Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = perforated tile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2211 KiB  
Article
Physico-Mechanical Performances of Mortars Prepared with Sorted Earthquake Rubble: The Role of CDW Type and Contained Crystalline Phases
by Antonio Galderisi, Miguel Bravo, Gianluca Iezzi, Giuseppe Cruciani, Eleonora Paris and Jorge de Brito
Materials 2023, 16(7), 2855; https://doi.org/10.3390/ma16072855 - 3 Apr 2023
Cited by 7 | Viewed by 2223
Abstract
Construction and demolition waste (CDW) from earthquake rubbles was used here as recycled aggregates (RA) in cementitious binders. The materials were sorted in six groups: concrete (CO), natural stone (NS), tile (TI), brick (BR), perforated brick (PF) and roof tile (RT). The abundance [...] Read more.
Construction and demolition waste (CDW) from earthquake rubbles was used here as recycled aggregates (RA) in cementitious binders. The materials were sorted in six groups: concrete (CO), natural stone (NS), tile (TI), brick (BR), perforated brick (PF) and roof tile (RT). The abundance (wt.%) of crystalline phases in each RA type was determined by X-ray Powder Diffraction (XRPD). Each group of RAs was used alone (100 wt.% of RA) and mixed with quartz-rich virgin aggregates (VA) to prepare 13 types of mortars (12 specimens per type): one reference mortar (RM) with only VA, six recycled aggregate mortars (RAM) and six recycled-plus-virgin aggregate mortars (RVAM). The physical and mechanical properties of aggregates and mortars reflect the type and abundance of crystalline phases in each CDW group. Recycled mortars rich in concrete, natural stones and tiles have better mechanical performance than mortars prepared with recycled bricks, perforated bricks and roof tiles. For each RA, RVAMs have superior mechanical characteristics than the corresponding RAM. Since the type and amount of phases contained in recycled aggregates strongly control the mechanical performance of new construction materials, they should be routinely quantified as reported here, in addition to other physical features (water absorption, density, etc.). The separation of heterogeneous CDW into homogeneous RA groups is necessary for the production of new construction materials with stable and predictable performances to ensure CDW recycling, especially in areas hit by major adverse events, where large amounts of still valuable materials could be used for reconstruction processes. Full article
Show Figures

Figure 1

25 pages, 5074 KiB  
Review
Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review
by Sijun Xu, Hua Zhang and Zilong Wang
Energies 2023, 16(3), 1279; https://doi.org/10.3390/en16031279 - 25 Jan 2023
Cited by 37 | Viewed by 8352
Abstract
The thermal management and reduction of energy consumption in cooling systems have become major trends with the continued growth of high heat dissipation data centers and the challenging energy situation. However, the existing studies have been limited to studying the influences of individual [...] Read more.
The thermal management and reduction of energy consumption in cooling systems have become major trends with the continued growth of high heat dissipation data centers and the challenging energy situation. However, the existing studies have been limited to studying the influences of individual factors on energy saving and thermal management and have not been systematically summarized. Thus, this paper reviews the key factors in achieving thermal management and reducing energy consumption in each cooling system, the corresponding research, and optimization methods. To achieve these goals, in this paper, literature surveys on data center cooling systems are investigated. For data center air cooling, thermal management is mainly related to the uniform distribution of hot and cold air. Adjusting the porosity of perforated tiles can reduce energy consumption. For liquid cooling and free cooling systems, climate conditions, cooling system structural design, coolant type, and flow rate are key factors in achieving thermal management and reducing energy consumption. This paper provides the power usage effectiveness (PUE) values of the cooling systems in some cases. A summary of the key factors can provide directions for research on thermal management and energy reduction, and a summary of previous research can provide a basis for future optimization. Full article
(This article belongs to the Section G2: Phase Change Materials for Energy Storage)
Show Figures

Figure 1

21 pages, 3520 KiB  
Article
Efficient Recovery of Solid Waste Units as Substitutes for Raw Materials in Clay Bricks
by Ioannis Makrygiannis and Athena Tsetsekou
Recycling 2022, 7(5), 75; https://doi.org/10.3390/recycling7050075 - 17 Oct 2022
Cited by 6 | Viewed by 3554
Abstract
The advent of new materials and technologies in building materials has changed the way of building. New lighter materials with easier application methods and improved mechanical behaviors, have become necessary for the market. Moreover, the new environmental policy (2022) aims to transform the [...] Read more.
The advent of new materials and technologies in building materials has changed the way of building. New lighter materials with easier application methods and improved mechanical behaviors, have become necessary for the market. Moreover, the new environmental policy (2022) aims to transform the waste management into sustainable materials management to ensure the long-term protection and improvement of the environment. For the brick and tile industry, raw materials and the additives that compose the product mixture seem to be a key factor in this direction. Furthermore, every product type (solid or perforated brick) requires different additives to achieve the properties that are postulated by the international standards. For the study, the wide range of additives that were used have been assorted into three (3) categories: the inert materials, the lightweight materials, and the industrial remains. Totally, eight (8) different materials were used as additives into ceramic mass, in different proportions each time. Almost all additives used for this research were pore-forming agents. These burn out almost completely before reaching the full-fire temperature, and do not change the fired body. As a result of additives burnt out, the necessary pore volume is formed in the fired brick body, which, if combined with an appropriate percentage of voids, result in raw density readings. The pore structure is significant as long as the ultimate strength of lightweight bricks is acceptable. In this study, additives between 3 and 25% by weight were added to the clay mixture. The extrusion of specimens in solid form was carried out using the Laboratory’s vacuum press. Firstly, the extrusion of specimens from the original raw material was implemented. Secondly, it was made on the material mixed with the additives mentioned above. A series of experimental activities were followed to determine the variations of the mechanical and physical properties as well as their production procedures (extrusion, drying, and firing). According to five (5) key properties measured in the current study and compared with the mixture without additives, it was found that the variation in thermal conductivity improvement is between -11% and 19%. The bending strength of the fired products showed a decrease from 16% to 55% except for the addition of bauxite residue, which increased the strength by 8%. Bigot drying sensitivity decreased from 11% to 27%. The density in two cases increased from 2% to 7% while in the majority the mixtures with the additives showed a decrease in density from 1% to 14%. Finally, the addition of the necessary water for shaping during extrusion showed a variation from a 10% decreased to a 14% increased water. Full article
(This article belongs to the Special Issue Sustainable Materials from Waste and Renewable Sources)
Show Figures

Figure 1

9 pages, 3393 KiB  
Article
Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices
by Atsushi Eda, Hiroki Yasuga, Takashi Sato, Yusuke Sato, Kai Suto, Tomohiro Tachi and Eiji Iwase
Micromachines 2022, 13(6), 907; https://doi.org/10.3390/mi13060907 - 8 Jun 2022
Cited by 17 | Viewed by 4511
Abstract
A self-folding method that can fold a thick (~10 μm) metal layer with a large curvature (>1 mm−1) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show [...] Read more.
A self-folding method that can fold a thick (~10 μm) metal layer with a large curvature (>1 mm−1) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show strong potential for application in stretchable electronic devices. There are, however, two key difficulties in applying origami/kirigami methods to stretchable electronic devices. The first is that a thick metal layer used as the conductive layer of electronic devices is too hard for self-folding as it is. Secondly, a thick metal layer breaks on repetitive folding deformation at a large curvature. To overcome these difficulties, this paper proposes a self-folding method using hinges on a thick metal layer by applying a meander structure. Such a structure can be folded at a large curvature even by weak driving forces (such as those produced by self-folding) and has mechanical resistance to repetitive folding deformation due to the local torsional deformation of the meander structure. To verify the method, the large curvature self-folding of thick metal layers and their mechanical resistance to repetitive folding deformation is experimentally demonstrated. In addition, an origami/kirigami hybrid stretchable electronic device with light-emitting diodes (LEDs) is fabricated using a double-tiling structure called the perforated extruded Miura-ori. Full article
Show Figures

