Physico-Mechanical Performances of Mortars Prepared with Sorted Earthquake Rubble: The Role of CDW Type and Contained Crystalline Phases
Abstract
:1. Introduction
2. Previous Studies
3. Materials and Methods
3.1. Aggregates
3.2. Mesoscopic Analysis of RA and Quantification of Crystalline Phases by XRPD
3.3. Preparation of Mortars
3.4. Physico-Mechanical Tests
4. Results
4.1. Petrographic and Mineralogical Characteristics of the RA
4.2. Density and Water Absorption
4.3. Shrinkage
4.4. Compressive Strength
4.5. Flexural Strength
4.6. Ultrasonic, Electrical Resistivity and Dynamic Modulus of Elasticity Characteristics
5. Discussion
6. Conclusions and Outlooks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villoria-Sáez, P.; Porras-Amores, C.; del Río, M. Estimation of construction and demolition waste. In Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment; Pacheco-Torgal, F., Ding, Y., Colangelo, F., Tuladhar, R., Koutamanis, A., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Blengini, G.A.; Garbarino, G. Resources and waste management in Turin (Italy): The role of recycled aggregates in the sustainable supply mix. J. Clean. Prod. 2010, 18, 1021–1030. [Google Scholar] [CrossRef]
- Vitale, P.; Arena, N.; Di Gregorio, F.; Arena, U. Life cycle assessment of the end-of-life phase of a residential building. Waste Manag. 2017, 60, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Alexandridou, C.; Angelopoulos, G.N.; Coutelieris, F.A. Mechanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants. J. Clean. Prod. 2014, 176, 745–757. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Reusing ceramic wastes in concrete. Constr. Build. Mater. 2010, 24, 832–838. [Google Scholar] [CrossRef]
- Galderisi, A.; Iezzi, G.; Bianchini, G.; Paris, E.; de Brito, J. Petrography of Construction and Demolition Waste (CDW) from Abruzzo Region (Central Italy). Waste Manag. 2022, 137, 61–71. [Google Scholar] [CrossRef] [PubMed]
- de Brito, J.; Pereira, A.S.; Correia, J.R. Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem. Concr. Compos. 2005, 27, 429–433. [Google Scholar] [CrossRef]
- Agrela, F.; Sánchez de Juan, M.; Ayuso, J.; Geraldes, V.L.; Jiménez, J.R. Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 2011, 25, 3950–3955. [Google Scholar] [CrossRef] [Green Version]
- Coelho, A.; de Brito, J. Economic viability analysis of a construction and demolition waste recycling plant in Portugal. Part I: Location, materials, technology and economic analysis. J. Clean. Prod. 2013, 39, 338–352. [Google Scholar] [CrossRef]
- Medina, C.; Zhu, W.; Howind, T.; Rojas, M.; Frías, M. Influence of mixed recycled aggregate on the mechanical properties of recycled concrete. J. Clean. Prod. 2014, 68, 216–225. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2015, 99, 59–74. [Google Scholar] [CrossRef]
- Bianchini, G.; Martucci, A.; Vaccaro, C. Petro-archaeometric characterisation of “cotto ferrarese”: Bricks and terracotta elements from historic buildings of Ferrara. Period. Mineral. 2002, 71, 101–111. [Google Scholar]
