Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = penumbra removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5102 KB  
Article
The Relevance of Reperfusion Stroke Therapy for miR-9-3p and miR-9-5p Expression in Acute Stroke—A Preliminary Study
by Daria Gendosz de Carrillo, Olga Kocikowska, Małgorzata Rak, Aleksandra Krzan, Sebastian Student, Halina Jędrzejowska-Szypułka, Katarzyna Pawletko and Anetta Lasek-Bal
Int. J. Mol. Sci. 2024, 25(5), 2766; https://doi.org/10.3390/ijms25052766 - 27 Feb 2024
Cited by 3 | Viewed by 2123
Abstract
Reperfusion stroke therapy is a modern treatment that involves thrombolysis and the mechanical removal of thrombus from the extracranial and/or cerebral arteries, thereby increasing penumbra reperfusion. After reperfusion therapy, 46% of patients are able to live independently 3 months after stroke onset. MicroRNAs [...] Read more.
Reperfusion stroke therapy is a modern treatment that involves thrombolysis and the mechanical removal of thrombus from the extracranial and/or cerebral arteries, thereby increasing penumbra reperfusion. After reperfusion therapy, 46% of patients are able to live independently 3 months after stroke onset. MicroRNAs (miRNAs) are essential regulators in the development of cerebral ischemia/reperfusion injury and the efficacy of the applied treatment. The first aim of this study was to examine the change in serum miRNA levels via next-generation sequencing (NGS) 10 days after the onset of acute stroke and reperfusion treatment. Next, the predictive values of the bioinformatics analysis of miRNA gene targets for the assessment of brain ischemic response to reperfusion treatment were explored. Human serum samples were collected from patients on days 1 and 10 after stroke onset and reperfusion treatment. The samples were subjected to NGS and then validated using qRT-PCR. Differentially expressed miRNAs (DEmiRNAs) were used for enrichment analysis. Hsa-miR-9-3p and hsa-miR-9-5p expression were downregulated on day 10 compared to reperfusion treatment on day 1 after stroke. The functional analysis of miRNA target genes revealed a strong association between the identified miRNA and stroke-related biological processes related to neuroregeneration signaling pathways. Hsa-miR-9-3p and hsa-miR-9-5p are potential candidates for the further exploration of reperfusion treatment efficacy in stroke patients. Full article
Show Figures

Figure 1

13 pages, 4515 KB  
Article
Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping
by Junghun Cho, Jinwei Zhang, Pascal Spincemaille, Hang Zhang, Thanh D. Nguyen, Shun Zhang, Ajay Gupta and Yi Wang
Bioengineering 2024, 11(2), 131; https://doi.org/10.3390/bioengineering11020131 - 29 Jan 2024
Cited by 3 | Viewed by 2541
Abstract
Oxygen extraction fraction (OEF), the fraction of oxygen that tissue extracts from blood, is an essential biomarker used to directly assess tissue viability and function in neurologic disorders. In ischemic stroke, for example, increased OEF can indicate the presence of penumbra—tissue with low [...] Read more.
Oxygen extraction fraction (OEF), the fraction of oxygen that tissue extracts from blood, is an essential biomarker used to directly assess tissue viability and function in neurologic disorders. In ischemic stroke, for example, increased OEF can indicate the presence of penumbra—tissue with low perfusion yet intact cellular integrity—making it a primary therapeutic target. However, practical OEF mapping methods are not currently available in clinical settings, owing to the impractical data acquisitions in positron emission tomography (PET) and the limitations of existing MRI techniques. Recently, a novel MRI-based OEF mapping technique, termed QQ, was proposed. It shows high potential for clinical use by utilizing a routine sequence and removing the need for impractical multiple gas inhalations. However, QQ relies on the assumptions of Gaussian noise in susceptibility and multi-echo gradient echo (mGRE) magnitude signals for OEF estimation. This assumption is unreliable in low signal-to-noise ratio (SNR) regions like disease-related lesions, risking inaccurate OEF estimation and potentially impacting clinical decisions. Addressing this, our study presents a novel multi-echo complex QQ (mcQQ) that models realistic Gaussian noise in mGRE complex signals. We implemented mcQQ using a deep learning framework (mcQQ-NET) and compared it with the existing QQ-NET in simulations, ischemic stroke patients, and healthy subjects, using identical training and testing datasets and schemes. In simulations, mcQQ-NET provided more accurate OEF than QQ-NET. In the subacute stroke patients, mcQQ-NET showed a lower average OEF ratio in lesions relative to unaffected contralateral normal tissue than QQ-NET. In the healthy subjects, mcQQ-NET provided uniform OEF maps, similar to QQ-NET, but without unrealistically high OEF outliers in areas of low SNR, such as SNR ≤ 15 (dB). Therefore, mcQQ-NET improves OEF accuracy by more accurately reflecting realistic Gaussian noise in complex mGRE signals. Its enhanced sensitivity to OEF abnormalities, based on more realistic biophysics modeling, suggests that mcQQ-NET has potential for investigating tissue variability in neurologic disorders. Full article
(This article belongs to the Special Issue Quantitative MR Imaging for the Evaluation of Neurovascular Disease)
Show Figures

