Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Processing: QSM
2.3. Data Processing: OEF Using Multi-Echo Complex QQ (mcQQ)
2.4. Deep Neural Network for mcQQ (mcQQ-NET)
- (1)
- L1 difference between the normalized truth and the output of mcQQ ():
- (2)
- L1 difference of spatial gradient () to preserve edge ():
- (3)
- The model loss to consider physical model consistency is represented by . Notably, is different between mcQQ-NET and QQ-NET:
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagata, K.; Buchan, R.J.; Yokoyama, E.; Kondoh, Y.; Sato, M.; Terashi, H.; Satoh, Y.; Watahiki, Y.; Senova, M.; Hirata, Y.; et al. Misery perfusion with preserved vascular reactivity in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1997, 826, 272–281. [Google Scholar] [CrossRef]
- Borghammer, P.; Vafaee, M.; Ostergaard, K.; Rodell, A.; Bailey, C.; Cumming, P. Effect of memantine on CBF and CMRO2 in patients with early Parkinson’s disease. Acta Neurol. Scand. 2008, 117, 317–323. [Google Scholar] [CrossRef]
- Tanaka, M.; Kondo, S.; Hirai, S.; Sun, X.; Yamagishi, T.; Okamoto, K. Cerebral blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral sclerosis. J. Neurol. Sci. 1993, 120, 22–28. [Google Scholar] [CrossRef]
- Brooks, D.J.; Leenders, K.L.; Head, G.; Marshall, J.; Legg, N.J.; Jones, T. Studies on regional cerebral oxygen utilisation and cognitive function in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1984, 47, 1182–1191. [Google Scholar] [CrossRef]
- Chandler, H.L.; Stickland, R.C.; Patitucci, E.; Germuska, M.; Chiarelli, A.M.; Foster, C.; Bhome-Dhaliwal, S.; Lancaster, T.M.; Saxena, N.; Khot, S.; et al. Reduced brain oxygen metabolism in patients with multiple sclerosis: Evidence from dual-calibrated functional MRI. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2023, 43, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Solitaire™ with the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke (SWIFT PRIME) trial: Protocol for a randomized, controlled, multicenter study comparing the Solitaire revascularization device with IV tPA with IV tPA alone in acute ischemic stroke. Int. J. Stroke 2015, 10, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Sobesky, J.; Weber, O.Z.; Lehnhardt, F.-G.; Hesselmann, V.; Neveling, M.; Jacobs, A.; Heiss, W.-D. Does the Mismatch Match the Penumbra? Stroke 2005, 36, 980–985. [Google Scholar] [CrossRef]
- Kidwell, C.S.; Alger, J.R.; Saver, J.L. Beyond Mismatch. Stroke 2003, 34, 2729–2735. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.P.; Sheng, M.; Tseng, B.Y.; Tarumi, T.; Martin-Cook, K.; Womack, K.B.; Cullum, M.C.; Levine, B.D.; Zhang, R.; Lu, H. Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2017, 37, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Lim, C.; Jiang, D.; Soldan, A.; Pettigrew, C.; Oishi, K.; Zhu, Y.; Moghekar, A.; Liu, P.; Albert, M.; et al. Longitudinal changes in brain oxygen extraction fraction (OEF) in older adults: Relationship to markers of vascular and Alzheimer’s pathology. Alzheimer’s Dement. 2023, 19, 569–577. [Google Scholar] [CrossRef]
- Jiang, D.; Lin, Z.; Liu, P.; Sur, S.; Xu, C.; Hazel, K.; Pottanat, G.; Darrow, J.; Pillai, J.J.; Yasar, S.; et al. Brain Oxygen Extraction Is Differentially Altered by Alzheimer’s and Vascular Diseases. J. Magn. Reson. Imaging 2020, 52, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Mintun, M.A.; Raichle, M.E.; Martin, W.R.; Herscovitch, P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1984, 25, 177–187. [Google Scholar]
- Hoge, R.D. Calibrated FMRI. Neuroimage 2012, 62, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, C.J.; Hoge, R.D. Magnetic resonance imaging of resting OEF and CMRO2 using a generalized calibration model for hypercapnia and hyperoxia. Neuroimage 2012, 60, 1212–1225. [Google Scholar] [CrossRef] [PubMed]
- Bolar, D.S.; Rosen, B.R.; Sorensen, A.; Adalsteinsson, E. QUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn. Reson. Med. 2011, 66, 1550–1562. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wong, E.C. Venous oxygenation mapping using velocity-selective excitation and arterial nulling. Magn. Reson. Med. 2012, 68, 1458–1471. [Google Scholar] [CrossRef] [PubMed]
- Yablonskiy, D.A.; Haacke, E.M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime. Magn. Reson. Med. 1994, 32, 749–763. [Google Scholar] [CrossRef]
- Ulrich, X.; Yablonskiy, D.A. Separation of cellular and BOLD contributions to T2* signal relaxation. Magn. Reson. Med. 2016, 75, 606–615. [Google Scholar] [CrossRef]
- He, X.; Yablonskiy, D.A. Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state. Magn. Reson. Med. 2007, 57, 115–126. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, H.; Cho, J.; Mazerolle, E.L.; Wang, Y.; Pike, G.B. Cerebral OEF quantification: A comparison study between quantitative susceptibility mapping and dual-gas calibrated BOLD imaging. Magn. Reson. Med. 2020, 83, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Yablonskiy, D.A.; Sukstanskii, A.L.; He, X. BOLD-based Techniques for Quantifying Brain Hemodynamic and Metabolic Properties—Theoretical Models and Experimental Approaches. NMR Biomed. 2013, 26, 963–986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, T.; Gupta, A.; Spincemaille, P.; Nguyen, T.D.; Wang, Y. Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM). Magn. Reson. Med. 2015, 74, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Mazerolle, E.L.; Cho, J.; Sun, H.; Wang, Y.; Pike, G.B. Quantification of brain oxygen extraction fraction using QSM and a hyperoxic challenge. Magn. Reson. Med. 2020, 84, 3271–3285. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Kee, Y.; Spincemaille, P.; Nguyen, T.D.; Zhang, J.; Gupta, A.; Zhang, S.; Wang, Y. Cerebral metabolic rate of oxygen (CMRO2) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn. Reson. Med. 2018, 80, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Spincemaille, P.; Nguyen, T.D.; Gupta, A.; Wang, Y. Temporal clustering, tissue composition, and total variation for mapping oxygen extraction fraction using QSM and quantitative BOLD. Magn. Reson. Med. 2021, 86, 2635–2646. [Google Scholar] [CrossRef]
- Zhang, S.; Cho, J.; Nguyen, T.D.; Spincemaille, P.; Gupta, A.; Zhu, W.; Wang, Y. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison with Perfusion and Diffusion Mapping. Front. Neurosci. 2020, 14, 535441. [Google Scholar] [CrossRef]
- Cho, J.; Zhang, J.; Spincemaille, P.; Zhang, H.; Hubertus, S.; Wen, Y.; Jafari, R.; Zhang, S.; Nguyen, T.D.; Dimov, A.V.; et al. QQ-NET—Using deep learning to solve quantitative susceptibility mapping and quantitative blood oxygen level dependent magnitude (QSM + qBOLD or QQ) based oxygen extraction fraction (OEF) mapping. Magn. Reson. Med. 2021, 87, 1583–1594. [Google Scholar] [CrossRef]
- Gudbjartsson, H.; Patz, S. The Rician distribution of noisy MRI data. Magn. Reson. Med. 1995, 34, 910–914. [Google Scholar] [CrossRef]
- Liu, T.; Wisnieff, C.; Lou, M.; Chen, W.; Spincemaille, P.; Wang, Y. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn. Reson. Med. 2013, 69, 467–476. [Google Scholar] [CrossRef]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 2002, 17, 825–841. [Google Scholar] [CrossRef]
- Jenkinson, M.; Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 2001, 5, 143–156. [Google Scholar] [CrossRef]
- Ulrich, X.; Yablonskiy, D.A. Enhancing image contrast in human brain by voxel spread function method. In Proceedings of the 22nd Annual Meeting of ISMRM, Milan, Italy, 10–16 May 2014; p. 3197. [Google Scholar]
- An, H.; Lin, W. Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging. Magn. Reason. Med. 2002, 48, 583–588. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, Athens, Greece, 17–21 October 2016; pp. 424–432. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the Neural Information Processing Systems 2017 Workshop on Automatic Differentiation, Long Beach, California, USA, 9 December 2017. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Birenbaum, D.; Bancroft, L.W.; Felsberg, G.J. Imaging in acute stroke. West J. Emerg. Med. 2011, 12, 67–76. [Google Scholar] [PubMed]
- Cusack, R.; Papadakis, N. New robust 3-D phase unwrapping algorithms: Application to magnetic field mapping and undistorting echoplanar images. NeuroImage 2002, 16, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.P.; Khalil, A.A.; Fiebach, J.B.; Zaharchuk, G.; Villringer, A.; Villringer, K.; Gauthier, C.J. Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2019, 40, 271678X19827944. [Google Scholar] [CrossRef]
- Kudo, K.; Liu, T.; Murakami, T.; Goodwin, J.; Uwano, I.; Yamashita, F.; Higuchi, S.; Wang, Y.; Ogasawara, K.; Ogawa, A.; et al. Oxygen extraction fraction measurement using quantitative susceptibility mapping: Comparison with positron emission tomography. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2016, 36, 1424–1433. [Google Scholar] [CrossRef]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Cho, J.; Ma, Y.; Spincemaille, P.; Pike, G.B.; Wang, Y. Cerebral oxygen extraction fraction: Comparison of dual-gas challenge calibrated BOLD with CBF and challenge-free gradient echo QSM+qBOLD. Magn. Reason. Med. 2021, 85, 953–961. [Google Scholar] [CrossRef]
- Hatazawa, J.; Shimosegawa, E.; Toyoshima, H.; Ardekani, B.A.; Suzuki, A.; Okudera, T.; Miura, Y. Cerebral blood volume in acute brain infarction: A combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke 1999, 34, 800–806. [Google Scholar] [CrossRef]
- Baron, J.C. Mapping the ischaemic penumbra with PET: Implications for acute stroke treatment. Cerebrovasc. Dis. 1999, 9, 193–201. [Google Scholar] [CrossRef]
- Bonova, P.; Burda, J.; Danielisova, V.; Nemethova, M.; Gottlieb, M. Development of a pattern in biochemical parameters in the core and penumbra during infarct evolution after transient MCAO in rats. Neurochem. Int. 2013, 62, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999, 22, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, G.; Qing, H.; Zhou, W.; Dobie, F.; Cai, F.; Staufenbiel, M.; Huang, L.E.; Song, W. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. USA 2006, 103, 18727–18732. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Cabronero, J.; Williams, G.B.; Cardenas-Blanco, A.; Arnold, R.J.; Lupson, V.; Nestor, P.J. In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PLoS ONE 2013, 8, e81093. [Google Scholar] [CrossRef]
- Trapp, B.D.; Stys, P.K. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009, 8, 280–291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.; Zhang, J.; Spincemaille, P.; Zhang, H.; Nguyen, T.D.; Zhang, S.; Gupta, A.; Wang, Y. Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping. Bioengineering 2024, 11, 131. https://doi.org/10.3390/bioengineering11020131
Cho J, Zhang J, Spincemaille P, Zhang H, Nguyen TD, Zhang S, Gupta A, Wang Y. Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping. Bioengineering. 2024; 11(2):131. https://doi.org/10.3390/bioengineering11020131
Chicago/Turabian StyleCho, Junghun, Jinwei Zhang, Pascal Spincemaille, Hang Zhang, Thanh D. Nguyen, Shun Zhang, Ajay Gupta, and Yi Wang. 2024. "Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping" Bioengineering 11, no. 2: 131. https://doi.org/10.3390/bioengineering11020131
APA StyleCho, J., Zhang, J., Spincemaille, P., Zhang, H., Nguyen, T. D., Zhang, S., Gupta, A., & Wang, Y. (2024). Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping. Bioengineering, 11(2), 131. https://doi.org/10.3390/bioengineering11020131