Figure 1

20 pages, 5152 KiB  
Article
Exploring a Climate Gradient of Midwestern USA Agricultural Landscape Runoff Using Deuterium (δD) and Oxygen-18 (δ18O)
by Lu Zhang, Joe Magner and Jeffrey Strock
Water 2022, 14(10), 1629; https://doi.org/10.3390/w14101629 - 19 May 2022
Cited by 2 | Viewed by 1986
Abstract
Intensive agricultural activities have altered the hydrology of many Midwestern USA landscapes. Drain tiles (subsurface corrugated and perforated flexible tubing) has changed how and when water is discharged into the streams. Stable isotopes of oxygen (oxygen-18) and hydrogen (deuterium) were used to investigate [...] Read more.
Intensive agricultural activities have altered the hydrology of many Midwestern USA landscapes. Drain tiles (subsurface corrugated and perforated flexible tubing) has changed how and when water is discharged into the streams. Stable isotopes of oxygen (oxygen-18) and hydrogen (deuterium) were used to investigate hydrologic characteristics of three intensively managed agricultural landscapes in southern Minnesota (MN) and South Dakota (SD). Monthly δD and δ18O samples were collected across a climatic gradient from March 2016 to March 2018. Local meteoric water lines were established for the comparison of precipitation and evaporation magnitude from different sources at each location. These included vadose zone, phreatic zone, deep groundwater, tile drain, and river source waters. Two end-member hydrograph separation was performed at each site on selected dates to partition the shallow groundwater tile drainage contribution to streamflow. A lumped parameter modeling approach was applied to each dataset to investigate the mean transit time of water through different zones. Local meteoric water lines demonstrated differences in isotopic signatures due to the climate gradient to show the impact of low humidity and less rainfall. The hydrograph separation results showed that, from west South Dakota to eastern Minnesota, tile drains contributed about 49%, 64%, and 50% of the watershed streamflow. Precipitation took an average of 9 months to move through different pathways to end up in groundwater and an average of 4 months to end up in tile drains. This study confirms the important role tile drains play in the intensively managed fields and watersheds of Midwestern agriculture. Full article
Show Figures

Figure 1

17 pages, 5713 KiB  
Article
Simplified CFD Model for Perforated Tile with Distorted Outflow
by Waleed A. Abdelmaksoud
Fluids 2022, 7(3), 112; https://doi.org/10.3390/fluids7030112 - 17 Mar 2022
Cited by 3 | Viewed by 2459
Abstract
Most of the perforated tile flow CFD models in the literature so far assume the air velocity coming out of the tile openings (pores) is uniform. However, in typical applications, such as data centers and indoor environments, perforated tile or diffuser outflow can [...] Read more.
Most of the perforated tile flow CFD models in the literature so far assume the air velocity coming out of the tile openings (pores) is uniform. However, in typical applications, such as data centers and indoor environments, perforated tile or diffuser outflow can be highly non-uniform due to many reasons (e.g., spatial variation of plenum pressure or varying local tile geometrical patterns). For an ideal (uniform) tile flow velocity that has the same flow rate as the non-uniform tile flow velocity, the tile flow momentum of the latter will always be greater because momentum scales with velocity squared. To illustrate the effect of tile flow velocity distortion, two generic CFD cases (one with uniform velocity and the other with non-uniform velocity) with multiple openings model are presented here. Their CFD results are compared to the momentum source model results and validated against previously published data of an isolated tile flow measurement. The momentum source model is one of the simplest/most practical CFD models that uses a body-force value for correcting the momentum deficit between perforated and fully open areas. Initially, the momentum source model results show good agreement with results of the uniform velocity case only. Thus, due to velocity distortion (non-uniform velocity) in the tile flow, the CFD results presented in this paper show a potential reason to modify the body-force value in the momentum source model with an adjustment factor (C). Several values of C factor are numerically investigated for the present distorted tile flow CFD case, and the best match is found to be at C, equaling approximately 1.6. Full article
Show Figures

Figure 1

18 pages, 7280 KiB  
Article
Vinyl-Asbestos Floor Risk Exposure in Three Different Simulations
by Lorena Zichella, Fiorenza Baudana, Giovanna Zanetti and Paola Marini
Int. J. Environ. Res. Public Health 2021, 18(4), 2073; https://doi.org/10.3390/ijerph18042073 - 20 Feb 2021
Cited by 4 | Viewed by 9064
Abstract
Vinyl floors are widely used in public areas for their low cost and easy cleaning. From 1960 to 1980, asbestos was often added to improve vinyl floor performances. The Italian Ministerial Decree (M.D.) 06/09/94 indicates asbestos vinyl tiles as non-friable materials and, therefore, [...] Read more.
Vinyl floors are widely used in public areas for their low cost and easy cleaning. From 1960 to 1980, asbestos was often added to improve vinyl floor performances. The Italian Ministerial Decree (M.D.) 06/09/94 indicates asbestos vinyl tiles as non-friable materials and, therefore, few dangerous to human health. This work aims to check through three different experimental tests if asbestos floor tiles, after decades of use, maintain their characteristics of compactness and non-friability. The effect of a small stone fragment stuck in the sole of rubber shoes was reproduced by striking the vinyl floor with a crampon. A vinyl tile was broken into smaller pieces with the aid of pliers to simulate what normally happens when workers replace the floors or sample it to verify the presence of asbestos. The third test reproduced the abrasion of the tile surface due to the dragging of furniture or heavy materials or sand grains that remain attached to the soles of shoes. The tests were carried out in safe conditions, working under an extractor hood with a glove box. Airborne sampling in the hood obtained the concentration of asbestos fibers produced in each test. The simulation tests performed confirms the possible release of fibers if the vinyl tiles are cut, abraded or perforated, as indicated by the Italian M.D. Full article
(This article belongs to the Special Issue Feature Paper in Environmental Chemistry and Technology)
Show Figures

Figure 1

16 pages, 2336 KiB  
Article
Cooling Effectiveness of a Data Center Room under Overhead Airflow via Entropy Generation Assessment in Transient Scenarios
by Luis Silva-Llanca, Marcelo del Valle, Alfonso Ortega and Andrés J. Díaz
Entropy 2019, 21(1), 98; https://doi.org/10.3390/e21010098 - 21 Jan 2019
Cited by 19 | Viewed by 5641
Abstract
Forecasting data center cooling demand remains a primary thermal management challenge in an increasingly larger global energy-consuming industry. This paper proposes a dynamic modeling approach to evaluate two different strategies for delivering cold air into a data center room. The common cooling method [...] Read more.
Forecasting data center cooling demand remains a primary thermal management challenge in an increasingly larger global energy-consuming industry. This paper proposes a dynamic modeling approach to evaluate two different strategies for delivering cold air into a data center room. The common cooling method provides air through perforated floor tiles by means of a centralized distribution system, hindering flow management at the aisle level. We propose an idealized system such that five overhead heat exchangers are located above the aisle and handle the entire server cooling demand. In one case, the overhead heat exchangers force the airflow downwards into the aisle (Overhead Downward Flow (ODF)); in the other case, the flow is forced to move upwards (Overhead Upward Flow (OUF)). A complete fluid dynamic, heat transfer, and thermodynamic analysis is proposed to model the system’s thermal performance under both steady state and transient conditions. Inside the servers and heat exchangers, the flow and heat transfer processes are modeled using a set of differential equations solved in MATLAB™ 2017a. This solution is coupled with ANSYS-Fluent™ 18, which computes the three-dimensional velocity, temperature, and turbulence on the Airside. The two approaches proposed (ODF and OUF) are evaluated and compared by estimating their cooling effectiveness and the local Entropy Generation. The latter allows identifying the zones within the room responsible for increasing the inefficiencies (irreversibilities) of the system. Both approaches demonstrated similar performance, with a small advantage shown by OUF. The results of this investigation demonstrated a promising approach of data center on-demand cooling scenarios. Full article
Show Figures

Figure 1

Back to TopTop