Figure 1

15 pages, 3687 KB  
Article
The SDF1-CXCR4 Axis Is Involved in the Hyperbaric Oxygen Therapy-Mediated Neuronal Cells Migration in Transient Brain Ischemic Rats
by Ray-Yau Wang, Yea-Ru Yang and Heng-Chih Chang
Int. J. Mol. Sci. 2022, 23(3), 1780; https://doi.org/10.3390/ijms23031780 - 4 Feb 2022
Cited by 14 | Viewed by 3327
Abstract
Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair the damaged neural network. Therefore, promoting neurogenesis is very important for functional recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen therapy (HBOT) exerted neuroprotective effects, such as [...] Read more.
Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair the damaged neural network. Therefore, promoting neurogenesis is very important for functional recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen therapy (HBOT) exerted neuroprotective effects, such as reducing cerebral infarction volume. The purposes of this study were to further explore the effects of HBOT on the neurogenesis and the expressions of cell migration factors, including the stromal cell-derived factor 1 (SDF1) and its target receptor, the CXC chemokine receptor 4 (CXCR4). Thirty-two Sprague–Dawley rats were divided into the control or HBO group after receiving transient middle cerebral artery occlusion (MCAO). HBOT began to intervene 24 h after MCAO under the pressure of 3 atmospheres for one hour per day for 21 days. Rats in the control group were placed in the same acrylic box without HBOT during the experiment. After the final intervention, half of the rats in each group were cardio-perfused with ice-cold saline followed by 4% paraformaldehyde under anesthesia. The brains were removed, dehydrated and cut into serial 20μm coronal sections for immunofluorescence staining to detect the markers of newborn cell (BrdU+), mature neuron cell (NeuN+), SDF1, and CXCR4. The affected motor cortex of the other half rats in each group was separated under anesthesia and used to detect the expressions of brain-derived neurotrophic factor (BDNF), SDF1, and CXCR4. Motor function was tested by a ladder-climbing test before and after the experiment. HBOT significantly enhanced neurogenesis in the penumbra area and promoted the expressions of SDF1 and CXCR4. The numbers of BrdU+/SDF1+, BrdU+/CXCR4+, and BrdU+/NeuN+ cells and BDNF concentrations in the penumbra were all significantly increased in the HBO group when compared with the control group. The motor functions were improved in both groups, but there was a significant difference between groups in the post-test. Our results indicated that HBOT for 21 days enhanced neurogenesis and promoted cell migration toward the penumbra area in transient brain ischemic rats. HBOT also increased BDNF expression, which might further promote the reconstructions of the impaired neural networks and restore motor function. Full article
Show Figures

