Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = pancreatic stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 1418 KiB  
Review
Human-Induced Pluripotent Stem Cells (iPSCs) for Disease Modeling and Insulin Target Cell Regeneration in the Treatment of Insulin Resistance: A Review
by Sama Thiab, Juberiya M. Azeez, Alekya Anala, Moksha Nanda, Somieya Khan, Alexandra E. Butler and Manjula Nandakumar
Cells 2025, 14(15), 1188; https://doi.org/10.3390/cells14151188 - 1 Aug 2025
Viewed by 147
Abstract
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired [...] Read more.
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired pancreatic beta cell function and insulin resistance (IR) in peripheral organs, namely the liver, skeletal muscle, and adipose tissue. Additional insulin target tissues, including cardiomyocytes and neuronal cells, are also affected. The advent of stem cell research has opened new avenues for tackling this disease, particularly through the regeneration of insulin target cells and the establishment of disease models for further investigation. Human-induced pluripotent stem cells (iPSCs) have emerged as a valuable resource for generating specialized cell types, such as hepatocytes, myocytes, adipocytes, cardiomyocytes, and neuronal cells, with diverse applications ranging from drug screening to disease modeling and, importantly, treating IR in T2D. This review aims to elucidate the significant applications of iPSC-derived insulin target cells in studying the pathogenesis of insulin resistance and T2D. Furthermore, recent differentiation strategies, protocols, signaling pathways, growth factors, and advancements in this field of therapeutic research for each specific iPSC-derived cell type are discussed. Full article
(This article belongs to the Special Issue Advances in Human Pluripotent Stem Cells)
Show Figures

Figure 1

17 pages, 15835 KiB  
Article
Gut Microbial Metabolites of Tryptophan Augment Enteroendocrine Cell Differentiation in Human Colonic Organoids: Therapeutic Potential for Dysregulated GLP1 Secretion in Obesity
by James Hart, Hassan Mansour, Harshal Sawant, Morrison Chicko, Subha Arthur, Jennifer Haynes and Alip Borthakur
Int. J. Mol. Sci. 2025, 26(15), 7080; https://doi.org/10.3390/ijms26157080 - 23 Jul 2025
Viewed by 1410
Abstract
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) [...] Read more.
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) have been implicated in obesity-associated metabolic complications. Gut microbial metabolites of dietary tryptophan (TRP) were recently shown to modulate ISC proliferation and differentiation. However, their specific effects on EEC differentiation are not known. We hypothesized that the gut microbial metabolites of dietary tryptophan counteract impaired GLP1 production and function in obesity by stimulating EEC differentiation from ISCs. We utilized complementary models of human and rat intestines to determine the effects of obesity or TRP metabolites on EEC differentiation. EEC differentiation was assessed by the EEC marker chromogranin A (CHGA) levels in the intestinal mucosa of normal versus obese rats. The effects of TRP metabolites on EEC differentiation were determined in human intestinal organoids treated with indole, a primary TRP metabolite, or the culture supernatant of Lactobacillus acidophilus grown in TRP media (LA-CS-TRP). Our results showed that the mRNA and protein levels of CHGA, the EEC marker, were significantly decreased (~60%) in the intestinal mucosa of high-fat-diet-induced obese rat intestines. The expression of the transcription factors that direct the ISC differentiation towards the EEC lineage was also decreased in obesity. In human organoids, treatment with indole or LA-CS-TRP significantly increased (more than 2-fold) CHGA levels, which were blocked by the aryl hydrocarbon receptor (AhR) antagonist CH-223191. Thus, the stimulation of EEC differentiation by colonic microbial metabolites highlights a novel therapeutic role of TRP metabolites in obesity and associated metabolic disorders. Full article
Show Figures

Figure 1

16 pages, 14493 KiB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 208
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

15 pages, 1845 KiB  
Article
In Vitro Investigation of Statin Effects on Genes Associated with Severe COVID-19 in Cancerous and Non-Cancerous Cells
by Adriana Kapustová, Patrik Macášek, Bibiána Baďurová, Jana Melegová, Silvie Rimpelová, Jan Kubovčiak, Jana Šáchová, Miluše Hradilová, Michal Kolář, Libor Vítek, Tomáš Ruml and Helena Gbelcová
Biomedicines 2025, 13(7), 1714; https://doi.org/10.3390/biomedicines13071714 - 14 Jul 2025
Viewed by 334
Abstract
Background: The progressive course of coronavirus disease 2019 (COVID-19) is more frequently observed in individuals with obesity, diabetes, pulmonary and cardiovascular disease, or arterial hypertension. Many patients with these conditions are prescribed statins to treat hypercholesterolaemia. However, statins exhibit additional pleiotropic effects. The [...] Read more.
Background: The progressive course of coronavirus disease 2019 (COVID-19) is more frequently observed in individuals with obesity, diabetes, pulmonary and cardiovascular disease, or arterial hypertension. Many patients with these conditions are prescribed statins to treat hypercholesterolaemia. However, statins exhibit additional pleiotropic effects. The present study aims to investigate the effects of all eight currently existing statins on the expression of genes whose products have been reported to be directly associated with complicated COVID-19 disease. Methods: We extended the interpretation of the whole-genome DNA microarray analyses of pancreatic cancer cells MiaPaCa-2 and whole-transcriptome analyses of adipose tissue-derived mesenchymal stem cells AD-MSC that we had performed in the past. From the number of genes with altered expression induced by statins, we focused on those reported to be involved in a complicated course of COVID-19, including APOE and ACE2, genes encoding proteins involved in innate antiviral immunity and respiratory failure genes. Results: Although we did not observe statin-induced changes in the expression of APOE, ACE2 and any of the six genes clustered in the locus associated with respiratory failure in patients with COVID-19, some statins induced changes in the expression of genes encoding their interaction partners. Among genes associated with the immune system, all statins, which are effective in vitro affected the expression of genes encoding IL-6 and IL-8 and interaction partners of NF-kB, which may influence the duration of viral persistence. Conclusions: Statins act on multiple pathways simultaneously, some of which support COVID-19 development, while others suppress it. Full article
Show Figures

Figure 1

29 pages, 7767 KiB  
Article
Therapeutic Efficacy of CD34-Derived Allogeneic Dendritic Cells Engineered to Express CD93, CD40L, and CXCL13 in Humanized Mouse Models of Pancreatic Cancer
by Sara Huerta-Yepez, Jose D. Gonzalez, Neha Sheik, Senay Beraki, Elango Kathirvel, Ariel Rodriguez-Frandsen, Po-Chun Chen, Tiran Sargsyan, Saleemulla Mahammad, Mark R. Dybul, Lu Chen, Francois Binette and Anahid Jewett
Vaccines 2025, 13(7), 749; https://doi.org/10.3390/vaccines13070749 - 12 Jul 2025
Viewed by 899
Abstract
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of [...] Read more.
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of DC-based immunotherapy by developing an allogeneic DC platform derived from CD34+ hematopoietic stem cells (HSCs), genetically engineered to overexpress CD93, CD40L, and CXCL13, followed by maturation and tumor antigen pulsing. Methods: Engineered DCs were generated from CD34+ HSCs and matured in vitro after lentiviral transduction of CD93, CD40L, and CXCL13. Tumor lysates were used for antigen pulsing. A scrambled-sequence control DC was used for comparison. In vitro assays were performed to assess T cell activation and tumor cell killing. In vivo efficacy was evaluated using orthotopic pancreatic tumors in BLT and PBMC-humanized NSG mice established with the MiaPaca-2 (MP2) cell line. Results: Engineered DCs significantly enhanced T cell activation and tumor-specific cytotoxicity in vitro compared to control DCs. Antigen pulsing further amplified immune activation. In vivo, treated humanized mice showed increased CD4+, CD8+, and NK cell frequencies in peripheral blood and within tumors, correlating with reduced tumor burden. Conclusions: Our data shows that the antigen-pulsed, engineered DCs have the potency to activate immune cells, which leads to a significant reduction in pancreatic tumors and therefore could potentially provide an effective therapeutic opportunity for the treatment of pancreatic cancer and other solid tumors. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Graphical abstract

28 pages, 5449 KiB  
Article
The Impact of Peroxiredoxin 3 on Molecular Testing, Diagnosis, and Prognosis in Human Pancreatic Ductal Adenocarcinoma
by Anna Kakehashi, Shugo Suzuki, Yusaku Nishidoi, Atsushi Hagihara, Hiroko Ikenaga, Masayuki Shiota, Guiyu Qiu, Ikue Noura, Yuko Kuwae, Arpamas Vachiraarunwong, Masaki Fujioka, Min Gi, Norifumi Kawada and Hideki Wanibuchi
Cancers 2025, 17(13), 2212; https://doi.org/10.3390/cancers17132212 - 1 Jul 2025
Viewed by 464
Abstract
Background/Objective: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death and tumors with an extremely poor prognosis. In the present study, novel biomarker candidates useful for the early diagnosis and prognosis of human invasive PDAC were investigated. Methods: Biomarker [...] Read more.
Background/Objective: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death and tumors with an extremely poor prognosis. In the present study, novel biomarker candidates useful for the early diagnosis and prognosis of human invasive PDAC were investigated. Methods: Biomarker candidates were first selected based on the proteomic/bioinformatic and clinico-pathological analyses of 10 and 100 patients with PDAC, respectively, operated at Osaka Metropolitan University Hospital (Exp. 1). Next, the expression and secretion of the target protein and its EV mRNA were investigated in pancreatic cancer cells in vitro and in a Balb/c nude mouse model. In addition, the protein and EV mRNA levels of candidate molecules were measured in the blood serum of 36 PDAC and 10 IPMN patients, and diagnostic significance was assessed (Exp. 2). Results: A significant elevation of peroxiredoxin 3 (PRX3), a mitochondrial matrix protein, was found in PDAC via LC-Ms/Ms analysis. In Exp. 1, PRX3 overexpression was found in PDAC and PanIN lesions and was associated with a tumor infiltrative growth pattern (INFc) and poor overall 1-year patient survival. The prognostic value was significantly improved when PRX3 was combined with serum SPan-1 and DUPAN-2 markers in survival analyses. Furthermore, the PRX3 protein and its extracellular vesicle (EV: exosome and oncosome)-incorporated mRNA were secreted at detectable levels from PANC-1, MIAPaCa-2, and SW1990 cells into the blood of Balb/c nude mice bearing tumors. The overexpression of PRX3 was positively correlated with that of cancer stem cell marker CD44 variant 9 (CD44v9), P-Nrf2, and FOXO3a, as well as the generation of reactive oxygen species. In Exp. 2, a significant increase in PRX3 protein and EV mRNA was detected in the blood serum of PDAC subjects compared to IPMN patients and healthy controls. Significantly higher PRX3 protein levels were found in the IPMN group. The elevation of PRX3 EV mRNA was significantly associated with poor patient survival. Conclusions: These results indicate that PRX3 may become a novel early biomarker for PDAC diagnosis and prognosis. Full article
Show Figures

Figure 1

24 pages, 4176 KiB  
Article
Gemcitabine and Flurbiprofen Enhance Cytotoxic Effects on Cancer Cell Lines Mediated by Mesenchymal Stem Cells
by Agata Kawulok, Paulina Borzdziłowska, Magdalena Głowala-Kosińska, Wojciech Fidyk, Andrzej Smagur, Barbara Łasut-Szyszka, Agnieszka Gdowicz-Kłosok, Iwona Mitrus, Marcin Wilkiewicz, Agata Chwieduk, Daria Burdalska, Joanna Korfanty, Sebastian Giebel, Marcin Rojkiewicz, Andrzej Bak and Violetta Kozik
Int. J. Mol. Sci. 2025, 26(13), 6212; https://doi.org/10.3390/ijms26136212 - 27 Jun 2025
Viewed by 365
Abstract
Mesenchymal stem cells (MSCs) have recently shown great promise as potential anticancer drug delivery carriers. MSCs exhibit tropism to inflammatory sites, such as tumor beds, and resistance to chemotherapeutics. The aim of this study was to examine the efficacy of gemcitabine (GEM) conjugated [...] Read more.
Mesenchymal stem cells (MSCs) have recently shown great promise as potential anticancer drug delivery carriers. MSCs exhibit tropism to inflammatory sites, such as tumor beds, and resistance to chemotherapeutics. The aim of this study was to examine the efficacy of gemcitabine (GEM) conjugated with flurbiprofen (FLU) as a potential agent enhancing the GEM cytotoxic effect. Pancreatic cancer cell lines (PCCs), including PANC-1, AsPC-1, and BxPC-3, were studied meticulously. Moreover, the usefulness of bone-marrow-derived mesenchymal stem cells (BM-MSCs) treated with GEM and FLU, and the conditioned media from above these cells (CM) as elements supporting the in vitro action of GEM, inducing apoptosis, necrosis, and inhibiting the cell cycle, was tested. The results showed that CM-GEM exhibited higher cytotoxicity towards the selected PCCs compared to GEM alone. Furthermore, the obtained data revealed lower sensitivity of these cells to treatment, which promotes the utilization of BM-MSCs as potential drug carriers. Based on the presented findings, it seems that applying FLU in the antiproliferative effect of GEM might be regarded as an effective strategy in the therapy of pancreatic cancer, especially in the inhibition of proliferation and induction of cancer cell death. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cells and Cancer)
Show Figures

Figure 1

28 pages, 707 KiB  
Review
Bardoxolone Methyl: A Comprehensive Review of Its Role as a Nrf2 Activator in Anticancer Therapeutic Applications
by Valentina Schiavoni, Tiziana Di Crescenzo, Valentina Membrino, Sonila Alia, Sonia Fantone, Eleonora Salvolini and Arianna Vignini
Pharmaceuticals 2025, 18(7), 966; https://doi.org/10.3390/ph18070966 - 27 Jun 2025
Viewed by 667
Abstract
Bardoxolone methyl, also known as CDDO-Me or RTA 402, is a synthetic oleanane triterpenoid that has garnered significant attention as a potent pharmacological activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nrf2 is a master regulator of cellular redox homeostasis, [...] Read more.
Bardoxolone methyl, also known as CDDO-Me or RTA 402, is a synthetic oleanane triterpenoid that has garnered significant attention as a potent pharmacological activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nrf2 is a master regulator of cellular redox homeostasis, controlling the expression of genes involved in antioxidant defense, detoxification, and mitochondrial function. By inducing Nrf2 and promoting the transcription of downstream antioxidant response element (ARE)-driven genes, bardoxolone methyl enhances cellular resilience to oxidative stress and inflammation. This mechanism is central not only to its cytoprotective effects but also to its emerging role in oncology. A number of studies investigated the effects of bardoxolone methyl in several malignancies including breast cancer, lung cancer, pancreatic ductal adenocarcinoma, prostate cancer, colorectal cancer, oral and esophageal squamous cell carcinoma, ovarian cancer and glioblastoma. Studies in the literature indicate that bardoxolone methyl exhibits anticancer activity through several mechanisms, including the suppression of cell proliferation, induction of cell cycle arrest and apoptosis, inhibition of epithelial–mesenchymal transition (EMT), and impairment of cancer cell stemness. Additionally, bardoxolone methyl modulates mitochondrial function, reduces glycolytic and oxidative phosphorylation capacities, and induces reactive oxygen species (ROS)-mediated stress responses. In this review, we summarize the available literature regarding the studies which investigated the effects of bardoxolone methyl as anticancer agent. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

24 pages, 6213 KiB  
Article
Transmembrane Protease Serine 11B Modulates Lactate Transport Through SLC16A1 in Pancreatic Ductal Adenocarcinoma—A Functional Link to Phenotype Heterogeneity
by Dinara Baiskhanova, Maike Menzel, Claudia Geismann, Christoph Röcken, Eric Beitz, Susanne Sebens, Anna Trauzold and Heiner Schäfer
Int. J. Mol. Sci. 2025, 26(11), 5398; https://doi.org/10.3390/ijms26115398 - 4 Jun 2025
Viewed by 638
Abstract
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells [...] Read more.
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells running the reverse Warburg metabolism. Key drivers of lactate transport are the carrier proteins SLC16A1 (import/export) and SLC16A3 (export). Expression and function of both carriers are controlled by the chaperone Basigin (BSG), which itself is functionally controlled by the transmembrane protease serine 11B (TMPRSS11B). In this study we explored the impact of TMPRSS11B on the phenotype of PDAC cells under reverse Warburg conditions. Amongst a panel of PDAC cell lines, Panc1 and BxPc3 cells were identified to express TMPRSS11B at a high level, whilst other cell lines such as T3M4 did not. ShRNA-mediated TMPRSS11B knock-down in Panc1 and BxPc3 cells enhanced lactate import through SLC16A1, as shown by GFP/iLACCO1 lactate uptake assay, whereas TMPRSS1B overexpression in T3M4 dampened SLC16A1-driven lactate uptake. Moreover, knock-down and overexpression of TMPRSS11B differentially impacted proliferation and chemoresistance under reverse Warburg conditions in Panc1 or BxPc3 and T3M4 cells, respectively, as well as their stemness properties indicated by altered colony formation rates and expression of the stem cell markers Nanog, Sox2, KLF4 and Oct4. These effects of TMPRSS11B depended on both SLC16A1 and BSG as shown by gene silencing. Immunohistochemical analysis revealed a reciprocal expression of TMPRSS11B and BSG together with SLC16A1 in some areas of tumor tissues from PDAC patients. Those regions exhibiting low or no TMPRSS11B expression but concomitant high expression of SLC16A1 and BSG revealed greater amounts of KLF4. In contrast, other tumor areas exhibiting high expression of TMPRSS11B together with BSG and SLC16A1 were largely negative for KLF4 expression. Thus, the differential expression of TMPRSS11B adds to metabolic heterogeneity in PDAC and its absence supports the reverse Warburg metabolism in PDAC cells by the enhancement of BSG-supported lactate uptake through SLC16A1 and subsequent phenotype alterations towards greater stemness. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

16 pages, 2463 KiB  
Article
Simulated Microgravity-Induced Alterations in PDAC Cells: A Potential Role for Trichostatin A in Restoring Cellular Phenotype
by Corinna Anais Pagano, Maria Angela Masini, Maurizio Sabbatini, Giorgia Gribaudo, Marcello Manfredi, Flavia Giusy Caprì, Valentina Bonetto, Valeria Magnelli, Massimo Donadelli, Roberto Corino, Masho Hilawie Belay, Elisa Robotti and Emilio Marengo
Int. J. Mol. Sci. 2025, 26(10), 4758; https://doi.org/10.3390/ijms26104758 - 16 May 2025
Viewed by 603
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic malignancies. Despite the remarkable improvement concerning treatment, late detection and resistance to clinically used chemotherapeutic agents remain major challenges. Trichostatin A (TSA), a histone deacetylase inhibitor, has been recognized as an effective therapeutic [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic malignancies. Despite the remarkable improvement concerning treatment, late detection and resistance to clinically used chemotherapeutic agents remain major challenges. Trichostatin A (TSA), a histone deacetylase inhibitor, has been recognized as an effective therapeutic agent against PDAC by inhibiting proliferation, inducing apoptosis, and sensitizing PDAC cells to chemotherapeutic agents such as gemcitabine. Microgravity has become a useful tool in cancer research due to its effects on various cellular processes. This paper presents a deep molecular and proteomic analysis investigating cell growth, the modulation of cytokeratins, and proteins related to apoptosis, cellular metabolism, and protein synthesis after TSA treatment in simulated microgravity (SMG)-exposed PaCa44 3D cells. Our analysis concerns the effects of TSA treatment on cell proliferation: the impairment of the cell cycle with the downregulation of proteins involved in Cdc42 signaling and G1/G2- and G2/M-phase transitions. Thus, we observed modification of survival pathways and proteins related to autophagy and apoptosis. We also observed changes in proteins involved in the regulation of transcription and the repair of damaged DNA. TSA treatment promotes the downregulation of some markers involved in the maintenance of the potency of stem cells, while it upregulates proteins involved in the induction and modulation of the differentiation process. Our data suggest that TSA treatment restores the cell phenotype prior to simulated microgravity exposure, and exerts an intriguing activity on PDAC cells by reducing proliferation and inducing cell death via multiple pathways. Full article
(This article belongs to the Special Issue Advances in Proteomics in Cancer)
Show Figures

Figure 1

23 pages, 2463 KiB  
Review
Targeting Cancer with Paris’ Arrow: An Updated Perspective on Targeting Wnt Receptor Frizzled 7
by Kieran Hodson, Hector M. Arredondo, William E. Humphrey, Dustin J. Flanagan, Elizabeth Vincan, Karl Willert, Helen B. Pearson and Toby J. Phesse
Sci 2025, 7(2), 61; https://doi.org/10.3390/sci7020061 - 8 May 2025
Viewed by 1355
Abstract
The Wnt signalling pathway plays a crucial role in tissue homeostasis and cancer biology due to its regulation of cellular processes, including proliferation, migration, and stem cell activity. Frizzled receptor 7 (FZD7) (a member of the F-class G protein-coupled receptors) has emerged as [...] Read more.
The Wnt signalling pathway plays a crucial role in tissue homeostasis and cancer biology due to its regulation of cellular processes, including proliferation, migration, and stem cell activity. Frizzled receptor 7 (FZD7) (a member of the F-class G protein-coupled receptors) has emerged as a key Wnt receptor within this pathway, which is elevated in several human malignancies. FZD7 is notably upregulated in gastrointestinal, breast, pancreatic, and hepatocellular carcinomas and transmits oncogenic Wnt signalling through canonical and non-canonical pathways. FZD7 promotes tumour initiation, and emerging evidence implicates FZD7 in cancer stem cell maintenance and epithelial–mesenchymal transition (EMT), reinforcing its role in metastasis. Therapeutic strategies targeting FZD7 have shown promise, including FZD7-specific monoclonal antibody-drug conjugates (ADCs), human single-chain fragment variable (scFVs) antibodies, and nanoparticles. Notably, our recent development of FZD7-ADC has demonstrated tumour-selective cytotoxicity with reduced off-target effects, positioning FZD7 as an attractive therapeutic target. Additionally, nanoparticle-based drug delivery systems have enhanced the precision of existing chemotherapies by targeting FZD7-expressing tumour cells. Despite significant advances, clinical translation remains a challenge due to potential on-target toxicity and the complexity of tumour microenvironments. Future research should focus on optimising delivery systems, refining antibody specificity, and conducting comprehensive preclinical and clinical trials. This review will focus on novel discoveries regarding FZD7 in cancer and provide an update on our original review on this subject in 2016. Additionally, we present new figures generated by our group using the publicly available Pan-Cancer Atlas RNAseq datasets, highlighting FZD7 expression patterns in patient samples. This integrated approach aims to provide updated insights into the function of FZD7 during cancer and its growing status as an attractive target for therapy. In summary, FZD7 stands out as a promising molecular target in cancer therapy due to its selective overexpression in tumours, functional role in Wnt-driven oncogenesis, and potential for innovative therapeutic applications. This review underscores the critical need for the continued exploration of FZD7-targeted therapies to improve patient outcomes in cancer treatment. Full article
(This article belongs to the Special Issue Feature Papers—Multidisciplinary Sciences 2024)
Show Figures

Figure 1

16 pages, 595 KiB  
Review
The Emerging Oncogenic Role of RARγ: From Stem Cell Regulation to a Potential Cancer Therapy
by Geoffrey Brown
Int. J. Mol. Sci. 2025, 26(9), 4357; https://doi.org/10.3390/ijms26094357 - 3 May 2025
Viewed by 625
Abstract
Retinoic acid receptor (RAR) γ expression is restricted during adult haematopoiesis to haematopoietic stem cells and their immediate offspring and is required for their maintenance. From zebrafish studies, RARγ is selectively expressed by stem cells and agonism in the absence of exogenous all- [...] Read more.
Retinoic acid receptor (RAR) γ expression is restricted during adult haematopoiesis to haematopoietic stem cells and their immediate offspring and is required for their maintenance. From zebrafish studies, RARγ is selectively expressed by stem cells and agonism in the absence of exogenous all-trans retinoic acid blocked stem cell development. Recent findings for the expression of RARγ have revealed an oncogenic role in acute myeloid leukaemia and cholangiocarcinoma and colorectal, head and neck, hepatocellular, ovarian, pancreatic, prostate, and renal cancer. Overexpression and agonism of RARγ enhanced cell proliferation for head and neck, hepatocellular, and prostate cancer. RARγ antagonism, pan-RAR antagonism, and RARγ downregulation led to cell growth which was often followed by cell death for acute myeloid leukaemia, astrocytoma, and cholangiocarcinoma as well as hepatocellular, primitive, neuroectodermal ovarian, and prostate cancer. Histological studies have associated high level RARγ expression with high-grade disease, metastasis, and a poor prognosis for cholangiocarcinoma and ovarian, pancreatic, and prostate cancer. RARγ is expressed by cancer stem cells and is a targetable drive of cancer cell growth and survival. Full article
(This article belongs to the Special Issue The Hallmarks of Cancer Stem Cells)
Show Figures

Figure 1

23 pages, 2128 KiB  
Review
Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis—Biology and Its Potential Role in Therapeutic Targeting
by Tina Seidel, Nupur Ohri, Markus Glaß, Yoshiaki Sunami, Lutz P. Müller and Jörg Kleeff
Cancers 2025, 17(9), 1541; https://doi.org/10.3390/cancers17091541 - 1 May 2025
Viewed by 992
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor [...] Read more.
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Figure 1

14 pages, 4820 KiB  
Article
Single-Cell RNA Sequencing Outperforms Single-Nucleus RNA Sequencing in Analyzing Pancreatic Cell Diversity and Gene Expression in Goats
by Jie Cheng, Tianxi Zhang, Yan Cheng, Kefyalew Gebeyew, Zhiliang Tan and Zhixiong He
Int. J. Mol. Sci. 2025, 26(8), 3916; https://doi.org/10.3390/ijms26083916 - 21 Apr 2025
Viewed by 871
Abstract
The objective of this study was to determine whether single-cell RNA sequencing (scRNA-seq) or single-nucleus RNA sequencing (snRNA-seq) was more effective for studying the goat pancreas. Pancreas tissues from three healthy 10-day-old female Xiangdong black goats were processed into single-cell and single-nucleus suspensions. [...] Read more.
The objective of this study was to determine whether single-cell RNA sequencing (scRNA-seq) or single-nucleus RNA sequencing (snRNA-seq) was more effective for studying the goat pancreas. Pancreas tissues from three healthy 10-day-old female Xiangdong black goats were processed into single-cell and single-nucleus suspensions. These suspensions were then used to compare cellular composition and gene expression levels following library construction and sequencing. Both scRNA-seq and snRNA-seq were eligible for primary analysis but produced different cell identification profiles in pancreatic tissue. Both methods successfully annotated pancreatic acinar cells, ductal cells, alpha cells, beta cells, and endothelial cells. However, pancreatic stellate cells, immune cells, and delta cells were uniquely annotated by scRNA-seq, while pancreatic stem cells were uniquely identified by snRNA-seq. Furthermore, the genes related to digestive enzymes showed a higher expression in scRNA-seq than in snRNA-seq. In the present study, scRNA-seq detected a great diversity of pancreatic cell types and was more effective in profiling key genes than snRNA-seq, demonstrating that scRNA-seq was better suited for studying the goat pancreas. However, the choice between scRNA-seq and snRNA-seq should consider the sample compatibility, technical differences, and experimental objectives. Full article
(This article belongs to the Special Issue Molecular Basis of Pancreatic Secretion and Metabolism)
Show Figures

Figure 1

11 pages, 3234 KiB  
Article
Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids
by Boyd H. T. Gouw, Flavia C. M. Oliveira, Hans S. Kooistra, Bart Spee, Lisa van Uden and Louis C. Penning
Vet. Sci. 2025, 12(4), 362; https://doi.org/10.3390/vetsci12040362 - 13 Apr 2025
Cited by 1 | Viewed by 746
Abstract
Background: Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. Objective: The aim of this study is to establish functional differentiated canine pancreatic β-cells that [...] Read more.
Background: Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. Objective: The aim of this study is to establish functional differentiated canine pancreatic β-cells that release insulin upon glucose stimulus. Methods: Pancreatic tissue was obtained from surplus material of healthy dogs (n = 4), euthanized for non-pancreatic related research. Ductal cells were isolated and expanded in dog pancreas expansion media (dpEM) and differentiated and maturated in five sequentially added pancreas differentiation media (PDMs). Gene expression was analyzed by reversed transcriptase qPCR (RT-qPCR), and insulin release was analyzed with a canine-specific ELISA. Results: Canine pancreatic ductal cells (LGR5 and SOX9 expression) were differentiated into β-cells expressing key β-cell-related genes: Pancreatic and duodenal homeobox 1 (PDX1), NK6 Homeobox 1 (NKX6.1), Glucose Transporter Type 2 (GLUT2), Proprotein convertase subtilisin/kexin type 1 (PCSK1), and low levels of insulin. Neither Glucagon (α-cells) nor LGR5 and SOX9 were expressed, and somatostatin was expressed at low levels. The differentiated cells released insulin upon glucose stimulation. Conclusion and implications: The step-by-step differentiation protocol, mimicking pancreatic organogenesis, resulted in β-cells secreting insulin levels suitable for β-cell disease modelling. It remains to be seen if stem cells from diseased animals behave similarly. Full article
Show Figures

Figure 1

Back to TopTop