Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = paternal deletion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1024 KB  
Review
Chromosomal Roadblocks in Male Fertility: Mechanisms, Risk Factors and Syndromes
by Achilleas G. Mitrakas, Christina-Angelika Alexiadi, Sofia Gargani, Triantafyllos Alexiadis, Sofia-Panagiota Alexopoulou, Olga Pagonopoulou and Maria Lambropoulou
Medicina 2025, 61(10), 1864; https://doi.org/10.3390/medicina61101864 - 16 Oct 2025
Viewed by 795
Abstract
Male infertility affects nearly 15% of couples worldwide, with chromosomal abnormalities representing a major underlying cause. This review explores how numerical and structural chromosomal anomalies, along with environmental exposures, lifestyle factors, and age-related genetic changes, disrupt spermatogenesis and contribute to infertility. It synthesizes [...] Read more.
Male infertility affects nearly 15% of couples worldwide, with chromosomal abnormalities representing a major underlying cause. This review explores how numerical and structural chromosomal anomalies, along with environmental exposures, lifestyle factors, and age-related genetic changes, disrupt spermatogenesis and contribute to infertility. It synthesizes findings from cytogenetic, molecular, and clinical studies, with particular focus on mechanisms such as meiotic nondisjunction, spindle assembly checkpoint dysfunction, and alterations in cohesin and synaptonemal complex proteins. Chromosomal abnormalities, both numerical and structural, emerge as key contributors to male infertility by impairing chromosomal segregation and recombination, often leading to azoospermia or oligospermia. Meiotic checkpoint failures and recombination errors further exacerbate the production of aneuploid sperm. Environmental toxins, oxidative stress, and poor nutrition disrupt hormonal balance and chromatin integrity, while advancing paternal age is associated with increased sperm aneuploidy and impaired meiotic control, with implications for assisted reproduction. Specific syndromes, including AZF deletions, Kallmann syndrome, and 46,XX testicular DSD, exemplify the direct genetic impact on male fertility. Overall, chromosomal abnormalities are central to the pathophysiology of male infertility, arising from intrinsic meiotic errors as well as extrinsic environmental and lifestyle factors. Integrating cytogenetic diagnostics, genetic counseling, and lifestyle interventions is essential for comprehensive fertility assessment and management. Further research into molecular biomarkers and targeted therapies could enhance diagnosis, improve treatment strategies, and lead to better reproductive outcomes. Full article
(This article belongs to the Special Issue From Conception to Birth: Embryonic Development and Disease)
Show Figures

Figure 1

10 pages, 1920 KB  
Case Report
Junctional Epidermolysis Bullosa Caused by a Hemiallelic Nonsense Mutation in LAMA3 Revealed by 18q11.2 Microdeletion
by Matteo Iacoviello, Marilidia Piglionica, Ornella Tabaku, Antonella Garganese, Aurora De Marco, Fabio Cardinale, Domenico Bonamonte and Nicoletta Resta
Int. J. Mol. Sci. 2025, 26(15), 7343; https://doi.org/10.3390/ijms26157343 - 29 Jul 2025
Viewed by 1004
Abstract
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the [...] Read more.
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the skin layers, commonly at the “lamina lucida”. Laryngo-onycho-cutaneous syndrome (LOC) is an extremely rare variant of JEB, characterized by granulation tissue formation in specific body sites (skin, larynx, and nails). Although most cases of JEB are caused by pathogenic variants occurring in the genes encoding for classical components of the lamina lucida, such as laminin 332 (LAMA3, LAMB3, LAMC2), integrin α6β4 (ITGA6, ITGB4), and collagen XVII (COL17A1), other variants have also been described. We report the case of a 4-month-old male infant who presented with recurrent bullous and erosive lesions from the first month of life. At the first dermatological evaluation, the patient was agitated and exhibited hoarse breathing, a clinical sign suggestive of laryngeal involvement. Multiple polygonal skin erosions were observed on the cheeks, along with similar isolated, roundish lesions on the scalp and legs. Notably, nail dystrophy and near-complete anonychia were evident on the left first and fifth toes. Due to the coexistence of skin erosions and nail dystrophy in such a young infant, a congenital bullous disorder was suspected, prompting molecular analysis of all potentially involved genes. In the patient’s DNA, clinical exome sequencing (CES) identified a pathogenic variant, apparently in homozygosity, in the exon 1 of the LAMA3 gene (18q11.2; NM_000227.6): c.47G > A;p.Trp16*. The presence of this variant was confirmed, in heterozygosity, in the genomic DNA of the patient’s mother, while it was absent in the father’s DNA. Subsequently, trio-based SNP array analysis was performed, revealing a paternally derived pathogenic microdeletion encompassing the LAMA3 locus (18q11.2). To our knowledge, this is the first reported case of JEB with a LOC-like phenotype caused by a maternally inherited monoallelic nonsense mutation in LAMA3, unmasked by an almost complete deletion of the paternal allele. The combined use of exome sequencing and SNP array is proving essential for elucidating autosomal recessive diseases with a discordant segregation. This is pivotal for providing accurate genetic counseling to parents regarding future pregnancies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 938 KB  
Article
Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion
by Daniel S. Scott, Violeta Zaric, Carol A. Tamminga and Ryan K. Butler
Genes 2025, 16(8), 863; https://doi.org/10.3390/genes16080863 - 24 Jul 2025
Viewed by 838
Abstract
Background/Objectives: Prader–Willi Syndrome (PWS) is a neurodevelopmental disease associated with multiple behavioral features, including a prevalence for psychosis. The genetic causes of PWS are well characterized and involve the silencing or deletion of the paternal copy of a region of chromosome 15q11–13. One [...] Read more.
Background/Objectives: Prader–Willi Syndrome (PWS) is a neurodevelopmental disease associated with multiple behavioral features, including a prevalence for psychosis. The genetic causes of PWS are well characterized and involve the silencing or deletion of the paternal copy of a region of chromosome 15q11–13. One gene within this region, Snord116, a non-coding RNA, has been determined to have a determinant role in the manifestation of PWS. However, it remains unclear as to how the deletion of this allele can affect activity in the brain and influence psychosis-like behaviors. Methods: In this study, we assessed the effects of the microdeletion of the paternal copy of Snord116 on regional neural activity in psychosis-associated brain regions and psychosis-like behaviors in mice. Results: The results suggest that Snord116 deletion causes increased c-Fos expression in the hippocampus and anterior cingulate cortex. Snord116 deletion also results in behavioral phenotypes consistent with psychosis, most notably in stressful paradigms, with deficits in sensorimotor gating and augmented contextual as well as cued fear conditioning. Conclusions: These results implicate the targets of Snord116 in the presentation of a psychosis-like state with regional specificity. Full article
(This article belongs to the Special Issue Advances in Gene Therapy)
Show Figures

Figure 1

11 pages, 2494 KB  
Case Report
Prenatal Phenotype in a Neonate with Prader–Willi Syndrome and Literature Review
by Libing Luo, Mary Hoi Yin Tang, Shengmou Lin, Anita Sik-Yau Kan, Cindy Ka Yee Cheung, Xiaoying Dai, Ting Zeng, Yanyan Li, Lilu Nong, Haibo Huang, Chunchun Chen, Yue Xu and Kelvin Yuen Kwong Chan
Diagnostics 2025, 15(13), 1666; https://doi.org/10.3390/diagnostics15131666 - 30 Jun 2025
Viewed by 943
Abstract
Background and Clinical Significance: Prader–Willi syndrome (PWS) is a rare genetic disease caused by imprinted gene dysfunction, typically involving deletion of the chromosome 15q11.2-q13 region, balanced translocation, or related gene mutations in this region. PWS presents with complex and varied clinical manifestations. Abnormalities [...] Read more.
Background and Clinical Significance: Prader–Willi syndrome (PWS) is a rare genetic disease caused by imprinted gene dysfunction, typically involving deletion of the chromosome 15q11.2-q13 region, balanced translocation, or related gene mutations in this region. PWS presents with complex and varied clinical manifestations. Abnormalities can be observed from the fetal stage and change with age, resulting in growth, developmental, and metabolic issues throughout different life stages. Case Presentation: We report the prenatal characteristics observed from the second to third trimester of pregnancy in a neonate with PWS. Prenatal ultrasound findings included a single umbilical artery, poor abdominal circumference growth from 26 weeks, normal head circumference and femur length growth, increased amniotic fluid volume after 30 weeks, undescended fetal testicles in the third trimester, small kidneys, and reduced fetal movement. The male infant was born at 38 weeks of gestation with a birth weight of 2580 g. He had a weak cry; severe hypotonia; small eyelid clefts; bilateral cryptorchidism; low responsiveness to medical procedures such as blood drawing; and poor sucking, necessitating tube feeding. Blood methylation-specific multiple ligation-dependent probe amplification (MS-MLPA) showed paternal deletion PWS. Notably, this case revealed two previously unreported prenatal features in PWS: a single umbilical artery and small kidneys. Conclusions: Through literature review and our case presentation, we suggest that a combination of specific sonographic features, including these newly identified markers, may aid clinicians in the early diagnosis of PWS. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

8 pages, 992 KB  
Case Report
Phase Determination and Demonstration of Parental Mosaicism of Intragenic PRKN Deletions Initially Identified by Chromosomal Microarray Analysis
by Lauren A. Choate, Francis Hoffman, Jessica H. Newman, Cassandra Runke, Matthew Webley, Nicole L. Hoppman and Erik C. Thorland
Genes 2025, 16(6), 630; https://doi.org/10.3390/genes16060630 - 24 May 2025
Viewed by 635
Abstract
Background: Autosomal recessive juvenile Parkinson disease (ARJP) is an early-onset neurodegenerative disorder characterized by Parkinsonian motor symptoms with slow progression and preserved cognition. Biallelic pathogenic variants within the PRKN gene are associated with ARJP. Among PRKN pathogenic variants, deletions are a frequent occurrence [...] Read more.
Background: Autosomal recessive juvenile Parkinson disease (ARJP) is an early-onset neurodegenerative disorder characterized by Parkinsonian motor symptoms with slow progression and preserved cognition. Biallelic pathogenic variants within the PRKN gene are associated with ARJP. Among PRKN pathogenic variants, deletions are a frequent occurrence and may be identified through chromosomal microarray testing. Methods: Here we present a case with two intragenic PRKN deletions initially identified as a secondary finding using chromosomal microarray. One deletion was paternally inherited and the second initially appeared to be de novo. In addition to microarray which initially identified the two deletions, long-range GAP-PCR and Sanger sequencing were used to further characterize the de novo deletion and phase of the deletions. Results: Molecular characterization of the apparently de novo deletion demonstrated low-level maternal mosaicism of this deletion, thus proving that these deletions are in trans in the proband, yielding a diagnosis of autosomal recessive juvenile Parkinson disease. Conclusions: This case highlights the utility of a diagnostic approach combining microarray, long-range PCR, and Sanger sequencing to establish the phase and confirm biallelic PRKN deletions in a patient with ARJP. Furthermore, these findings highlight the importance of investigating the possibility of parental mosaicism to determine the phase of autosomal recessive variants and establish accurate recurrence risks. Full article
(This article belongs to the Special Issue Clinical Cytogenetics: Current Advances and Future Perspectives)
Show Figures

Figure 1

17 pages, 3123 KB  
Article
Loss of ING3 in the Prostate Leads to Activation of DNA Damage Repair Markers
by Viktor Lang, Lisa Barones, ShiTing Misaki Hu, Fatemeh Hashemi, Karen Blote, Karl Riabowol and Dieter Fink
Cancers 2025, 17(6), 1037; https://doi.org/10.3390/cancers17061037 - 20 Mar 2025
Viewed by 2933
Abstract
Background/Objectives: The inhibitor of growth family member 3 (ING3) acts as an epigenetic reader through physical interactions with histone-modifying enzymes and subsequent chromatin remodelling processes. It is involved in various cellular functions, such as cell cycle control, cell growth, and apoptosis. Although ING3 [...] Read more.
Background/Objectives: The inhibitor of growth family member 3 (ING3) acts as an epigenetic reader through physical interactions with histone-modifying enzymes and subsequent chromatin remodelling processes. It is involved in various cellular functions, such as cell cycle control, cell growth, and apoptosis. Although ING3 was assigned tumour suppressor candidate status in some types of cancers, including prostate cancer, some studies suggest it acts to promote growth. To address these contradictory reports regarding its role in the initiation and progression of prostate cancer, we specifically addressed the question of whether ablation of ING3 in the mouse prostate is sufficient to initiate malignant transformation of the prostate and support its (candidate) tumour suppressor status. Methods: To generate the prostate-specific Ing3 knockout mouse, paternal inheritance of the PB-Cre4 transgene was used, while for the generation of a global knockout control, a female mouse harbouring the PB-Cre4 transgene was utilized. To determine the recombination efficiency of the Cre-LoxP system in the prostate at the Ing3 locus, a duplex probe-based digital PCR assay capable of counting undisrupted Ing3 copies was designed. The impact of DNA recombination on the protein level was investigated by immunohistochemical staining of prostate tissue samples. Results: In the prostate-specific knockout, digital PCR analysis revealed mosaic gene deletion. We found recombination efficiencies in the anterior, dorsolateral, and ventral prostate lobes ranging from approximately 15 to 30%. ING3 staining in the prostate was faint with no detectable differences in signal intensity between the knockout specimen and wild-type controls. This low ING3 expression in the prostate is consistent with observations of X-gal staining of an Ing3-LacZ reporter allele. Immunohistochemistry showed increased expression of DNA-damage-associated markers γH2AX and 53BP1. However, no gross anatomical abnormalities or prostate intraepithelial neoplasia (PIN) lesions in the prostate of tissue-specific knockout animals compared to wild-type controls were observed. Conclusions: Altogether, our data provide evidence that disruption of ING3 expression in prostate cells does not lead to malignant transformation and challenges the idea that ING3 acts primarily in a tumour-suppressive manner. Furthermore, this work supports the crucial role of ING3 in maintaining genomic stability, and we confirmed the embryonic lethal phenotype of homozygous Ing3 null mice that is rescued by ectopic expression of ING3. Full article
Show Figures

Figure 1

19 pages, 3519 KB  
Review
Unraveling the Roles of UBE3A in Neurodevelopment and Neurodegeneration
by Xin Yang and Yu-Wen Alvin Huang
Int. J. Mol. Sci. 2025, 26(5), 2304; https://doi.org/10.3390/ijms26052304 - 5 Mar 2025
Cited by 3 | Viewed by 3403
Abstract
The ubiquitin-protein ligase E3A (UBE3A, aka E6-AP), an E3 ligase belonging to the HECT family, plays crucial roles in the stability of various proteins through the proteasomal degradation system. Abnormal UBE3A activity is essential for the initiation and progression of several cancers. A [...] Read more.
The ubiquitin-protein ligase E3A (UBE3A, aka E6-AP), an E3 ligase belonging to the HECT family, plays crucial roles in the stability of various proteins through the proteasomal degradation system. Abnormal UBE3A activity is essential for the initiation and progression of several cancers. A gain of function and an overdosage of maternal UBE3A is associated with an increased risk of autism spectrum disorders. Conversely, a loss of function due to mutations, deletions, paternal duplications, or imprinting defects in neurons leads to Angelman syndrome. Emerging evidence suggests that abnormal UBE3A activity may also contribute to the development of various brain disorders, including schizophrenia, Huntington’s disease, Parkinson’s disease, and Alzheimer’s disease, making UBE3A a protein of significant interest. However, research on UBE3A’s functions in the brain has primarily focused on neurons due to the imprinting of UBE3A in mature neuronal cells, while being obscured in glia. This review outlines the expression of UBE3A in neurons and glial cells based on published studies, highlights newly identified patterns of UBE3A, such as its secretion, and emphasizes the involvement of UBE3A in neurodegenerative diseases. Furthermore, we summarize glial UBE3A and propose a model of bi-directional interactions between the neurons and glia mediated by UBE3A that underlies brain functions. Insights gained from this research could provide new avenues for therapeutic interventions targeting various brain disorders. Full article
(This article belongs to the Special Issue Challenges and Innovation in Neurodegenerative Diseases, 2nd Edition)
Show Figures

Figure 1

16 pages, 3522 KB  
Article
RNAi Knockdown of EHMT2 in Maternal Expression of Prader–Willi Syndrome Genes
by Violeta Zaric, Hye Ri Kang, Volodymyr Rybalchenko, Jeffrey M. Zigman, Steven J. Gray and Ryan K. Butler
Genes 2024, 15(11), 1366; https://doi.org/10.3390/genes15111366 - 24 Oct 2024
Viewed by 2053
Abstract
Background/objectives: Euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is a mammalian histone methyltransferase that catalyzes the dimethylation of histone 3 lysine 9 (H3K9). On human chromosome 15, the parental-specific expression of Prader–Willi Syndrome (PWS)-related genes, such as SNRPN and SNORD116 [...] Read more.
Background/objectives: Euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is a mammalian histone methyltransferase that catalyzes the dimethylation of histone 3 lysine 9 (H3K9). On human chromosome 15, the parental-specific expression of Prader–Willi Syndrome (PWS)-related genes, such as SNRPN and SNORD116, are regulated through the genetic imprinting of the PWS imprinting center (PWS-IC). On the paternal allele, PWS genes are expressed whereas the epigenetic maternal silencing of PWS genes is controlled by the EHMT2-mediated methylation of H3K9 in PWS-IC. Here, we measured the effects of RNA interference of EHMT2 on the maternal expression of genes deficient in PWS in mouse model and patient iPSC-derived cells. Methods: We used small interfering RNA (siRNA) oligonucleotides and lentiviral short harpin RNA (shRNA) to reduce Ehtm2/EHMT2 expression in mouse Snord116 deletion primary neurons, PWS patient-derived induced pluripotent stem cell (iPSC) line and PWS iPSC-derived neurons. We then measured the expression of transcript or protein (if relevant) of PWS genes normally silenced on the maternal allele. Results: With an approximate reduction of 90% in EHMT2 mRNA and more than 80% of the EHMT2 protein, we demonstrated close to a 2-fold increase in the expression of maternal transcripts for SNRPN and SNORD116 in PWS iPSCs treated with siEHMT2 compared to PWS iPSC siControl. A similar increase in SNORD116 and SNRPN RNA expression was observed in PWS iPSC-derived neurons treated with shEHMT2. Conclusions: RNAi reduction in EHMT2 activates maternally silenced PWS genes. Further studies are needed to determine whether the increase is therapeutically relevant. This study confirms the role of EHMT2 in the epigenetic regulation of PWS genes. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 2364 KB  
Case Report
A Korean Family Presenting with Renal Cysts and Maturity-Onset Diabetes of the Young Caused by a Novel In-Frame Deletion of HNF1B
by Ji Yoon Han, Jin Gwack, Tae Yun Kim and Joonhong Park
Int. J. Mol. Sci. 2024, 25(18), 9823; https://doi.org/10.3390/ijms25189823 - 11 Sep 2024
Cited by 2 | Viewed by 2004
Abstract
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, [...] Read more.
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient’s clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes)
Show Figures

Figure 1

10 pages, 26003 KB  
Case Report
Gonadal Mosaicism as a Rare Inheritance Pattern in Recessive Genodermatoses: Report of Two Cases with Pseudoxanthoma Elasticum and Literature Review
by Lisa Dangreau, Mohammad J. Hosen, Julie De Zaeytijd, Bart P. Leroy, Paul J. Coucke and Olivier M. Vanakker
Curr. Issues Mol. Biol. 2024, 46(9), 9998-10007; https://doi.org/10.3390/cimb46090597 - 11 Sep 2024
Viewed by 1826
Abstract
Germline mosaicism in autosomal recessive disorders is considered a rare disease mechanism with important consequences for diagnosis and patient counseling. In this report, we present two families with PXE in which paternal germline mosaicism for an ABCC6 whole-gene deletion was observed. The first [...] Read more.
Germline mosaicism in autosomal recessive disorders is considered a rare disease mechanism with important consequences for diagnosis and patient counseling. In this report, we present two families with PXE in which paternal germline mosaicism for an ABCC6 whole-gene deletion was observed. The first family further illustrates the clinical challenges in PXE, with a typical PXE retinopathy in an apparently heterozygous carrier parent. A systematic review of the literature on gonadal mosaicism in autosomal recessive genodermatoses revealed 16 additional patients. As in most reported families, segregation analysis data are not mentioned, and this may still be an underrepresentation. Though rare, the possibility of germline mosaicism emphasizes the need for variant verification in parents and sibs of a newly diagnosed proband, as it has significant implications for genetic counseling and management. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 316 KB  
Review
Is Oxytocin a Contributor to Behavioral and Metabolic Features in Prader–Willi Syndrome?
by Maria Petersson and Charlotte Höybye
Curr. Issues Mol. Biol. 2024, 46(8), 8767-8779; https://doi.org/10.3390/cimb46080518 - 13 Aug 2024
Cited by 5 | Viewed by 2391
Abstract
Prader–Willi Syndrome (PWS) is a rare genetic disorder typically characterized by decreased social interaction, hyperphagia, poor behavioral control and temper tantrums, together with a high risk of morbid obesity unless food intake is controlled. The genetic defects that cause PWS include paternal 15q [...] Read more.
Prader–Willi Syndrome (PWS) is a rare genetic disorder typically characterized by decreased social interaction, hyperphagia, poor behavioral control and temper tantrums, together with a high risk of morbid obesity unless food intake is controlled. The genetic defects that cause PWS include paternal 15q deletion (estimated in 60% of cases), chromosome 15 maternal uniparental disomy (UPD) (estimated in 35% of cases) and imprinting defects and translocations. Several studies indicate an oxytocin deficiency in PWS. Oxytocin is a hypothalamic nonapeptide with receptors located in the brain and in various other tissues in the body. It acts as a neuropeptide in several brain areas of great importance for behavioral and metabolic effects, as well as a neurohypophyseal hormone released into the circulation. Oxytocin in both rats and humans has strong and long-lasting behavioral and metabolic effects. Thus, an oxytocin deficiency might be involved in several of the behavioral and metabolic symptoms characterizing PWS. Treatment with oxytocin has, in some studies, shown improvement in psycho-social behavior and hyperphagia in individuals with PWS. This review focus on the behavioral and metabolic effects of oxytocin, the symptoms of a potential oxytocin deficiency in PWS and the effects of oxytocin treatment. Full article
(This article belongs to the Special Issue Current Advances in Oxytocin Research)
13 pages, 1086 KB  
Article
Congenital Hyperinsulinism Caused by Mutations in ABCC8 Gene Associated with Early-Onset Neonatal Hypoglycemia: Genetic Heterogeneity Correlated with Phenotypic Variability
by Lăcrămioara Ionela Butnariu, Delia Andreia Bizim, Gabriela Păduraru, Luminița Păduraru, Ștefana Maria Moisă, Setalia Popa, Nicoleta Gimiga, Gabriela Ghiga, Minerva Codruța Bădescu, Ancuta Lupu, Ioana Vasiliu and Laura Mihaela Trandafir
Int. J. Mol. Sci. 2024, 25(10), 5533; https://doi.org/10.3390/ijms25105533 - 19 May 2024
Cited by 6 | Viewed by 3871
Abstract
Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that [...] Read more.
Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that encode the ATP-sensitive potassium channel (KATP). We present the correlation between genetic heterogeneity and the variable phenotype in patients with early-onset HH caused by ABCC8 gene mutations. In the first patient, who presented persistent severe hypoglycemia since the first day of life, molecular genetic testing revealed the presence of a homozygous mutation in the ABCC8 gene [deletion in the ABCC8 gene c.(2390+1_2391-1)_(3329+1_3330-1)del] that correlated with a diffuse form of hyperinsulinism (the parents being healthy heterozygous carriers). In the second patient, the onset was on the third day of life with severe hypoglycemia, and genetic testing identified a heterozygous mutation in the ABCC8 gene c.1792C>T (p.Arg598*) inherited on the paternal line, which led to the diagnosis of the focal form of hyperinsulinism. To locate the focal lesions, (18)F-DOPA (3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine) positron emission tomography/computed tomography (PET/CT) was recommended (an investigation that cannot be carried out in the country), but the parents refused to carry out the investigation abroad. In this case, early surgical treatment could have been curative. In addition, the second child also presented secondary adrenal insufficiency requiring replacement therapy. At the same time, she developed early recurrent seizures that required antiepileptic treatment. We emphasize the importance of molecular genetic testing for diagnosis, management and genetic counseling in patients with HH. Full article
(This article belongs to the Special Issue Metabolic Diseases and Genetic Variants)
Show Figures

Figure 1

9 pages, 795 KB  
Article
22q11.2 Deletion Syndrome: Influence of Parental Origin on Clinical Heterogeneity
by Melissa Bittencourt de Wallau, Ana Carolina Xavier, Carolina Araújo Moreno, Chong Ae Kim, Elaine Lustosa Mendes, Erlane Marques Ribeiro, Amanda Oliveira, Têmis Maria Félix, Agnes Cristina Fett-Conte, Luciana Cardoso Bonadia, Gabriela Roldão Correia-Costa, Isabella Lopes Monlleó, Vera Lúcia Gil-da-Silva-Lopes and Társis Paiva Vieira
Genes 2024, 15(4), 518; https://doi.org/10.3390/genes15040518 - 21 Apr 2024
Viewed by 2431
Abstract
22q11.2 deletion syndrome (22q11.2DS) shows significant clinical heterogeneity. This study aimed to explore the association between clinical heterogeneity in 22q11.2DS and the parental origin of the deletion. The parental origin of the deletion was determined for 61 individuals with 22q11.2DS by genotyping DNA [...] Read more.
22q11.2 deletion syndrome (22q11.2DS) shows significant clinical heterogeneity. This study aimed to explore the association between clinical heterogeneity in 22q11.2DS and the parental origin of the deletion. The parental origin of the deletion was determined for 61 individuals with 22q11.2DS by genotyping DNA microsatellite markers and single-nucleotide polymorphisms (SNPs). Among the 61 individuals, 29 (47.5%) had a maternal origin of the deletion, and 32 (52.5%) a paternal origin. Comparison of the frequency of the main clinical features between individuals with deletions of maternal or paternal origin showed no statistically significant difference. However, Truncus arteriosus, pulmonary atresia, seizures, and scoliosis were only found in patients with deletions of maternal origin. Also, a slight difference in the frequency of other clinical features between groups of maternal or paternal origin was noted, including congenital heart disease, endocrinological alterations, and genitourinary abnormalities, all of them more common in patients with deletions of maternal origin. Although parental origin of the deletion does not seem to contribute to the phenotypic variability of most clinical signs observed in 22q11.2DS, these findings suggest that patients with deletions of maternal origin could have a more severe phenotype. Further studies with larger samples focusing on these specific features could corroborate these findings. Full article
Show Figures

Figure 1

13 pages, 751 KB  
Review
The Pivotal Role of Oxytocin’s Mechanism of Thermoregulation in Prader-Willi Syndrome, Schaaf-Yang Syndrome, and Autism Spectrum Disorder
by Claudia Camerino
Int. J. Mol. Sci. 2024, 25(4), 2066; https://doi.org/10.3390/ijms25042066 - 8 Feb 2024
Cited by 5 | Viewed by 3840
Abstract
Oxytocin (Oxt) regulates thermogenesis, and altered thermoregulation results in Prader-Willi syndrome (PWS), Schaaf-Yang syndrome (SYS), and Autism spectrum disorder (ASD). PWS is a genetic disorder caused by the deletion of the paternal allele of 15q11-q13, the maternal uniparental disomy of chromosome 15, or [...] Read more.
Oxytocin (Oxt) regulates thermogenesis, and altered thermoregulation results in Prader-Willi syndrome (PWS), Schaaf-Yang syndrome (SYS), and Autism spectrum disorder (ASD). PWS is a genetic disorder caused by the deletion of the paternal allele of 15q11-q13, the maternal uniparental disomy of chromosome 15, or defects in the imprinting center of chromosome 15. PWS is characterized by hyperphagia, obesity, low skeletal muscle tone, and autism spectrum disorder (ASD). Oxt also increases muscle tonicity and decreases proteolysis while PWS infants are hypotonic and require assisted feeding in early infancy. This evidence inspired us to merge the results of almost 20 years of studies and formulate a new hypothesis according to which the disruption of Oxt’s mechanism of thermoregulation manifests in PWS, SYS, and ASD through thermosensory abnormalities and skeletal muscle tone. This review will integrate the current literature with new updates on PWS, SYS, and ASD and the recent discoveries on Oxt’s regulation of thermogenesis to advance the knowledge on these diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

7 pages, 919 KB  
Communication
A Small De Novo CNV Deletion of the Paternal Copy of FOXF1, Leaving lncRNA FENDRR Intact, Provides Insight into Their Bidirectional Promoter Region
by Przemyslaw Szafranski and Paweł Stankiewicz
Non-Coding RNA 2023, 9(5), 61; https://doi.org/10.3390/ncrna9050061 - 9 Oct 2023
Viewed by 2287
Abstract
Pathogenic single-nucleotide variants (SNVs) and copy-number variant (CNV) deletions involving the FOXF1 transcription factor gene or CNV deletions of its distant lung-specific enhancer are responsible for alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a rarely diagnosed lethal lung developmental disorder in [...] Read more.
Pathogenic single-nucleotide variants (SNVs) and copy-number variant (CNV) deletions involving the FOXF1 transcription factor gene or CNV deletions of its distant lung-specific enhancer are responsible for alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a rarely diagnosed lethal lung developmental disorder in neonates. In contrast to SNVs within FOXF1 and CNV deletions involving only the FOXF1 enhancer, larger-sized deletions involving FOXF1 and the adjacent, oppositely oriented lncRNA gene FENDRR have additionally been associated with hypoplastic left heart syndrome and single umbilical artery (SUA). Here, in an ACDMPV infant without any congenital heart defect or SUA, we identified a small 5 kb CNV deletion that removed the paternal allele of FOXF1 and its promoter, leaving FENDRR and its promoter intact. Reporter assay in the IMR-90 fetal cell line implied that the deletion may indeed not have significantly affected FENDRR expression. It also showed a polarization of the FOXF1-FENDRR inter-promoter region consisting of its ability to increase the transcription of FENDRR but not FOXF1. Interestingly, this transcription-stimulating activity was suppressed in the presence of the FOXF1 promoter. Our data shed more light on the interactions between neighboring promoters of FOXF1-FENDRR and possibly other divergently transcribed mRNA-lncRNA gene pairs. Full article
(This article belongs to the Section Detection and Biomarkers of Non-Coding RNA)
Show Figures

Figure 1

Back to TopTop