Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = parachute recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
59 pages, 45108 KiB  
Review
Safety Systems for Emergency Landing of Civilian Unmanned Aerial Vehicles (UAVs)—A Comprehensive Review
by Mohsen Farajijalal, Hossein Eslamiat, Vikrant Avineni, Eric Hettel and Clark Lindsay
Drones 2025, 9(2), 141; https://doi.org/10.3390/drones9020141 - 14 Feb 2025
Cited by 2 | Viewed by 3745
Abstract
The expanding use of civilian unmanned aerial vehicles (UAVs) has brought forth a crucial need to address the safety risks they pose in the event of failure, especially when flying in populated areas. This paper reviews recent advancements in recovery systems designed for [...] Read more.
The expanding use of civilian unmanned aerial vehicles (UAVs) has brought forth a crucial need to address the safety risks they pose in the event of failure, especially when flying in populated areas. This paper reviews recent advancements in recovery systems designed for the emergency landing of civilian UAVs. It covers a wide range of recovery methods, categorizing them based on different recovery approaches and UAV types, including multirotor and fixed-wing. The study highlights the diversity of recovery strategies, ranging from parachute and airbag systems to software-based methods and hybrid solutions. It emphasizes the importance of considering UAV-specific characteristics and operational environments when selecting appropriate safety systems. Furthermore, by comparing various emergency landing systems, this study reveals that integrating multiple approaches based on the UAV type and mission requirements can achieve broader cover of emergency situations compared to using a single system for a specific scenario. Examples of UAVs that utilize emergency landing systems are also provided. For each recovery system, three key parameters of operating altitude, flight speed and added weight are presented. Researchers and UAV developers can utilize this information to identify a suitable emergency landing method tailored to their mission requirements and available UAVs. Based on the key trends and challenges found in the literature, this review concludes by proposing specific, actionable recommendations. These recommendations are directed towards researchers, UAV developers, and regulatory bodies, and focus on enhancing the safety of civilian UAV operations through the improvement of emergency landing systems. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

34 pages, 37835 KiB  
Article
Design and Development of Miniature Measuring Instrument for Parachute Cords Dynamic Load for Stepless Parachute Opening
by Wei Liang, Xin Zhao, Pengpeng Wu, Yuxin Li and Shuai Lv
Sensors 2024, 24(19), 6232; https://doi.org/10.3390/s24196232 - 26 Sep 2024
Viewed by 1200
Abstract
Spacecraft recovery technology is crucial in the field of aerospace, in which the parachute plays a key role in slowing down the descent speed of the spacecraft and realizing a smooth landing. In order to construct a dynamically adjustable parachute deployment strategy, it [...] Read more.
Spacecraft recovery technology is crucial in the field of aerospace, in which the parachute plays a key role in slowing down the descent speed of the spacecraft and realizing a smooth landing. In order to construct a dynamically adjustable parachute deployment strategy, it is necessary to measure the parachute dynamic load accurately in real-time. However, the existing sensor measurement scheme makes it difficult to meet the measurement requirements due to its large structure and complex wiring. In order to meet the current demand for real-time measurement of parachute cords dynamic load, a miniature measuring instrument is designed. According to the function and technical requirements of the miniature measuring instrument, the hardware modules of the acquisition system are selected and designed, and the integration debugging and performance optimization of the microcontroller module, A/D sampling module, signal acquisition circuit, and power supply module are carried out. The software of the parachute cords tension acquisition system based on the miniature measuring instrument is developed. The Load Cell is modeled by using SolidWorks 2022 and statically analyzed by using Ansys 2022 R1 Workbench finite element analysis software. Then the final structure of the Load Cell and the pasting position of the strain gauge are determined through the results analysis as well as experimental verification. The hardware module of the signal acquisition system for the miniature measuring instrument is then encapsulated. The force value of the miniature measuring instrument is calibrated and tested many times by using the microcomputer-controlled electronic universal testing machine. The experimental results show that the designed miniature measuring instrument has accurate data, strong stability, and good real-time performance, which meets the demand for real-time accurate measurement of miniature measuring instruments, and can provide reliable data for parachute cords parameter validation and stepless unfolding design. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

31 pages, 49489 KiB  
Review
Runway-Free Recovery Methods for Fixed-Wing UAVs: A Comprehensive Review
by Yunxiao Liu, Yiming Wang, Han Li and Jianliang Ai
Drones 2024, 8(9), 463; https://doi.org/10.3390/drones8090463 - 5 Sep 2024
Cited by 3 | Viewed by 4188
Abstract
Fixed-wing unmanned aerial vehicles (UAVs) have the advantages of long endurance and fast flight speed and are widely used in surveying, mapping, monitoring, and defense fields. However, its conventional take-off and landing methods require runway support. Achieving runway-free recovery is necessary for expanding [...] Read more.
Fixed-wing unmanned aerial vehicles (UAVs) have the advantages of long endurance and fast flight speed and are widely used in surveying, mapping, monitoring, and defense fields. However, its conventional take-off and landing methods require runway support. Achieving runway-free recovery is necessary for expanding the application of fixed-wing UAVs. This research comprehensively reviews the various techniques and scenarios of runway-free recovery of fixed-wing UAVs and summarizes the key technologies. The above methods cover parachute recovery, net recovery, rope recovery, SideArm recovery, deep stall recovery, towed drogue docking recovery, and robotic arm recovery methods within runway-free recovery. Finally, this research discusses the future research directions of runway-free recovery. Full article
Show Figures

Figure 1

12 pages, 20688 KiB  
Article
Data Downloaded via Parachute from a NASA Super-Pressure Balloon
by Ellen L. Sirks, Richard Massey, Ajay S. Gill, Jason Anderson, Steven J. Benton, Anthony M. Brown, Paul Clark, Joshua English, Spencer W. Everett, Aurelien A. Fraisse, Hugo Franco, John W. Hartley, David Harvey, Bradley Holder, Andrew Hunter, Eric M. Huff, Andrew Hynous, Mathilde Jauzac, William C. Jones, Nikky Joyce, Duncan Kennedy, David Lagattuta, Jason S.-Y. Leung, Lun Li, Stephen Lishman, Thuy Vy T. Luu, Jacqueline E. McCleary, Johanna M. Nagy, C. Barth Netterfield, Emaad Paracha, Robert Purcaru, Susan F. Redmond, Jason D. Rhodes, Andrew Robertson, L. Javier Romualdez, Sarah Roth, Robert Salter, Jürgen Schmoll, Mohamed M. Shaaban, Roger Smith, Russell Smith, Sut Ieng Tam and Georgios N. Vassilakisadd Show full author list remove Hide full author list
Aerospace 2023, 10(11), 960; https://doi.org/10.3390/aerospace10110960 - 14 Nov 2023
Cited by 7 | Viewed by 32710
Abstract
In April 2023, the superBIT telescope was lifted to the Earth’s stratosphere by a helium-filled super-pressure balloon to acquire astronomical imaging from above (99.5% of) the Earth’s atmosphere. It was launched from New Zealand and then, for 40 days, circumnavigated the globe five [...] Read more.
In April 2023, the superBIT telescope was lifted to the Earth’s stratosphere by a helium-filled super-pressure balloon to acquire astronomical imaging from above (99.5% of) the Earth’s atmosphere. It was launched from New Zealand and then, for 40 days, circumnavigated the globe five times at a latitude 40 to 50 degrees south. Attached to the telescope were four “drs” (Data Recovery System) capsules containing 5 TB solid state data storage, plus a gnss receiver, Iridium transmitter, and parachute. Data from the telescope were copied to these, and two were dropped over Argentina. They drifted 61 km horizontally while they descended 32 km, but we predicted their descent vectors within 2.4 km: in this location, the discrepancy appears irreducible below ∼2 km because of high speed, gusty winds and local topography. The capsules then reported their own locations within a few metres. We recovered the capsules and successfully retrieved all of superBIT’s data despite the telescope itself being later destroyed on landing. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

26 pages, 15184 KiB  
Article
Autonomous Tracking of ShenZhou Reentry Capsules Based on Heterogeneous UAV Swarms
by Boxin Li, Boyang Liu, Dapeng Han and Zhaokui Wang
Drones 2023, 7(1), 20; https://doi.org/10.3390/drones7010020 - 27 Dec 2022
Cited by 4 | Viewed by 3450
Abstract
The safe landing and rapid recovery of the reentry capsules are very important to manned spacecraft missions. A variety of uncertain factors, such as flight control accuracy and wind speed, lead to a low orbit prediction accuracy and a large landing range of [...] Read more.
The safe landing and rapid recovery of the reentry capsules are very important to manned spacecraft missions. A variety of uncertain factors, such as flight control accuracy and wind speed, lead to a low orbit prediction accuracy and a large landing range of reentry capsules. It is necessary to realize the autonomous tracking and continuous video observation of the reentry capsule during the low-altitude phase. Aiming at the Shenzhou return capsule landing mission, the paper proposes a new approach for the autonomous tracking of Shenzhou reentry capsules based on video detection and heterogeneous UAV swarms. A multi-scale video target detection algorithm based on deep learning is developed to recognize the reentry capsules and obtain positioning data. A self-organizing control method based on virtual potential field is proposed to realize the cooperative flight of UAV swarms. A hardware-in-the-loop simulation system is established to verify the method. The results show that the reentry capsule can be detected in four different states, and the detection accuracy rate of the capsule with parachute is 99.5%. The UAV swarm effectively achieved autonomous tracking for the Shenzhou reentry capsule based on the position obtained by video detection. This is of great significance in the real-time searching of reentry capsules and the guaranteeing of astronauts’ safety. Full article
(This article belongs to the Special Issue A UAV Platform for Flight Dynamics and Control System)
Show Figures

Figure 1

25 pages, 11151 KiB  
Article
Research on Trajectory Prediction of a High-Altitude Zero-Pressure Balloon System to Assist Rapid Recovery
by Jiwei Tang, Shumin Pu, Peixi Yu, Weicheng Xie, Yunfei Li and Binxing Hu
Aerospace 2022, 9(10), 622; https://doi.org/10.3390/aerospace9100622 - 19 Oct 2022
Cited by 10 | Viewed by 4818
Abstract
A comprehensive simulation model is established to predict the trajectory of a high-altitude zero-pressure balloon flight system with no parachute that is required to carry the load floating at the designated altitude for several hours or less. A series of mathematical models, including [...] Read more.
A comprehensive simulation model is established to predict the trajectory of a high-altitude zero-pressure balloon flight system with no parachute that is required to carry the load floating at the designated altitude for several hours or less. A series of mathematical models, including thermal dynamic, atmospheric, earth, wind, geometry, and exhaust models, are developed to predict the trajectory of the balloon flight system. Based on these models, the uncertainties of the launch parameters and the corresponding flight performance are simulated. Combined with the control strategy, the entire flight trajectory is simulated and discussed in detail, including the ascending, floating, and descending phases. The results show that the vertical velocity takes on a W shape during the ascent process. Furthermore, the balloon begins to gradually descend with weakening solar radiation after noon. Moreover, the landing vertical speed of the balloon flight system can approach zero with the control strategy applied, whereas the lateral drift range is more limited relative to the uncontrolled flight mode. The results and conclusions presented herein contribute to the design and operation of a zero-pressure balloon flight system within limited airspace to improve the rapid recovery ability of the flight system. Full article
(This article belongs to the Special Issue Mission Analysis and Design of Lighter-than-Air Flying Vehicles)
Show Figures

Figure 1

19 pages, 6856 KiB  
Article
Dynamic Simulation and Parameter Analysis of Weaved Composite Material for Unmanned Aerial Vehicle Parachute Recovery in Deployment Phase
by Wenhui Shi, Shuai Yue, Zhiqian Li, Hao Xu, Zhonghua Du, Guangfa Gao, Guang Zheng and Beibei Zhao
Crystals 2022, 12(6), 758; https://doi.org/10.3390/cryst12060758 - 25 May 2022
Cited by 3 | Viewed by 2698
Abstract
Aiming at the parachute recovery of fixed-wing unmanned aerial vehicles, a method of parachute deployment by tractor rocket is proposed. First, the tensile tests were carried out on high-strength polyethylene and brocade silk-weaved composite materials. The dynamic property parameters of the materials were [...] Read more.
Aiming at the parachute recovery of fixed-wing unmanned aerial vehicles, a method of parachute deployment by tractor rocket is proposed. First, the tensile tests were carried out on high-strength polyethylene and brocade silk-weaved composite materials. The dynamic property parameters of the materials were obtained, which was the input for the dynamic model of the parachute deployment phase. Second, the model was verified by the experiment results. Finally, parachute weight and rocket launch temperature during the deployment phase were studied. The results showed that the dynamic model has good accuracy; as the parachute weight increases, the maximum snatch force of the extraction line and the sling decreases as the force on the suspension lines increases and the deployment effect worsens. With the temperature rise, the maximum snatch force on the extraction line, sling, and suspension lines increases and the deployment length changes slightly. Full article
(This article belongs to the Special Issue Dynamic Behavior of Materials)
Show Figures

Figure 1

21 pages, 9316 KiB  
Article
Integration and Investigation of Selected On-Board Devices for Development of the Newly Designed Miniature UAV
by Aleksander Olejnik, Robert Rogólski, Łukasz Kiszkowiak and Michał Szcześniak
Sensors 2020, 20(6), 1752; https://doi.org/10.3390/s20061752 - 21 Mar 2020
Cited by 3 | Viewed by 6448
Abstract
The article is a development of the topic generally presented in the conference proceedings issued after the 2019 IEEE International Workshop on Metrology for Aerospace. In contrast to topics presented in the conference, the article describes in detail avionic equipment and on-board systems [...] Read more.
The article is a development of the topic generally presented in the conference proceedings issued after the 2019 IEEE International Workshop on Metrology for Aerospace. In contrast to topics presented in the conference, the article describes in detail avionic equipment and on-board systems integration process and their in-flight adjustment in regard to the newly designed miniature unmanned aerial vehicle (mini-UAV). The mini-airplane was constructed and assembled in the course of the research project, the purpose of which was to show implementation of a totally new mini-UAV design. The intention of the work was to develop a new unmanned system including an originally constructed small airplane with elements purchased from open market. Such approach should allow to construct a new aerial unmanned system, which technologically would not be very advanced but should be easy to use and relatively inexpensive. The demonstrator mini-airplane has equipment typical for such an object, i.e., electric propulsion, autopilot system, camera head and parachute device for recovery. The key efforts in the project were taken to elaborate an original but easy to use system, to integrate subsystem elements and test them so to prove their functionality and reliability. Full article
Show Figures

Figure 1

Back to TopTop