Figure 1

26 pages, 8290 KB  
Article
A Lidar-Based 3-D Photosynthetically Active Radiation Model Reveals the Spatiotemporal Variations of Forest Sunlit and Shaded Leaves
by Shihao Tian, Guang Zheng, Jan U. Eitel and Qian Zhang
Remote Sens. 2021, 13(5), 1002; https://doi.org/10.3390/rs13051002 - 6 Mar 2021
Cited by 7 | Viewed by 3902
Abstract
Accurately identifying sunlit and shaded leaves using process-based ecological models can improve the simulation accuracy of forest photosynthetic rates and potential carbon sequestration capacity. However, it is still challenging to characterize their three dimensional (3-D) spatiotemporal distributions due to the complex structure. In [...] Read more.
Accurately identifying sunlit and shaded leaves using process-based ecological models can improve the simulation accuracy of forest photosynthetic rates and potential carbon sequestration capacity. However, it is still challenging to characterize their three dimensional (3-D) spatiotemporal distributions due to the complex structure. In this study, we developed a light detection and ranging (lidar)-based approach to map the spatiotemporal distribution patterns of photosynthetically active radiation (PAR) and sunlit and shaded leaves within forest canopies. By using both terrestrial laser scanning (TLS) and unmanned aerial vehicle-based lidar system (UAV-LS), we analyzed the influences of different scanning geometries and associated point densities on the separation of sunlit and shaded leaves. Moreover, we further investigated the effects of woody materials and penumbra sizes on identifying sunlit and shaded leaves by separating the foliage and woody materials and estimating the penumbras of sunlit leaves. Our results showed that: (1) The proposed lidar-based PAR model could well capture the variations of field-based pyranometer measurements using fused point data by combining UAV-LS and TLS data (mean R-square = 0.88, mean root mean square error (RMSE) = 155.5 μmol·m−2·s−1, p < 0.01). The separate UAV-LS and TLS-based fractions of sunlit leaves were averagely overestimated by 34.3% and 21.6% when compared to the fused point data due to their different coverages and comprehensiveness. (2) The woody materials showed different effects on sunlit leaf fraction estimations for forest overstory and understory due to the variations of solar zenith angle and tree spatial distribution patterns. The most noticeable differences (i.e., −36.4%) between the sunlit leaf fraction before and after removing woody materials were observed around noon, with a small solar zenith angle and low-density forest stand. (3) The penumbra effects were seen to increase the sunlit leaf fraction in the lower canopy by introducing direct solar radiation, and it should be considered when using 3-D structural information from lidar to identify sunlit and shaded leaves. Full article
(This article belongs to the Special Issue 3D Point Clouds in Forest Remote Sensing)
Show Figures

Figure 1

27 pages, 21854 KB  
Article
Shadow Detection and Compensation from Remote Sensing Images under Complex Urban Conditions
by Tingting Zhou, Haoyang Fu, Chenglin Sun and Shenghan Wang
Remote Sens. 2021, 13(4), 699; https://doi.org/10.3390/rs13040699 - 14 Feb 2021
Cited by 58 | Viewed by 9912
Abstract
Due to the block of high-rise objects and the influence of the sun’s altitude and azimuth, shadows are inevitably formed in remote sensing images particularly in urban areas, which causes missing information in the shadow region. In this paper, we propose a new [...] Read more.
Due to the block of high-rise objects and the influence of the sun’s altitude and azimuth, shadows are inevitably formed in remote sensing images particularly in urban areas, which causes missing information in the shadow region. In this paper, we propose a new method for shadow detection and compensation through objected-based strategy. For shadow detection, the shadow was highlighted by an improved shadow index (ISI) combined color space with an NIR band, then ISI was reconstructed by the objects acquired from the mean-shift algorithm to weaken noise interference and improve integrity. Finally, threshold segmentation was applied to obtain the shadow mask. For shadow compensation, the objects from segmentation were treated as a minimum processing unit. The adjacent objects are likely to have the same ambient light intensity, based on which we put forward a shadow compensation method which always compensates shadow objects with their adjacent non-shadow objects. Furthermore, we presented a dynamic penumbra compensation method (DPCM) to define the penumbra scope and accurately remove the penumbra. Finally, the proposed methods were compared with the stated-of-art shadow indexes, shadow compensation method and penumbra compensation methods. The experiments show that the proposed method can accurately detect shadow from urban high-resolution remote sensing images with a complex background and can effectively compensate the information in the shadow region. Full article
(This article belongs to the Special Issue Optical Remote Sensing Applications in Urban Areas)
Show Figures

Figure 1

15 pages, 9215 KB  
Article
Local Water-Filling Algorithm for Shadow Detection and Removal of Document Images
by Bingshu Wang and C. L. Philip Chen
Sensors 2020, 20(23), 6929; https://doi.org/10.3390/s20236929 - 4 Dec 2020
Cited by 21 | Viewed by 4545
Abstract
Shadow detection and removal is an important task for digitized document applications. It is hard for many methods to distinguish shadow from printed text due to the high darkness similarity. In this paper, we propose a local water-filling method to remove shadows by [...] Read more.
Shadow detection and removal is an important task for digitized document applications. It is hard for many methods to distinguish shadow from printed text due to the high darkness similarity. In this paper, we propose a local water-filling method to remove shadows by mapping a document image into a structure of topographic surface. Firstly, we design a local water-filling approach including a flooding and effusing process to estimate the shading map, which can be used to detect umbra and penumbra. Then, the umbra is enhanced using Retinex Theory. For penumbra, we propose a binarized water-filling strategy to correct illumination distortions. Moreover, we build up a dataset called optical shadow removal (OSR dataset), which includes hundreds of shadow images. Experiments performed on OSR dataset show that our method achieves an average ErrorRatio of 0.685 with a computation time of 0.265 s to process an image size of 960×544 pixels on a desktop. The proposed method can remove the shading artifacts and outperform some state-of-the-art methods, especially for the removal of shadow boundaries. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

28 pages, 13413 KB  
Perspective
Interactions of Single Particle with Organic Matters: A Facile Bottom-Up Approach to Low Dimensional Nanostructures
by Shugo Sakaguchi, Koshi Kamiya, Tsuneaki Sakurai and Shu Seki
Quantum Beam Sci. 2020, 4(1), 7; https://doi.org/10.3390/qubs4010007 - 5 Feb 2020
Cited by 7 | Viewed by 4022
Abstract
A particle induces a pack of chemical reactions in nanospace: chemical reactions confined into extremely small space provide an ultimate technique for the nanofabrication of organic matter with a variety of functions. Since the discovery of particle accelerators, an extremely high energy density [...] Read more.
A particle induces a pack of chemical reactions in nanospace: chemical reactions confined into extremely small space provide an ultimate technique for the nanofabrication of organic matter with a variety of functions. Since the discovery of particle accelerators, an extremely high energy density can be deposited, even by a single isolated particle with MeV-ordered kinetic energy. However, this was considered to cause severe damages to organic molecules due to its relatively small bond energies, and lack of ability to control the reactions precisely to form the structures while retaining physico-chemical molecular functionalities. Practically, the severely damaged area along a particle trajectory: a core of a particle track has been simply visualized for the detection/dosimetry of an incident particle to the matters, or been removed to lead nanopores and functionalized by refilling/grafting of fresh organic/inorganic materials. The use of intra-track reactions in the so-called “penumbra” or “halo” area of functional organic materials has been realized and provided us with novel and facile protocols to provide low dimensional nano-materials with perfect size controllability in the 21st century. These protocols are now referred to as single particle nanofabrication technique (SPNT) and/or single particle triggered linear polymerization technique (STLiP), paving the way towards a new approach for nanomaterials with desired functionalities from original molecules. Herein, we report on the extremely wide applicability of SPNT/STLiP protocols for the future development of materials for opto-electronic, catalytic, and biological applications among others. Full article
(This article belongs to the Special Issue Quantum Beams Applying to Innovative Industrial Materials)
Show Figures

Figure 1

Back to TopTop