Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = patatin-like phospholipase domain-containing3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2432 KB  
Article
Swiss Cheese Gene Is Important for Intestinal Barrier, Microbiome, and Lipid Metabolism Regulation in Drosophila Gut
by Ekaterina A. Ivanova, Elena V. Ryabova, Artem E. Komissarov, Elizaveta E. Slepneva, Anton A. Stulov, Sergey A. Bulat and Svetlana V. Sarantseva
Int. J. Mol. Sci. 2025, 26(22), 11085; https://doi.org/10.3390/ijms262211085 - 16 Nov 2025
Viewed by 419
Abstract
Mutations in the human patatin-like lysophospholipase domain containing the 6 gene PNPLA6 encode an evolutionarily conserved (lyso)phospholipase, leading to the development of a complex hereditary spastic paraplegia 39 (SPG 39) and a number of rare severe syndromes in humans. Diseases disrupt the functioning [...] Read more.
Mutations in the human patatin-like lysophospholipase domain containing the 6 gene PNPLA6 encode an evolutionarily conserved (lyso)phospholipase, leading to the development of a complex hereditary spastic paraplegia 39 (SPG 39) and a number of rare severe syndromes in humans. Diseases disrupt the functioning of the nervous and reproductive systems and the gastrointestinal tract. The study aims to investigate the role of the Drosophila melanogaster swiss cheese gene, an ortholog of the human PNPLA6 gene, in gut function. We showed that the swiss cheese gene knockout leads to changes in the morphology of the midgut, disruption of the septate junction structure and the intestinal barrier permeability, and a decrease in the lipid droplet number in enterocytes. As a result of such disturbances, intestinal stem cells (ISCs) proliferation is activated, and the gut microbiome is altered. Ectopic expression of human PNPLA6 leads to the recovery of the intestinal barrier in the fly gut. The example of Drosophila demonstrates the important role of evolutionarily conserved (lyso)phospholipase in intestinal homeostasis. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine—2nd Edition)
Show Figures

Figure 1

15 pages, 1484 KB  
Article
High-Risk PNPLA3 rs738409 Genotype Is Associated with Higher Concentrations of CCL2 in Liver Transplant Candidates with Alcoholic End-Stage Liver Disease
by Ivan Budimir Bekan, Dino Šisl, Alan Šućur, Ana Bainrauch, Valerija Bralić Lang, Pavao Planinić, Nataša Kovačić, Danka Grčević, Anna Mrzljak and Tomislav Kelava
Medicina 2025, 61(7), 1293; https://doi.org/10.3390/medicina61071293 - 18 Jul 2025
Viewed by 1016
Abstract
Background and Objectives: Patients with GG rs738409 patatin-like phospholipase domain-containing protein 3 (PNPLA3) genotype (148M variant) have greater risk to develop end-stage liver disease and its associated clinical complications, including hepatocellular carcinoma (HCC). We aimed to analyze the association between the PNPLA3 [...] Read more.
Background and Objectives: Patients with GG rs738409 patatin-like phospholipase domain-containing protein 3 (PNPLA3) genotype (148M variant) have greater risk to develop end-stage liver disease and its associated clinical complications, including hepatocellular carcinoma (HCC). We aimed to analyze the association between the PNPLA3 genotype and augmented inflammatory response in transplant candidates with end-stage alcoholic liver disease (ALD). Materials and Methods: Concentrations of 13 cytokines were measured in 106 end-stage ALD patients without HCC (40 with CC, 40 with CG, and 26 with GG genotype), 35 end-stage ALD patients with HCC, and 19 control patients by cytometric bead array. Results: We found significantly higher concentrations of IL-1, IFN-α, IFN-γ, TNF-α, IL-6, CXCL8, IL-10, IL-12, IL-32, and IL-33 in patients with ALD compared to controls, while the concentration of CCL2 was significantly lower. No differences were observed in the concentration of IL-17 and IL-18. ALD patients with and without HCC had similar cytokine concentrations (p > 0.05 for all comparisons). End-stage ALD patients without HCC of the GG genotype had significantly higher CCL2 concentrations (212.6 [135.9–264.9] pg/mL) compared to end-stage ALD patients without HCC carrying the CC/CG genotypes (141.3 [104.1–201.6] pg/mL, p = 0.002, Mann–Whitney). No significant differences across the genotypes were found for the remaining measured cytokines (p > 0.05). GG carriers also had significantly higher levels of AST and ALT, and lower platelet counts. Conclusions: End-stage ALD patients without HCC who carry the PNPLA3 GG genotype have relatively higher CCL2 levels compared to those with the CC or CG genotypes. Relatively elevated CCL2 concentrations in GG patients might contribute to their increased risk of developing clinical complications compared to CC/CG patients. Full article
(This article belongs to the Special Issue Advances in Pathogenesis and Treatment of Chronic Liver Disease)
Show Figures

Figure 1

13 pages, 712 KB  
Article
Polymorphism’s MBOAT7 as Risk and MTARC1 as Protection for Liver Fibrosis in MASLD
by Sofia Rocha, Claudia P. Oliveira, José Tadeu Stefano, Roberta P. Yokogawa, Michele Gomes-Gouvea, Patricia Momoyo Youshimura Zitelli, Joyce Matie Kinoshita Silva-Etto, Eduarda Donegá Martins, Mario G. Pessoa, Flavio F. Alcantara, Raymundo S. Azevedo and João Renato Rebello Pinho
Int. J. Mol. Sci. 2025, 26(13), 6406; https://doi.org/10.3390/ijms26136406 - 3 Jul 2025
Cited by 1 | Viewed by 1522
Abstract
Previous large-scale genetic studies identified single-nucleotide polymorphisms (SNPs) of the membrane bound O-acyltransferase domain containing 7 (MBOAT7) and patatin-like phospholipase domain containing 3 (PNPLA3) genes as risk factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, this has not yet been investigated in [...] Read more.
Previous large-scale genetic studies identified single-nucleotide polymorphisms (SNPs) of the membrane bound O-acyltransferase domain containing 7 (MBOAT7) and patatin-like phospholipase domain containing 3 (PNPLA3) genes as risk factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, this has not yet been investigated in Brazilian patients. In this study, we evaluated the association between the PNPLA3 variant rs738409 and MBOAT7 variant rs641738 and the risk of hepatic fibrosis or liver cirrhosis in MASLD etiology. In parallel, we also aimed to evaluate a protective SNP of the mitochondrial amidoxime-reducing component 1 (MTARC1) gene. We also evaluated TM6SF2 rs58542926, GCKR rs1260326 and rs780094, and HSD17B13 rs72613567 and they were not associated with liver fibrosis. The study was conducted at the Department of Gastroenterology and Nutrology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), and included 113 patients with liver fibrosis (F0–F1), 99 patients with significant liver fibrosis (F2–F4), and 90 controls. SNPs were genotyped by quantitative PCR, using TaqMan allelic discrimination assays. Overall, the PNPLA3 GG genotype was more frequent in F2–F4 (23%) and F0–F1 (22%) patients than in controls (9%; p = 0.02). The MBOAT7 TT genotype was significantly associated with fibrosis, with a prevalence of 23% in F2–F4 patients versus 10% in F0–F1 and 11% in controls (p = 0.01). This association was confirmed by regression analysis (OR = 5.01 95% CI: 1.86–13.49; p = 1.41 × 10−3). The protective MTARC1 AA genotypes were more frequent in controls (52%) when compared to patients with fibrosis (5% p = 2.76 × 10−20). Full article
Show Figures

Figure 1

14 pages, 855 KB  
Article
PNPLA3 Polymorphism Is Inversely Correlated with Aortic Stiffness in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease Without Fibrosis
by Barbara Toffoli, Consuelo Comar, Andrea Grillo, Vincenzo Barbato, Emanuele Vincis, Veronica Baldi, Silvia Berti, Teresa Volpato, Francesca Zorat, Saveria Lory Crocè, Giacomo Emmi, Bruno Fabris, Massimo Puato and Stella Bernardi
Int. J. Mol. Sci. 2025, 26(7), 3256; https://doi.org/10.3390/ijms26073256 - 1 Apr 2025
Cited by 3 | Viewed by 1611
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) corresponds to the condition of increased hepatic fat levels, which is the leading cause of hepatic failure and carcinoma. It is also an independent risk factor for cardiovascular disease (CVD) and mortality. MASLD can be due to [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) corresponds to the condition of increased hepatic fat levels, which is the leading cause of hepatic failure and carcinoma. It is also an independent risk factor for cardiovascular disease (CVD) and mortality. MASLD can be due to obesity with insulin resistance and/or genetic predisposition, i.e., polymorphism in the patatin-like phospholipase domain-containing 3 (PNPLA3) gene. PNPLA3 polymorphism has been associated with increased hepatic fat levels, fibrosis, cirrhosis, and hepatocellular carcinoma, while its association with CVD remains to be fully understood. The aim of the current study was to examine whether the vascular phenotype of patients with MASLD differed between carriers and noncarriers of the PNPLA3 polymorphism. Adult patients with MASLD underwent clinical assessment, PNPLA3 genotyping, arterial tonometry for aortic stiffness measurement, and ultrasound examination of carotid arteries. In total, 117 patients with MASLD and no fibrosis (median hepatic stiffness was 4.71 kPa) were recruited. Carriers of the PNPLA3 polymorphism were younger and exhibited higher levels of ALT and APRI, as compared to wild-type subjects. On the other hand, carriers of the PNPLA3 polymorphism had not only a better metabolic profile (i.e., lower glucose and glycated hemoglobin) but also lower blood pressure, carotid intima-media thickness (IMT), and cardiovascular risk. In addition, PNPLA3 polymorphism was negatively correlated with aortic stiffness, which is a marker of arteriolosclerosis and vascular ageing. Our data are consistent with previous observations that in case of genetically-driven MASLD, there is an inverse association with common predictors of CVD. Our data support the view that the main contributors to CVD risk in patients with MASLD remain conventional cardiometabolic risk factors (i.e., age, glucose) that are more likely to be found in metabolic syndrome-related MASLD rather than genetically-driven MASLD, at least in the first stages of the disease. Full article
Show Figures

Figure 1

14 pages, 3005 KB  
Article
Supernatants from Newly Isolated Lacticaseibacillus paracasei P4 Ameliorate Adipocyte Metabolism in Differentiated 3T3-L1 Cells
by Natalia Grigorova, Zhenya Ivanova, Valeria Petrova, Ekaterina Vachkova and Georgi Beev
Biomedicines 2024, 12(12), 2785; https://doi.org/10.3390/biomedicines12122785 - 7 Dec 2024
Cited by 1 | Viewed by 1433
Abstract
Background: Lacticaseibacillus paracasei (L. paracasei) strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated L. paracasei strains, M2.1 and P4, were yielded from Formica rufa anthills in Sinite Kamani National Park, [...] Read more.
Background: Lacticaseibacillus paracasei (L. paracasei) strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated L. paracasei strains, M2.1 and P4, were yielded from Formica rufa anthills in Sinite Kamani National Park, Bulgaria. Their metabolic effects on mature 3T3-L1 adipocytes were investigated. Methods: Mature 3T3-L1 adipocytes were treated for 24 h with 10% (v/v) cell-free supernatants (CFSs) of M2.1 or P4. Two experimental (M2.1, P4) and two control groups (mature, untreated adipocytes and mature adipocytes, treated with 10% (v/v) MRS broth) were analyzed for intracellular lipid accumulation, glucose uptake, and the mRNA expression of lipid metabolism and beta-oxidation-related genes. Fold changes in gene expression were assessed using RT-qPCR. Results: Both M2.1 and P4 CFSs enhanced glucose uptake by over 30% compared to the control. P4 demonstrated a more favorable effect by significantly upregulating adipose triglyceride lipase–patatin-like phospholipase domain containing 2, adiponectin, and peroxisomal beta-oxidation enzymes—acyl-coenzyme A oxidase 1, palmitoyl. Intracellular lipid accumulation increased only with M2.1, while P4 supported improved lipid turnover without promoting excessive lipid storage or lipolysis. Conclusions: P4 CFS exhibits the potential to improve adipocyte metabolism by enhancing glucose uptake, promoting beta-oxidation, and increasing adiponectin expression, offering a promising strategy for managing metabolic dysfunctions. Full article
(This article belongs to the Special Issue Molecular Research in Obesity)
Show Figures

Figure 1

14 pages, 3173 KB  
Article
MiR-206 Suppresses Triacylglycerol Accumulation via Fatty Acid Elongase 6 in Dairy Cow Mammary Epithelial Cells
by Xin Zhao, Yu Liu, Yupeng Li, Yuxin Zhang, Chunlei Yang and Dawei Yao
Animals 2024, 14(17), 2590; https://doi.org/10.3390/ani14172590 - 6 Sep 2024
Cited by 2 | Viewed by 1417
Abstract
Cow milk possesses high nutritional value due to its rich array of beneficial fatty acids. It is important to understand the mechanisms involved in lipid metabolism in dairy cows. These mechanisms are driven by a complex molecular regulatory network. In addition, there are [...] Read more.
Cow milk possesses high nutritional value due to its rich array of beneficial fatty acids. It is important to understand the mechanisms involved in lipid metabolism in dairy cows. These mechanisms are driven by a complex molecular regulatory network. In addition, there are many regulatory factors involved in the process of fatty acid metabolism, including transcription factors and non-coding RNAs, amongst others. MicroRNAs (miRNAs) can regulate the expression of target genes and modulate various biological processes, including lipid metabolism. Specifically, miR-206 has been reported to impair lipid accumulation in nonruminant hepatocytes. However, the effects and regulatory mechanisms of miR-206 on lipid metabolism in bovine mammary cells remain unclear. In the present study, we investigated the effects of miR-206 on lipid-related genes and TAG accumulation. The direct downstream gene of miR-206 was subsequently determined via a dual-luciferase assay. Finally, the fatty acid content of bovine mammary epithelial cells (BMECs) upon ELOVL6 inhibition was examined. The results revealed that miR-206 overexpression significantly decreased triacylglycerol (TAG) concentration and abundances of the following: acetyl-coenzyme A carboxylase alpha (ACACA); fatty acid synthase (FASN); sterol regulatory element binding transcription factor 1 (SREBF1); diacylglycerol acyltransferase 1 (DGAT1); 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6); lipin 1 (LPIN1); and fatty acid elongase 6 (ELOVL6). Overexpression of miR-206 was also associated with an increase in patatin-like phospholipase domain-containing 2 (PNPLA2), while inhibition of miR-206 promoted milk fat metabolism in vitro. In addition, we found that ELOVL6 is a direct target gene of miR-206 through mutation of the binding site. Furthermore, ELOVL6 intervention significantly decreased the TAG levels and elongation indexes of C16:0 and C16:1n-7 in BMECs. Finally, ELOVL6 siRNA partially alleviated the increased TAG accumulation caused by miR-206 inhibition. In summary, we found that miR-206 inhibits milk fatty acid synthesis and lipid accumulation by targeting ELOVL6 in BMECs. The results presented in this paper may contribute to the development of strategies for enhancing the quality of cow milk and its beneficial fatty acids, from the perspective of miRNA–mRNA networks. Full article
Show Figures

Figure 1

15 pages, 5974 KB  
Article
A PNPLA3-Deficient iPSC-Derived Hepatocyte Screen Identifies Pathways to Potentially Reduce Steatosis in Metabolic Dysfunction-Associated Fatty Liver Disease
by Caren Doueiry, Christiana S. Kappler, Carla Martinez-Morant and Stephen A. Duncan
Int. J. Mol. Sci. 2024, 25(13), 7277; https://doi.org/10.3390/ijms25137277 - 2 Jul 2024
Cited by 4 | Viewed by 4342
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is increasing in adults and children. Unfortunately, effective pharmacological treatments remain unavailable. Single nucleotide polymorphisms (SNPs) in the patatin-like phospholipase domain-containing protein (PNPLA3 I148M) have the most significant [...] Read more.
The incidence of nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is increasing in adults and children. Unfortunately, effective pharmacological treatments remain unavailable. Single nucleotide polymorphisms (SNPs) in the patatin-like phospholipase domain-containing protein (PNPLA3 I148M) have the most significant genetic association with the disease at all stages of its progression. A roadblock to identifying potential treatments for PNPLA3-induced NAFLD is the lack of a human cell platform that recapitulates the PNPLA3 I148M-mediated onset of lipid accumulation. Hepatocyte-like cells were generated from PNPLA3/ and PNPLA3I148M/M-induced pluripotent stem cells (iPSCs). Lipid levels were measured by staining with BODIPY 493/503 and were found to increase in PNPLA3 variant iPSC-derived hepatocytes. A small-molecule screen identified multiple compounds that target Src/PI3K/Akt signaling and could eradicate lipid accumulation in these cells. We found that drugs currently in clinical trials for cancer treatment that target the same pathways also reduced lipid accumulation in PNPLA3 variant cells. Full article
(This article belongs to the Special Issue Recent Research in Stem Cells to Organoids)
Show Figures

Graphical abstract

22 pages, 1956 KB  
Article
Evidence That Peripheral Leptin Resistance in Omental Adipose Tissue and Liver Correlates with MASLD in Humans
by Lucia De la Cruz-Color, Jose Alfredo Dominguez-Rosales, Montserrat Maldonado-González, Bertha Ruíz-Madrigal, Martha P. Sánchez Muñoz, Vianney Alejandrina Zaragoza-Guerra, Victor H. Espinoza-Padilla, Elizabeth del C. Ruelas-Cinco, Sandra M. Ramírez-Meza, José R. Torres Baranda, María del R. González-Gutiérrez and Zamira Helena Hernandez Nazara
Int. J. Mol. Sci. 2024, 25(12), 6420; https://doi.org/10.3390/ijms25126420 - 11 Jun 2024
Cited by 8 | Viewed by 4870
Abstract
Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly [...] Read more.
Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT–liver crosstalk and the complications of MASLD in humans. Full article
Show Figures

Figure 1

17 pages, 2808 KB  
Article
The Role of PNPLA3_rs738409 Gene Variant, Lifestyle Factors, and Bioactive Compounds in Nonalcoholic Fatty Liver Disease: A Population-Based and Molecular Approach towards Healthy Nutrition
by Meiling Liu and Sunmin Park
Nutrients 2024, 16(8), 1239; https://doi.org/10.3390/nu16081239 - 21 Apr 2024
Cited by 13 | Viewed by 3911
Abstract
This study aimed to investigate the impact of a common non-synonymous gene variant (C>G, rs738409) in patatin-like phospholipase domain-containing 3 (PNPLA3), leading to the substitution of isoleucine with methionine at position 148 (PNPLA3-I148M), on susceptibility to nonalcoholic fatty liver [...] Read more.
This study aimed to investigate the impact of a common non-synonymous gene variant (C>G, rs738409) in patatin-like phospholipase domain-containing 3 (PNPLA3), leading to the substitution of isoleucine with methionine at position 148 (PNPLA3-I148M), on susceptibility to nonalcoholic fatty liver disease (NAFLD) and explore potential therapeutic nutritional strategies targeting PNPLA3. It contributed to understanding sustainable dietary practices for managing NAFLD, recently referred to as metabolic-dysfunction-associated fatty liver. NAFLD had been diagnosed by ultrasound in a metropolitan hospital-based cohort comprising 58,701 middle-aged and older Korean individuals, identifying 2089 NAFLD patients. The interaction between PNPLA3 and lifestyle factors was investigated. In silico analyses, including virtual screening, molecular docking, and molecular dynamics simulations, were conducted to identify bioactive compounds from foods targeting PNPLA3(I148M). Subsequent cellular experiments involved treating oleic acid (OA)-exposed HepG2 cells with selected bioactive compounds, both in the absence and presence of compound C (AMPK inhibitor), targeting PNPLA3 expression. Carriers of the risk allele PNPLA3_rs738409G showed an increased association with NAFLD risk, particularly with adherence to a plant-based diet, avoidance of a Western-style diet, and smoking. Delphinidin 3-caffeoyl-glucoside, pyranocyanin A, delta-viniferin, kaempferol-7-glucoside, and petunidin 3-rutinoside emerged as potential binders to the active site residues of PNPLA3, exhibiting a reduction in binding energy. These compounds demonstrated a dose-dependent reduction in intracellular triglyceride and lipid peroxide levels in HepG2 cells, while pretreatment with compound C showed the opposite trend. Kaempferol-7-glucoside and petunidin-3-rutinoside showed potential as inhibitors of PNPLA3 expression by enhancing AMPK activity, ultimately reducing intrahepatic lipogenesis. In conclusion, there is potential for plant-based diets and specific bioactive compounds to promote sustainable dietary practices to mitigate NAFLD risk, especially in individuals with genetic predispositions. Full article
Show Figures

Figure 1

33 pages, 2315 KB  
Review
The Intersection of Genetic Factors, Aberrant Nutrient Metabolism and Oxidative Stress in the Progression of Cardiometabolic Disease
by Andrew J. Butcko, Ashley K. Putman and Emilio P. Mottillo
Antioxidants 2024, 13(1), 87; https://doi.org/10.3390/antiox13010087 - 10 Jan 2024
Cited by 7 | Viewed by 4558
Abstract
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as [...] Read more.
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as diet. With the increased reliance on processed foods containing saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD, which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member 2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually associated with one another. In addition, some of the genetic risk factors which are associated with MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate one disease from the other. Through a better understanding of the causative effect of genetic mutations in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies and precision approaches can be developed for treating CMD. Full article
Show Figures

Figure 1

15 pages, 1454 KB  
Review
Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics
by Gary Huang, Daniel F. Wallace, Elizabeth E. Powell, Tony Rahman, Paul J. Clark and V. Nathan Subramaniam
Biomedicines 2023, 11(10), 2809; https://doi.org/10.3390/biomedicines11102809 - 17 Oct 2023
Cited by 26 | Viewed by 4128
Abstract
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in the absence of inflammation is relatively benign, but the disease can progress into more severe forms like non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. NAFLD onset and progression are complex, as it is affected by many risk factors. The interaction between genetic predisposition and other factors partially explains the large variability of NAFLD phenotype and natural history. Numerous genes and variants have been identified through large-scale genome-wide association studies (GWAS) that are associated with NAFLD and one or more subtypes of the disease. Among them, the largest effect size and most consistent association have been patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) genes. Extensive in vitro and in vivo studies have been conducted on these variants to validate these associations. The focus of this review is to highlight the genetics underpinning the molecular mechanisms driving the onset and progression of NAFLD and how they could potentially be used to improve genetic-based diagnostic testing of the disease and develop personalized, targeted therapeutics. Full article
Show Figures

Figure 1

15 pages, 7336 KB  
Review
Pathology and Pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatic Tumors
by Yoshihisa Takahashi, Erdenetsogt Dungubat, Hiroyuki Kusano and Toshio Fukusato
Biomedicines 2023, 11(10), 2761; https://doi.org/10.3390/biomedicines11102761 - 12 Oct 2023
Cited by 45 | Viewed by 6497
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive fat accumulation in the livers of patients without a history of alcohol abuse. It is classified as either simple steatosis (nonalcoholic fatty liver) or nonalcoholic steatohepatitis (NASH), which can progress to liver cirrhosis and [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive fat accumulation in the livers of patients without a history of alcohol abuse. It is classified as either simple steatosis (nonalcoholic fatty liver) or nonalcoholic steatohepatitis (NASH), which can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Recently, it was suggested that the terms “metabolic dysfunction-associated steatotic liver disease (MASLD)” and “metabolic dysfunction-associated steatohepatitis (MASH)” should replace the terms “nonalcoholic fatty liver disease (NAFLD)” and “nonalcoholic steatohepatitis (NASH)”, respectively, with small changes in the definitions. MASLD, a hepatic manifestation of metabolic syndrome, is rapidly increasing in incidence globally, and is becoming an increasingly important cause of HCC. Steatohepatitic HCC, a histological variant of HCC, is characterized by its morphological features resembling non-neoplastic steatohepatitis and is closely associated with underlying steatohepatitis and metabolic syndrome. Variations in genes including patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), and membrane-bound O-acyltransferase domain-containing protein 7 (MBOAT7) are associated with the natural history of MASLD, including HCC development. The mechanisms of HCC development in MASLD have not been fully elucidated; however, various factors, including lipotoxicity, inflammation, reactive oxygen species, insulin resistance, and alterations in the gut bacterial flora, are important in the pathogenesis of MASLD-associated HCC. Obesity and MASLD are also recognized as risk factors for hepatocellular adenomas, and recent meta-analyses have shown an association between MASLD and intrahepatic cholangiocarcinoma. In this review, we outline the pathology and pathogenesis of MASLD-associated liver tumors. Full article
(This article belongs to the Special Issue NASH and Hepatocellular Carcinoma (HCC))
Show Figures

Figure 1

8 pages, 634 KB  
Brief Report
PNPLA3 rs738409 Genetic Variant Inversely Correlates with Platelet Count, Thereby Affecting the Performance of Noninvasive Scores of Hepatic Fibrosis
by Marica Meroni and Paola Dongiovanni
Int. J. Mol. Sci. 2023, 24(20), 15046; https://doi.org/10.3390/ijms242015046 - 10 Oct 2023
Cited by 6 | Viewed by 2689
Abstract
Noninvasive tests (NITs) including platelets (PLTs) have been proposed to replace hepatic biopsy for the diagnosis of nonalcoholic fatty liver disease (NAFLD), or as more recently redefined, metabolic dysfunction-associated steatotic liver disease (MASLD). There has been reported an inverse correlation between PLTs and [...] Read more.
Noninvasive tests (NITs) including platelets (PLTs) have been proposed to replace hepatic biopsy for the diagnosis of nonalcoholic fatty liver disease (NAFLD), or as more recently redefined, metabolic dysfunction-associated steatotic liver disease (MASLD). There has been reported an inverse correlation between PLTs and progressive MASLD, which is also affected by the patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 C>G mutation. However, the correlation between low PLTs and PNPLA3 genotype has been poorly investigated. We stratified 1155 biopsy-proven MASLD patients according to PNPLA3 genotype. The hepatic expression of genes involved in megakaryopoiesis was investigated in n = 167 bariatric patients by RNAseq. PLT count progressively decreased according to the number of PNPLA3 at-risk alleles, irrespective of the presence of advanced fibrosis. The hepatic expression of genes involved in PLT biogenesis was associated with the PNPLA3 GG genotype. Finally, the presence of the PNPLA3 homozygosity flattened the accuracy of fibrosis-4 (FIB-4) in discriminating histological fibrosis stages. The PNPLA3 GG genotype may underpower the accuracy of NITs which include PLT count in identifying those patients with potentially reversible stages of fibrosis. Full article
Show Figures

Figure 1

12 pages, 1253 KB  
Article
Saturated Fat-Mediated Upregulation of IL-32 and CCL20 in Hepatocytes Contributes to Higher Expression of These Fibrosis-Driving Molecules in MASLD
by Katharina Schilcher, Rania Dayoub, Marion Kubitza, Jakob Riepl, Kathrin Klein, Christa Buechler, Michael Melter and Thomas S. Weiss
Int. J. Mol. Sci. 2023, 24(17), 13222; https://doi.org/10.3390/ijms241713222 - 25 Aug 2023
Cited by 12 | Viewed by 3226
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correlation was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20 expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion, cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20, both known to trigger inflammation and fibrosis. Full article
(This article belongs to the Special Issue Exploring Molecular Mechanisms of Liver Fibrosis)
Show Figures

Figure 1

14 pages, 1520 KB  
Article
New Diagnostic and Prognostic Models for the Development of Alcoholic Cirrhosis Based on Genetic Predisposition and Alcohol History
by Monica Mischitelli, Alessandra Spagnoli, Aurelio Abbatecola, Claudia Codazzo, Marta Giacomelli, Simona Parisse, Rosellina Margherita Mancina, Claudia Rotondo, Fabio Attilia, Stefano Ginanni Corradini and Flaminia Ferri
Biomedicines 2023, 11(8), 2132; https://doi.org/10.3390/biomedicines11082132 - 28 Jul 2023
Viewed by 2019
Abstract
Liver cirrhosis development is a multifactorial process resulting from a combination of environmental and genetic factors. The aim of the study was to develop accurate non-invasive diagnostic and prognostic models for alcoholic cirrhosis. Consecutive subjects with at-risk alcohol intake were retrospectively enrolled (110 [...] Read more.
Liver cirrhosis development is a multifactorial process resulting from a combination of environmental and genetic factors. The aim of the study was to develop accurate non-invasive diagnostic and prognostic models for alcoholic cirrhosis. Consecutive subjects with at-risk alcohol intake were retrospectively enrolled (110 cirrhotic patients and 411 non-cirrhotics). At enrollment, the data about lifetime drinking history were collected and all patients were tested for Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409, Transmembrane 6 Superfamily 2 (TM6SF2) rs58542926, and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) rs72613567 variants. In cross-sectional analyses, models for the diagnosis of cirrhosis were developed using multivariate logistic regression. A predictive score for cirrhosis development over 24 years was built by evaluating time-dependent AUC curves. The best diagnostic accuracy was demonstrated by the model, which also includes daily alcohol consumption, duration of hazardous alcohol use, and genetic variants, with AUCs of 0.951 (95% CI 0.925–0.977) and 0.887 (95% CI 0.925–0.977) for cirrhosis and compensated cirrhosis, respectively. The predictive model for future cirrhosis development (AUC of 0.836 95% CI: 0.769–0.904) accounted for age at onset of at-risk alcohol consumption and the number of PNPLA3 and HSD17B13 variant alleles. We have developed accurate genetic and alcohol consumption models for the diagnosis of alcoholic cirrhosis and the prediction of its future risk. Full article
Show Figures

Figure 1

Back to TopTop