- Bianchini, G.; Marrocchino, E.; Tassinari, R.; Vaccaro, C. Recycling of construction and demolition waste materials: A chemical–mineralogical appraisal. Waste Manag. 2005, 25, 149–159. [Google Scholar] [CrossRef]
- Limbachiya, M.C.; Marrocchino, E.; Koulouris, A. Chemical–mineralogical characterisation of coarse recycled concrete aggregate. Waste Manag. 2007, 27, 201–208. [Google Scholar] [CrossRef]
- Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; de Brito, J. Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2013, 52, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Lampropoulou, P.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Petrographic Characteristics and Physico-Mechanical Properties of Aggregates on the Quality of Concrete. Minerals 2018, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Pérez, E.; Hernández-Ávila, J.; Rangel-Martínez, Y.; Cerecedo-Sáenz, E.; Arenas-Flores, A.; Reyes-Valderrama, M.I.; Salinas-Rodríguez, E. Chemical and mineralogical characterization of recycled aggregates from construction and demolition waste from Mexico City. Minerals 2018, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Panizza, M.; Natali, M.; Garbin, E.; Tamburini, S.; Secco, M. Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Constr. Build. Mater. 2018, 181, 119–133. [Google Scholar] [CrossRef]
- Domone, P.L. Concrete—Constituent Materials of Concrete: Their Nature and Behaviour; Illston, J.M., Ed.; E&FN Spon: London, UK, 1998; pp. 89–195. [Google Scholar]
- Di Maria, F.; Micale, C.; Sordi, A.; Cirulli, G.; Marionni, M. Urban mining: Quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste. Waste Manag. 2013, 33, 2594–2599. [Google Scholar] [CrossRef]
- Di Maria, F.; Bianconi, F.; Micale, C.; Baglioni, S.; Marionni, M. Quality assessment for recycling aggregates from construction and demolition waste: An image-based approach for particle size estimation. Waste Manag. 2016, 48, 344–352. [Google Scholar] [CrossRef]
- Galvez-Martos, J.-L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Kou, S.; Poon, C.; Chan, D. Properties of steam cured recycled aggregate fly ash concrete, Use of recycled materials in buildings and structures. In Proceedings of the International RILEM Conference, Barcelona, Spain, 6 September 2004; pp. 590–599. [Google Scholar]
- Poon, C.; Kou, S.; Lam, L. Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struct. 2007, 40, 981–988. [Google Scholar] [CrossRef]
- Favaretto, P.; Hidalgo, G.E.N.; Sampaio, C.H.; de Almeida Silva, R.; Lermen, R.T. Characterization and use of construction and demolition waste from south of Brazil in the production of foamed concrete blocks. Appl. Sci. 2017, 7, 1090. [Google Scholar] [CrossRef] [Green Version]
- Etxeberria, M. The suitability of concrete using recycled aggregates (RAs) for high-performance concrete. In Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment; Pacheco-Torgal, F., Ding, Y., Colangelo, F., Tuladhar, R., Koutamanis, A., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Gholampour, A.; Ozbakkaloglu, T. Long-term behavior of recycled aggregate concrete. In Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment; Pacheco-Torgal, F., Ding, Y., Colangelo, F., Tuladhar, R., Koutamanis, A., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Oliveira, M.; Assis, C.; Wanderley, A. Study on compressed stress, water absorption and modulus of elasticity of produced concrete made by recycled aggregate, Use of Recycled Materials in Buildings and Structures. In Proceedings of the International RILEM Conference, Barcelona, Spain, 6 September 2004; pp. 636–642. [Google Scholar]
- Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Res. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- Debieb, F.; Kenai, S. The use of coarse and fine crushed bricks as aggregate in concrete. Constr. Build. Mater. 2008, 22, 886–893. [Google Scholar] [CrossRef]
- Gomes, M.; de Brito, J. Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance. Mater. Struct. 2009, 42, 663–675. [Google Scholar] [CrossRef]
- Zong, L.; Fei, Z.; Zhang, S. Permeability of recycled aggregate concrete containing fly ash and clay brick waste. J. Clean. Prod. 2014, 70, 175–182. [Google Scholar] [CrossRef]
- Alves, A.V.; Vieira, T.F.; de Brito, J.; Correia, J.R. Mechanical properties of structural concrete with fine recycled ceramic aggregates. Constr. Build. Mater. 2014, 64, 103–113. [Google Scholar] [CrossRef]
- Suarez, J.; Lopez, F.; Perez, C.L.; Serna, P.; Serrano, M.A. Influence of recycled brick aggregates on properties of structural concrete for manufacturing precast prestressed beams. Constr. Build. Mater. 2017, 149, 507–514. [Google Scholar]
- Nepomuceno, M.C.S.; Isidoro, R.A.S.; Catarino, J.P.G. Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. Constr. Build. Mater. 2018, 165, 284–294. [Google Scholar] [CrossRef]
- Senthamarai, R.M.; Devadas Manhoharan, P. Concrete with ceramic waste aggregate. Cem. Concr. Compos. 2005, 27, 910–913. [Google Scholar] [CrossRef]
- Guerra, I.; Vivar, I.; Llamas, B.; Juan, A.; Morán, J.M. Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manag. 2009, 29, 643–646. [Google Scholar] [CrossRef]
- Medina, C.; Rojas, M.I.S.; Frías, M. Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cem. Concr. Compos. 2012, 34, 48–54. [Google Scholar] [CrossRef]
- Park, S.; Lee, B.; Kim, J. Studies on mechanical properties of concrete containing waste glass aggregate. Cem. Concr. Res. 2004, 34, 2181–2189. [Google Scholar] [CrossRef]
- Castro, S.; de Brito, J. Evaluation of the durability of concrete made with crushed glass aggregates. J. Clean. Prod. 2013, 41, 7–14. [Google Scholar] [CrossRef]
- Mardani-Aghabaglou, A.; Tuyan, M.; Ramyar, K. Mechanical and durability performance of concrete incorporating fine recycled concrete and glass aggregates. Mater. Struct. 2015, 48, 2629–2640. [Google Scholar] [CrossRef]
- Medina, C.; Rojas, M.; Frías, M. Freeze-thaw durability of recycled concrete containing ceramic aggregate. J. Clean. Prod. 2013, 40, 151–160. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2010, 32, 9–14. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Concrete with fine recycled aggregates: A review. Eur. J. Environ. Civ. Eng. 2014, 18, 129–172. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Evangelista, L. Influence of the use of recycled concrete aggregates from different sources on structural concrete. Constr. Build. Mater. 2014, 71, 141–151. [Google Scholar] [CrossRef]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualtieri, A.; Gatta, G.D.; Arletti, R.; Artioli, G.; Ballirano, P.; Cruciani, G.; Guagliardi, A.; Malferrari, D.; Masciocchi, N.; Scardi, P. Quantitative phase analysis using the Rietveld method: Towards a procedure for checking the reliability and quality of the results. Period. Mineral. 2019, 88, 147–151. [Google Scholar]
- Janssen, H.; Chwast, J.; Elsen, J. Gypsum efflorescence on clay brick masonry: Analysis of potential efflorescence origins. J. Build. Phys. 2020, 44, 37–66. [Google Scholar] [CrossRef]
- Bianchini, G.; Ristovski, I.; Milcov, I.; Zupac, A.; Natali, C.; Salani, G.M.; Marchina, C.; Brombin, V.; Ferraboschi, A. Chemical characterisation of construction and demolition waste in Skopje City and its surroundings (Republic of Macedonia). Sustainability 2020, 12, 2055. [Google Scholar] [CrossRef] [Green Version]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals; Mineralogical Society of Great Britain and Ireland: London, UK, 2013. [Google Scholar] [CrossRef]
- Angulo, C.; Ulsen, C.; John, V.M.; Kahn, H.; Cincotto, M.A. Chemical–mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. Waste Manag. 2009, 29, 721–730. [Google Scholar]
- Pacheco, J.; de Brito, J. Recycled Aggregates Produced from Construction and Demolition Waste for Structural Concrete: Constituents, Properties and Production. Materials 2021, 14, 5748. [Google Scholar] [CrossRef]
- Vola, G.; Berrab, M.; Rondenab, E. Petrographic quantitative analysis of ASR susceptible Italian aggregates for concrete. In Proceedings of the 13th Euroseminar on Microscopy Applied to Building Materials, Ljubljana, Slovenia, 4–18 June 2011. [Google Scholar]
- Bonifazi, G.; Serranti, S.; Potenza, F.; Luciani, V.; Di Maio, F. Gravity packaging final waste recovery based on gravity separation and chemical imaging control. Waste Manag. 2017, 60, 50–55. [Google Scholar] [CrossRef]
- Bonifazi, G.; Palmieri, R.; Serranti, S. Concrete drill core characterization finalized to optimal dismantling and aggregates recovery. Waste Manag. 2017, 60, 301–310. [Google Scholar] [CrossRef]
- Bonifazi, G.; Palmieri, R.; Serranti, S. Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Constr. Build. Mater. 2018, 169, 835–842. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Palmieri, R.; Serranti, S. Hyperspectral imaging applied to the waste recycling sector. Spectrosc. Eur. 2019, 31, 8–11. [Google Scholar] [CrossRef]
- Serranti, S.; Bonifazi, G. Detection and classification of asbestos and other contaminants in C&DW by advanced technologies. In Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment; Pacheco-Torgal, F., Ding, Y., Colangelo, F., Tuladhar, R., Koutamanis, A., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 2019, 240, 118163. [Google Scholar] [CrossRef]
- de Andrade Salgado, F.; de Andrade Silva, F. Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. J. Build. Eng. 2022, 52, 104452. [Google Scholar] [CrossRef]
- Khatib, J.M. Properties of concrete incorporating fine recycled aggregate. Cem. Concr. Res. 2005, 35, 763–769. [Google Scholar] [CrossRef]
- Gonçalves, P.; de Brito, J. Recycled aggregate concrete (RAC)—Comparative analysis of existing specifications. Mag. Concr. Res. 2010, 62, 339–346. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [Google Scholar] [CrossRef]
- Bravo, M.; Duarte, A.P.C.; de Brito, J.; Evangelista, L.; Pedro, D. On the development of a technical specification for the use of fine recycled aggregates from construction and demolition waste in concrete production. Materials 2020, 13, 4228. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Mehta, P.K. Interaction between carbonate rock and cement paste. Cem. Concr. Res. 1986, 16, 27–134. [Google Scholar] [CrossRef]
- Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar]
- Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [Google Scholar] [CrossRef]
Label | Type of Aggregate | RA (%) | Cement (kg) | Coarse (>0.5–≤4 mm) VA (kg) | Fine (≤0.5 mm) VA (kg) | CDW Aggregate (kg) | Water (L) | Water/Cement Ratio |
---|---|---|---|---|---|---|---|---|
RM | VA | 0 | 1.162 | 1.218 | 1.218 | - | 0.581 | 0.50 |
RVAM-NS-50 | NS | 50 | 1.162 | 0.609 | 0.609 | 1.141 | 0.581 | 0.50 |
RAM-NS-100 | 100 | 1.162 | - | - | 2.282 | 0.616 | 0.53 | |
RVAM-CO-50 | CO | 50 | 1.162 | 0.609 | 0.609 | 1.145 | 0.581 | 0.50 |
RAM-CO-100 | 100 | 1.162 | - | - | 2.290 | 0.616 | 0.53 | |
RVAM-TI-50 | TI | 50 | 1.162 | 0.609 | 0.609 | 1.085 | 0.581 | 0.50 |
RAM-TI-100 | 100 | 1.162 | - | - | 2.171 | 0.616 | 0.53 | |
RVAM-BR-50 | BR | 50 | 1.162 | 0.609 | 0.609 | 0.976 | 0.662 | 0.57 |
RAM-BR-100 | 100 | 1.162 | - | - | 1.952 | 0.732 | 0.63 | |
RVAM-PF-50 | PF | 50 | 1.162 | 0.609 | 0.609 | 0.997 | 0.674 | 0.58 |
RAM-PF-100 | 100 | 1.162 | - | - | 1.994 | 0.755 | 0.65 | |
RVAM-RT-50 | RT | 50 | 1.162 | 0.609 | 0.609 | 1.014 | 0.674 | 0.58 |
RAM-RT-100 | 100 | 1.162 | - | - | 2.028 | 0.755 | 0.65 |
Label | Type of Aggregate | Water Absorption (%) | Density (kg/m3) |
---|---|---|---|
cement | - | - | 3100 |
VA | natural sand of Lisbon | 0.50 | 2600 |
RA-NS-100 | CDW natural/ornamental stone | 1.79 | 2550 (108) |
RA-CO-100 | CDW concrete | 7.44 | 2350 (154) |
RA-TI-100 | CDW tile | 2.59 | 2300 (76) |
RA-BR-100 | CDW brick | 9.89 | 1840 (120) |
RA-PF-100 | CDW perforated brick | 3.61 | 1830 (121) |
RA-RT-100 | CDW roof tile | 8.92 | 1900 (166) |
CDW Type | Label | cc | Qz + cri | orth | anort | alb | cpx | mel | mica | serp | chl | gyps | port | ettr | mul |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VA | coarse | - | 94.3 (3) | 5.7 (3) | - | - | - | - | - | - | - | - | - | - | - |
fine | - | 82.4 (8) | 11.0 (5) | - | 5.3 (6) | - | - | 1.2 (3) | - | - | - | - | - | - | |
average | - | 88.4 | 8.4 | - | 2.7 | - | - | 0.6 | - | - | - | - | - | - | |
median | - | 88.4 | 8.4 | - | 2.7 | - | - | 0.6 | - | - | - | - | - | - | |
st dev | - | 8.4 | 3.7 | - | 3.7 | - | - | 0.8 | - | - | - | - | - | - | |
RA-NS-100 | NS1 | 79.4 (3) | 12.2 (2) | - | 4.8 (2) | 0.0 (0) | - | - | 2.1 (1) | 0.2 (1) | 1.3 (1) | - | - | - | - |
NS2 | 67.0 (4) | 16.1 (2) | - | 5.2 (3) | 5.5 (3) | - | - | 3.1 (1) | 0.5 (1) | 2.6 (2) | - | - | - | - | |
NS3 | 70.5 (3) | 14.6 (2) | - | 6.1 (3) | 4.0 (2) | - | - | 2.5 (1) | 0.0 (0) | 2.3 (1) | - | - | - | - | |
NS4 | 64.5 (4) | 14.9 (3) | - | 9.3 (4) | 5.5 (3) | - | - | 3.1 (1) | 0.1 (0) | 2.6 (2) | - | - | - | - | |
NS5 | 49.5 (5) | 24.6 (4) | - | 9.9 (4) | 6.9 (4) | - | - | 4.6 (2) | 0.2 (1) | 4.3 (2) | - | - | - | - | |
average | 66.2 | 16.5 | - | 7.0 | 4.4 | - | - | 3.1 | 0.2 | 2.6 | - | - | - | - | |
median | 66.7 | 15.5 | - | 6.6 | 4.9 | - | - | 3.1 | 0.2 | 2.6 | - | - | - | - | |
st dev | 10.9 | 4.8 | - | 2.4 | 2.7 | - | - | 0.9 | 0.2 | 1.1 | - | - | - | - | |
RA-CO-100 | CO1 | 89.2 (2) | 6.5 (2) | 0.2 (1) | - | - | - | - | 0.7 (1) | - | - | 1.9 (1) | 0.8 (1) | 0.7 (1) | - |
CO2 | 88.3 (2) | 7.2 (2) | 0.4 (4) | - | - | - | - | 0.7 (7) | - | - | 1.4 (1) | 1.0 (1) | 1.0 (1) | - | |
CO3 | 87.4 (2) | 7.7 (2) | 0.4 (1) | - | - | - | - | 0.6 (1) | - | - | 2.0 (1) | 1.0 (1) | 0.9 (1) | - | |
CO4 | 86.3 (3) | 4.0 (3) | 1.3 (2) | - | - | - | - | 0.9 (1) | - | - | 3.3 (1) | 1.6 (1) | 2.6 (2) | - | |
CO5 | 88.7 (2) | 6.9 (2) | 0.6 (1) | - | - | - | - | 0.7 (1) | - | - | 1.7 (1) | 0.9 (0) | 0.5 (1) | - | |
CO6 | 87.6 (2) | 8.4 (2) | 0.7 (1) | - | - | - | - | 0.7 (1) | - | - | 1.3 (1) | 0.7 (0) | 0.6 (1) | - | |
average | 87.9 | 6.8 | 0.6 | - | - | - | - | 0.7 | - | - | 1.9 | 1.0 | 1.1 | - | |
median | 88.0 | 7.1 | 0.5 | - | - | - | - | 0.7 | - | - | 1.8 | 0.9 | 0.8 | - | |
st dev | 1.1 | 1.5 | 0.4 | - | - | - | - | 0.1 | - | - | 0.7 | 0.3 | 0.8 | - | |
RA-TI-100 | TI1 | 39.3 (3) | 32.3 (3) | 1.7 (2) | 11.7 (3) | - | 2.6 (2) | 1.1 (1) | 0.5 (1) | - | - | - | - | - | 10.9 (4) |
TI2 | 13.6 (2) | 49.5 (4) | 3.7 (2) | 12.0 (3) | - | 2.2 (2) | 1.0 (2) | 0.3 (1) | - | - | - | - | - | 17.7 (4) | |
TI3 | 4.5 (2) | 66.5 (5) | 2.8 (2) | 7.3 (3) | - | 0.7 (2) | 0.0 (0) | 0.0 (0) | - | - | - | - | - | 18.2 (5) | |
TI4 | 17.5 (2) | 48.8 (3) | 3.2 (2) | 11.8 (3) | - | 2.2 (2) | 0.6 (1) | 0.1 (0) | - | - | - | - | - | 15.8 (4) | |
TI5 | 27.8 (3) | 39.9 (4) | 3.5 (2) | 10.9 (3) | 2.2 (2) | 0.9 (2) | 0.4 (1) | - | - | - | - | - | 14.4 (4) | ||
average | 20.5 | 47.4 | 3.0 | 10.7 | - | 2.0 (2) | 0.7 | 0.2 | - | - | - | - | - | 15.4 | |
median | 17.5 | 48.8 | 3.2 | 11.7 | - | 2.2 (2) | 0.9 | 0.3 | - | - | - | - | - | 15.8 | |
st dev | 13.4 | 12.7 | 0.8 | 2.0 | - | 0.7 | 0.4 | 0.2 | - | - | - | - | - | 2.9 | |
RA-BR-100 | BR1 | 10.3 (3) | 20.5 (4) | - | 26.7 (4) | - | 10.2 (4) | 9.2 (2) | 19.7 (7) | - | - | 1.8 (1) | - | - | 1.6 (1) |
BR2 | 12.9 (3) | 23.4 (4) | - | 24.1 (4) | - | 12.0 (5) | 8.6 (2) | 14.4 (6) | - | - | 2.9 (1) | - | - | 1.7 (1) | |
BR3 | 13.6 (2) | 21.4 (3) | - | 23.3 (4) | - | 13.0 (4) | 8.8 (2) | 14.6 (6) | - | - | 3.7 (1) | - | - | 1.6 (1) | |
average | 12.3 | 21.8 | - | 24.7 | - | 11.7 | 8.9 | 16.2 | - | - | 2.8 | - | - | 1.6 | |
median | 12.9 | 21.4 | - | 24.1 | - | 12.0 | 8.8 | 14.6 | - | - | 2.9 | - | - | 1.6 | |
st dev | 1.7 | 1.5 | - | 1.9 | - | 1.4 | 0.3 | 3.0 | - | - | 1.0 | - | - | 0.1 | |
RA-PF-100 | PF1 | 13.9 (3) | 23.1 (4) | - | 27.6 (4) | - | 15.4 (3) | 8.1 (3) | 8.2 (5) | - | - | 1.9 (1) | - | - | 1.8 (2) |
PF2 | 9.8 (2) | 26.3 (3) | - | 26.3 (3) | - | 22.2 (3) | 6.2 (2) | 5.0 (2) | - | - | 2.1 (1) | - | - | 2.1 (2) | |
PF3 | 10.0 (2) | 21.8 (3) | - | 29.0 (4) | - | 23.3 (3) | 6.3 (2) | 4.7 (2) | - | - | 2.8 (1) | - | - | 2.1 (2) | |
PF4 | 13.4 (3) | 22.1 (4) | - | 28.6 (4) | - | 16.6 (3) | 9.3 (3) | 6.0 (2) | - | - | 2.4 (1) | - | - | 1.7 (2) | |
average | 11.8 | 22.3 | - | 27.9 | - | 19.4 | 7.5 | 5.9 | - | - | 2.3 | - | - | 1.9 | |
median | 11.7 | 22.6 | - | 28.2 | - | 19.4 | 7.2 | 5.5 | - | - | 2.2 | - | - | 1.9 | |
st dev | 2.2 | 2.0 | - | 1.2 | - | 4.0 | 1.5 | 1.6 | - | - | 0.4 | - | - | 0.2 | |
RA-RT-100 | RT1 | 16.6 (2) | 14.5 (3) | - | 29.2 (4) | - | 25.8 (3) | 9.9 (2) | 1.1 (2) | - | - | 1.2 (1) | - | - | 1.7 (1) |
RT2 | 16.6 (2) | 14.6 (2) | - | 27.8 (4) | - | 23.7 (3) | 11.4 (2) | 2.6 (2) | - | - | 1.5 (1) | - | - | 1.8 (1) | |
RT3 | 18.3 (2) | 12.6 (2) | - | 27.5 (4) | - | 24.6 (3) | 11.8 (2) | 2.2 (2) | - | - | 1.0 (1) | - | - | 2.0 (1) | |
RT4 | 17.2 (2) | 11.4 (3) | - | 30.4 (4) | - | 25.1 (3) | 11.7 (2) | 1.4 (2) | - | - | 1.0 (1) | - | - | 1.8 (1) | |
RT5 | 18.1 (2) | 12.9 (2) | 26.1 (3) | 24.9 (3) | 12.3 (2) | 2.4 (2) | 1.1 (1) | 2.2 (1) | |||||||
average | 17.4 | 13.2 | - | 28.2 | - | 24.8 | 11.4 | 1.9 | - | - | 1.2 | - | - | 1.9 | |
median | 17.2 | 12.9 | - | 27.8 | - | 24.9 | 11.7 | 2.2 | - | - | 1.1 | - | - | 1.8 | |
st dev | 0.8 | 1.3 | - | 1.6 | - | 0.8 | 0.9 | 0.6 | - | - | 0.2 | - | - | 0.2 |
Label | Weight of Specimen (kg) | Density (kg/m3) | ∆A0 |
---|---|---|---|
RM | 0.578 | 2260 | − |
RVAM-NS-50 | 0.574 | 2240 | −1% |
RAM-NS-100 | 0.573 | 2240 | −1% |
RVAM-CO-50 | 0.57 | 2230 | −1% |
RAM-CO-100 | 0.562 | 2200 | −3% |
RVAM-TI-50 | 0.565 | 2210 | −2% |
RAM-TI-100 | 0.558 | 2180 | −3% |
RVAM-BR-50 | 0.567 | 2220 | −2% |
RAM-BR-100 | 0.535 | 2090 | −7% |
RVAM-PF-50 | 0.556 | 2170 | −4% |
RAM-PF-100 | 0.524 | 2050 | −9% |
RVAM-RT-50 | 0.554 | 2160 | −4% |
RAM-RT-100 | 0.528 | 2060 | −9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galderisi, A.; Bravo, M.; Iezzi, G.; Cruciani, G.; Paris, E.; Brito, J.d. Physico-Mechanical Performances of Mortars Prepared with Sorted Earthquake Rubble: The Role of CDW Type and Contained Crystalline Phases. Materials 2023, 16, 2855. https://doi.org/10.3390/ma16072855
Galderisi A, Bravo M, Iezzi G, Cruciani G, Paris E, Brito Jd. Physico-Mechanical Performances of Mortars Prepared with Sorted Earthquake Rubble: The Role of CDW Type and Contained Crystalline Phases. Materials. 2023; 16(7):2855. https://doi.org/10.3390/ma16072855
Chicago/Turabian StyleGalderisi, Antonio, Miguel Bravo, Gianluca Iezzi, Giuseppe Cruciani, Eleonora Paris, and Jorge de Brito. 2023. "Physico-Mechanical Performances of Mortars Prepared with Sorted Earthquake Rubble: The Role of CDW Type and Contained Crystalline Phases" Materials 16, no. 7: 2855. https://doi.org/10.3390/ma16072855
APA StyleGalderisi, A., Bravo, M., Iezzi, G., Cruciani, G., Paris, E., & Brito, J. d. (2023). Physico-Mechanical Performances of Mortars Prepared with Sorted Earthquake Rubble: The Role of CDW Type and Contained Crystalline Phases. Materials, 16(7), 2855. https://doi.org/10.3390/ma16072855