aitor Blázquez, María José Pérez-Molina, Dunixe Marene Larruskain, Araitz Iturregi and Pablo Eguia
Appl. Sci. 2024, 14(23), 11052; https://doi.org/10.3390/app142311052 - 27 Nov 2024
Cited by 3 | Viewed by 1320
Abstract
Developing reliable protection systems is critical for the advancement of medium-voltage direct-current (MVDC) grids. This paper highlights the significance of fault detection in MVDC grids, especially in ensuring the reliability and efficiency of renewable energy systems. This paper provides a comparative analysis of [...] Read more.
Developing reliable protection systems is critical for the advancement of medium-voltage direct-current (MVDC) grids. This paper highlights the significance of fault detection in MVDC grids, especially in ensuring the reliability and efficiency of renewable energy systems. This paper provides a comparative analysis of fault detection algorithms, including overcurrent, undervoltage, rate of change of current (ROCOC), rate of change of voltage (ROCOV), differential, and inductor voltage derivative methods. The performance of these algorithms is quantified by metrics such as the detection speed, accuracy, and sensitivity under diverse scenarios. The authors assess these algorithms within a multi-terminal MVDC grid designed for renewable hydrogen production, evaluating the detection speed across various fault types (bus and link faults) and conditions, including the variation in the fault location and resistance. The results reveal that the UV, ROCOC, ROCOV and LIVRD methods achieve detection speeds as high as 0.01 ms, outperforming other techniques under low-resistance fault conditions. By using uniform fault scenarios, we identify the most effective algorithms for rapid fault detection, aiming to enhance the protection strategies for MVDC grids. These findings underline critical performance differences between methods, guiding the design of tailored protection schemes that address specific fault challenges in renewable-powered grids. Additionally, the practical implications of these findings for designing resilient protection schemes in renewable-powered grids are discussed. Simulations are conducted using PSCAD/EMTDC V4.6 software, ensuring the consistency and accuracy of the performance comparison. The insights gained provide a concrete understanding of each algorithm’s trade-offs, enabling informed decisions when selecting optimal fault detection methods to ensure MVDC grid reliability. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop