Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (672)

Search Parameters:
Keywords = partial cement replacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 (registering DOI) - 2 Aug 2025
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

19 pages, 2157 KiB  
Article
WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars
by Raphaele Malheiro, André Lemos, Aires Camões, Duarte Ferreira, Juliana Alves and Cristina Quintelas
Sci 2025, 7(3), 107; https://doi.org/10.3390/sci7030107 (registering DOI) - 2 Aug 2025
Abstract
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated [...] Read more.
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated by substituting 25% of cement by volume with glass powders from fluorescent lamp glass and green bottle glass. The experimental program evaluated mechanical strength, durability parameters and ecotoxicological performance. Results revealed that clean fluorescent lamp mortars showed the most promising mechanical behavior, exceeding the reference in long-term compressive (54.8 MPa) and flexural strength (10.0 MPa). All glass mortars exhibited significantly reduced chloride diffusion coefficients (85–89%) and increased electrical resistivity (almost 4 times higher), indicating improved durability. Leaching tests confirmed that the incorporation of fluorescent lamp waste did not lead to hazardous levels of heavy metals in the cured mortars, suggesting effective encapsulation. By addressing both technical (mechanical and durability) and ecotoxic performance, this research contributes in an original and relevant way to the development of more sustainable building materials. Full article
Show Figures

Figure 1

27 pages, 4880 KiB  
Article
Multi-Objective Optimization of Steel Slag–Ceramsite Foam Concrete via Integrated Orthogonal Experimentation and Multivariate Analytics: A Synergistic Approach Combining Range–Variance Analyses with Partial Least Squares Regression
by Alipujiang Jierula, Haodong Li, Tae-Min Oh, Xiaolong Li, Jin Wu, Shiyi Zhao and Yang Chen
Appl. Sci. 2025, 15(15), 8591; https://doi.org/10.3390/app15158591 (registering DOI) - 2 Aug 2025
Abstract
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal [...] Read more.
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal experimental design at a fixed density of 800 kg/m3, 12 mix proportions (including a control group) were investigated with the variables of water-to-cement (W/C) ratio, steel slag replacement ratio, and ceramsite replacement ratio. The governing mechanisms of the W/C ratio, steel slag replacement level, and ceramsite replacement proportion on the SSCFC’s fluidity and compressive strength (CS) were elucidated. The synergistic application of range analysis and analysis of variance (ANOVA) quantified the significance of factors on target properties, and partial least squares regression (PLSR)-based prediction models were established. The test results indicated the following significance hierarchy: steel slag replacement > W/C ratio > ceramsite replacement for fluidity. In contrast, W/C ratio > ceramsite replacement > steel slag replacement governed the compressive strength. Verification showed R2 values exceeding 65% for both fluidity and CS predictions versus experimental data, confirming model reliability. Multi-criteria optimization yielded optimal compressive performance and suitable fluidity at a W/C ratio of 0.4, 10% steel slag replacement, and 25% ceramsite replacement. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 143
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

20 pages, 6713 KiB  
Article
Influence of Nanosilica and PVA Fibers on the Mechanical and Deformation Behavior of Engineered Cementitious Composites
by Mohammed A. Albadrani
Polymers 2025, 17(15), 2067; https://doi.org/10.3390/polym17152067 - 29 Jul 2025
Viewed by 190
Abstract
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step [...] Read more.
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step is to improve their performance even more through nano-modification and fine-tuning of fiber dosage—one of the major research directions. In the experiment, six types of ECC mixtures were made by maintaining constant PVA fiber content (0.5, 1.0, 1.5, and 2.0%), while the nanosilica contents were varied (0, 1, 2, 3, and 5%). Stress–strain tests carried out in the form of compression, together with unrestrained shrinkage measurement, were conducted to test strength, strain capacity, and resistance to deformation, which was highest at 80 MPa, recorded in the concrete with 2% nS and 0.5% PVA. On the other hand, the mixture of 1.5% PVA and 3% nS had the highest strain result of 2750 µm/m, which indicates higher ductility. This is seen to be influenced by refined microstructures, improved fiber dispersion, and better fiber–matrix interfacial bonding through nS. In addition to these mechanical modifications, the use of nanosilica, obtained from industrial byproducts, provided the possibility to partially replace Portland cement, resulting in a decrease in the amount of CO2 emissions. In addition, the enhanced crack resistance implies higher durability and reduced long-term maintenance. Such results demonstrate that optimized ECC compositions, including nS and PVA, offer high performance in terms of strength and flexibility as well as contribute to the sustainability goals—features that will define future eco-efficient infrastructure. Full article
Show Figures

Figure 1

22 pages, 3056 KiB  
Article
Recycled Glass and Plastic Waste in Sustainable Geopolymer Systems for Affordable Housing Solutions
by Zhao Qing Tang, Yat Choy Wong, Yali Li and Eryadi Kordi Masli
Recycling 2025, 10(4), 147; https://doi.org/10.3390/recycling10040147 - 27 Jul 2025
Viewed by 286
Abstract
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, [...] Read more.
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, with 10% recycled crushed glass (RCG) and recycled plastic waste (RPW) as partial coarse aggregate replacements. Compressive strength testing revealed that FA + S-based geopolymers (25FA + S) with 100% ordinary Portland cement (OPC) replacement achieved a 7-day strength of 24.6 MPa, representing a 98% improvement over control specimens. Slag-based geopolymers demonstrated water absorption properties comparable to OPC, indicating enhanced durability. Microstructural analyses using SEM, XRD, and EDS confirmed the formation of a dense aluminosilicate matrix, with slag promoting FA reactivity and reinforcing interfacial transition zone (ITZ). These effects contributed to superior mechanical performance and water resistance. Despite minor shrinkage-induced cracking, full OPC replacement with S or FA + S geopolymers outperformed control specimens, consistently exceeding the target strength of 15 MPa required for low-impact, single-story housing applications within seven days. These findings underscore the potential of geopolymer systems for rapid and sustainable construction, offering an effective solution for reducing carbon footprints and repurposing industrial waste. Full article
Show Figures

Figure 1

20 pages, 1666 KiB  
Article
Optimized Design of Low-Carbon Fly Ash–Slag Composite Concrete Considering Carbonation Durability and CO2 Concentration Rising Impacts
by Kang-Jia Wang, Seung-Jun Kwon and Xiao-Yong Wang
Materials 2025, 18(14), 3418; https://doi.org/10.3390/ma18143418 - 21 Jul 2025
Viewed by 297
Abstract
Fly ash and slag are widely used as mineral admixtures to partially replace cement in low-carbon concrete. However, such composite concretes often exhibit a greater carbonation depth than plain Portland concrete with the same 28-day strength, increasing the risk of steel reinforcement corrosion. [...] Read more.
Fly ash and slag are widely used as mineral admixtures to partially replace cement in low-carbon concrete. However, such composite concretes often exhibit a greater carbonation depth than plain Portland concrete with the same 28-day strength, increasing the risk of steel reinforcement corrosion. Previous mix design methods have overlooked this issue. This study proposes an optimized design method for fly ash–slag composite concrete, considering carbonation exposure classes and CO2 concentrations. Four exposure classes are addressed—XC1 (completely dry or permanently wet environments such as indoor floors or submerged concrete), XC2 (wet but rarely dry, e.g., inside water tanks), XC3 (moderate humidity, e.g., sheltered outdoor environments), and XC4 (cyclic wet and dry, e.g., bridge decks and exterior walls exposed to rain). Two CO2 levels—0.04% (ambient) and 0.05% (elevated)—were also considered. In Scenario 1 (no durability constraint), the optimized designs for all exposure classes were identical, with 60% slag and 75% total fly ash–slag replacement. In Scenario 2 (0.04% CO2 with durability), the designs for XC1 and XC2 remained the same, but for XC3 and XC4, the carbonation depth became the controlling factor, requiring a higher binder content and leading to compressive strengths exceeding the target. In Scenario 3 (0.05% CO2), despite the increased carbonation depth, the XC1 and XC2 designs were unchanged. However, XC3 and XC4 required further increases in binder content and actual strength to meet durability limits. Overall, compressive strength governs the design for XC1 and XC2, while carbonation durability is critical for XC3 and XC4. Increasing the water-to-binder ratio reduces strength, while higher-strength mixes emit more CO2 per cubic meter, confirming the proposed method’s engineering validity. Full article
Show Figures

Figure 1

20 pages, 10098 KiB  
Article
Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms
by Qunchao Ma, Kangyu Wang, Qiang Li and Yuting Zhang
Materials 2025, 18(14), 3408; https://doi.org/10.3390/ma18143408 - 21 Jul 2025
Viewed by 261
Abstract
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement [...] Read more.
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement partially replaced by silica fume (i.e., 0%, 4%, 8%, and 12%), and quicklime activation under three water–solid ratios (WSR, i.e., 0.525, 0.55, and 0.575). Experimental assessments included flowability tests, unconfined compressive strength, direct shear tests, and microstructural analysis via XRD and SEM. The results indicate that SF substitution significantly mitigates flowability loss during the 90–120 min interval, thereby extending the operational period. Moreover, the greatest enhancement in mechanical performance was achieved at an 8% SF replacement: at WSR = 0.55, the 3-day UCS increased by 22.78%, while the 7-day cohesion and internal friction angle rose by 13.97% and 2.59%, respectively. Microscopic analyses also confirmed that SF’s pozzolanic reaction generated additional C-S-H gel. However, the SF substitution exhibits a pronounced threshold effect, with levels above 8% introducing unreacted particles that disrupt the cementitious network. These results underscore the critical balance between flowability and early-age strength for stable marine pile scour repair, with WSR = 0.525 and 8% SF substitution identified as the optimal mix. Full article
Show Figures

Figure 1

20 pages, 4028 KiB  
Article
Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
by Tayyab Zafar, Muhammad Saeed Zafar and Maryam Hojati
Materials 2025, 18(14), 3327; https://doi.org/10.3390/ma18143327 - 15 Jul 2025
Viewed by 344
Abstract
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% [...] Read more.
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% and 60% by volume, and 50% of the cement was replaced with slag to enhance sustainability. Furthermore, 2% polyethylene (PE) fibers were used to improve the mechanical characteristics and 1% methylcellulose (MC) was used to increase the rheological stability. Pumice aggregates, presoaked for 24 h, were used as an internal curing agent to assess their effect on the printability. Three ECC mixes, CT-PE2-6-10 (control), P30-PE2-6-10 (30% pumice), and P60-PE2-6-10 (60% pumice), were printed using a 3D gantry printing system. A flow table and rheometer were used to evaluate the flowability and rheological properties. Extrudability was measured in terms of dimensional consistency and the coefficient of variation (CV%) to evaluate printability, whereas buildability was determined in terms of the maximum number of layers stacked before failure. All of the mixes met the extrudability criterion (CV < 5%), with P30-PE2-6-10 demonstrating superior printing quality and buildability, having 16 layers, which was comparable with the control mix that had 18 layers. Full article
Show Figures

Figure 1

13 pages, 2375 KiB  
Communication
Research on the Effect of Calcium Alginate-Red Mud Microspheres on the Performance of Cement Mortar by Partially Replacing Standard Sand
by Ruizhuo Liu, Zibo Lin, Shencheng Fan, Yao Cheng, Yuanyang Li, Jinsheng Li, Haiying Zou, Yongsi Chen, Liting Zheng and Jing Li
Materials 2025, 18(14), 3326; https://doi.org/10.3390/ma18143326 - 15 Jul 2025
Viewed by 262
Abstract
With the depletion of river sand resources and increasing environmental concerns, the development of alternative materials has become an urgent need in the construction industry. Waste concrete and non-waste concrete materials have been widely studied as alternatives to river sand. Although recycled concrete [...] Read more.
With the depletion of river sand resources and increasing environmental concerns, the development of alternative materials has become an urgent need in the construction industry. Waste concrete and non-waste concrete materials have been widely studied as alternatives to river sand. Although recycled concrete fine aggregates are close to natural sand in terms of mechanical properties, their surface cement adheres and affects the performance of cement, whereas non-recycled concrete fine aggregates perform superiorly in terms of ease of use and compressive properties, but there are challenges of supply stability and standardization. Red mud, as an industrial waste, is a potential alternative material due to its stable supply and high alkaline characteristics. In this paper, a new method is proposed for utilizing the cross-linking reaction between sodium alginate and calcium chloride by the calcium alginate-red mud microsphere preparation technique and the surface modification of red mud to enhance its bonding with cement. The experimental results showed that the mechanical properties of CMC-RM-SiO2-2.5% were improved by 13.9% compared with those of the benchmark cement mortar, and the encapsulation of red mud by calcium alginate significantly reduced the transfer of hazardous elements in red mud. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 7071 KiB  
Article
An Experimental Investigation into the Performance of Concrete and Mortar with Partial Replacement of Fine Aggregate by Printed Circuit Board (PCB) E-Waste
by Srinivasan Krishnan, Sai Gopal Krishna Bhagavatula, Jayanarayanan Karingamanna and Mini K. Madhavan
Recycling 2025, 10(4), 138; https://doi.org/10.3390/recycling10040138 - 12 Jul 2025
Viewed by 245
Abstract
The increasing accumulation of E-waste presents significant environmental challenges, particularly its disposal and resource management. The present study investigates the potential of printed circuit boards (PCBs) as a partial replacement for fine aggregates in cement mortar and concrete. The replacement levels of PCBs [...] Read more.
The increasing accumulation of E-waste presents significant environmental challenges, particularly its disposal and resource management. The present study investigates the potential of printed circuit boards (PCBs) as a partial replacement for fine aggregates in cement mortar and concrete. The replacement levels of PCBs ranged from 0 to 35 wt% in cement mortar and from 0 to 30 wt% in concrete, aiming to improve the qualities of both mixes. The specimens were cured for 7 and 28 days, respectively, followed by tests to evaluate the flowability and static mechanical properties. The performance of the developed mortar/concrete was analyzed under aggressive environmental conditions by conducting various durability tests. Properties such as acoustic and thermal conductivity were also evaluated to check the suitability of the developed material for its multifunctionality. Test results revealed that the optimal replacement percentages of fine aggregate by PCBs in mortar and concrete mixes were 25 wt% and 20 wt%, respectively. A decline in mechanical properties was observed after a further increase in replacement level. The results demonstrate the feasibility of E-waste integration in cement and mortar as a sustainable waste management solution. Full article
Show Figures

Figure 1

23 pages, 2548 KiB  
Review
Incorporation of Waste Glass Powder in the Sustainable Development of Concrete
by Arvindan Sivasuriyan and Eugeniusz Koda
Materials 2025, 18(14), 3223; https://doi.org/10.3390/ma18143223 - 8 Jul 2025
Viewed by 360
Abstract
The steep incline in the rising need for sustainable construction materials has marked the emerging trend of comprehensive research on utilizing waste glass powder (WGP) as a partial substitute for fine aggregates, such as cement, and coarse aggregates in concrete preparation. This review [...] Read more.
The steep incline in the rising need for sustainable construction materials has marked the emerging trend of comprehensive research on utilizing waste glass powder (WGP) as a partial substitute for fine aggregates, such as cement, and coarse aggregates in concrete preparation. This review thoroughly examines WGP-incorporated concrete in terms of its mechanical and durability properties. It explores compressive, tensile, and flexural strength, as well as its resistance to freeze–thaw cycles, sulfate attack, and chloride ion penetration. The characteristic microstructure densification, strength development, and durability performance can be attributed to the pozzolanic activity of WGP that forms additional calcium silicate hydrate (C-S-H). The review also highlights the optimal replacement levels of WGP to balance mechanical performance and long-term stability while addressing potential challenges, such as alkali–silica reaction (ASR) and reduced workability at high replacement ratios. By consolidating recent research findings, this study highlights the feasibility of WGP as a sustainable supplementary cementitious material (SCM), promoting eco-friendly construction while mitigating environmental concerns associated with glass waste disposal. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

43 pages, 4655 KiB  
Review
Advancements in Characterization and Potential Structural Seismic Performance of Alkali-Activated Concrete Incorporating Crumb Rubber: A State-of-the-Art Review
by Yousef Elbaz, Aman Mwafy, Hilal El-Hassan and Tamer El-Maaddawy
Sustainability 2025, 17(13), 6043; https://doi.org/10.3390/su17136043 - 1 Jul 2025
Viewed by 313
Abstract
The production of ordinary Portland cement has had a significant environmental impact, leading to increased interest in sustainable alternatives. This comprehensive review thus explores the performance and applications of rubberized alkali-activated concrete (RuAAC), an innovative material combining alkali-activated concrete with crumb rubber (CR) [...] Read more.
The production of ordinary Portland cement has had a significant environmental impact, leading to increased interest in sustainable alternatives. This comprehensive review thus explores the performance and applications of rubberized alkali-activated concrete (RuAAC), an innovative material combining alkali-activated concrete with crumb rubber (CR) from waste tires as a coarse/fine aggregate replacement. The study examined current research on the components, physical and mechanical properties, and seismic performance of RuAAC structures. Key findings revealed that CR addition enhances dynamic characteristics while reducing compressive strength by up to 63% at 50% CR replacement, though ductility improvements partially offset this reduction. Novel CR pretreatment methods, such as eggshell catalyzation, can enhance seismic resilience potential. While studies on the structural seismic performance of RuAAC are limited, relevant research on rubberized conventional concrete indicated several potential benefits, highlighting a critical gap in the current body of knowledge. Research on the behavior of RuAAC in full-scale structural elements and under seismic loading conditions remains notably lacking. By examining existing research and identifying crucial research gaps, this review provides a foundation for future investigations into the structural behavior and seismic response of RuAAC, potentially paving the way for its practical implementation in earthquake-resistant and sustainable construction. Full article
Show Figures

Figure 1

21 pages, 3185 KiB  
Article
Sustainable Use of Gypsum Waste for Applications in Soil–Cement Bricks: Mechanical, Environmental, and Durability Performance
by Elvia Soraya Santos Nascimento, Herbet Alves de Oliveira, Cochiran Pereira dos Santos, Maria de Andrade Gomes, Mário Ernesto Giroldo Valerio and Zélia Soares Macedo
Ceramics 2025, 8(3), 83; https://doi.org/10.3390/ceramics8030083 - 1 Jul 2025
Viewed by 370
Abstract
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in [...] Read more.
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in proportions ranging from 5% to 40%. The raw materials were characterized in terms of chemical composition, crystalline phases, plasticity, and thermal behavior. Specimens, molded by uniaxial pressing into cylindrical bodies and cured for either 7 or 28 days, were evaluated for compressive strength, water absorption, durability, and microstructure. Water absorption remained below 20% in all samples, with an average value of 16.20%. Compressive strength after 7 days exhibited a slight reduction with increasing gypsum content, ranging from 16.36 MPa (standard formulation) to 13.74 MPa (40% gypsum), all meeting the quality standards. After 28 days of curing, the formulation containing 10% gypsum achieved the highest compressive strength (26.7 MPa), surpassing the reference sample (25.2 MPa). Mass loss during wetting–drying cycles remained within acceptable limits for formulations incorporating up to 20% gypsum. Notably, samples with 5% and 10% gypsum demonstrated superior mechanical performance, while the 20% formulation showed performance comparable to the standard formulation. These findings indicate that replacing up to 20% of cement with gypsum waste is a technically and environmentally viable approach, supporting sustainable development, circular economy, and reduction of construction-related environmental impacts. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

28 pages, 54702 KiB  
Article
Experimental and Numerical Assessment of Sustainable Concrete Using Recycled Concrete Powder (RCP) as a Partial Replacement for Cement
by Hafiz Asfandyar Ahmed and Waqas Arshad Tanoli
Materials 2025, 18(13), 3108; https://doi.org/10.3390/ma18133108 - 1 Jul 2025
Viewed by 390
Abstract
The demolition of structures generates waste that poses environmental, social, and economic challenges. This study explores the effects of incorporating recycled concrete powder (RCP) into concrete, using it as a cement substitute at levels of 0%, 20%, 25%, and 30%. We evaluated fresh [...] Read more.
The demolition of structures generates waste that poses environmental, social, and economic challenges. This study explores the effects of incorporating recycled concrete powder (RCP) into concrete, using it as a cement substitute at levels of 0%, 20%, 25%, and 30%. We evaluated fresh properties like workability and hardened properties such as dry density, water absorption, compressive, flexural, and split tensile strength, along with non-destructive parameters and microstructural features. The study found that substituting 20% of cement with RCP does not significantly impact mechanical properties, while higher substitutions (25% and 30%) have a slightly greater effect. Notably, 20% RCP substitution resulted in a 15–18% reduction in compressive strength over 7 to 28 days. However, it also led to a 20% decrease in CO2 emissions. A numerical analysis using nonlinear finite element analysis for flexural beam simulations further validated these results. Overall, the study promotes sustainable concrete solutions, achieving a balance between strength, environmental impact, and eco-efficiency in construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop