Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = palm kernel shell biochar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2179 KB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Viewed by 3398
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

16 pages, 6236 KB  
Article
Hybrid Analysis of Biochar Production from Pyrolysis of Agriculture Waste Using Statistical and Artificial Intelligent-Based Modeling Techniques
by Hani Hussain Sait, Ramesh Kanthasamy and Bamidele Victor Ayodele
Agronomy 2025, 15(1), 181; https://doi.org/10.3390/agronomy15010181 - 13 Jan 2025
Cited by 2 | Viewed by 2134
Abstract
Biochar is gaining recognition as a sustainable material, with several applications in soil amendment, carbon sequestration, nutrient dynamics, the remediation of organic contaminants from soil, and water filtration. However, understanding its characteristics is limited due to its intricate structure. This study used response [...] Read more.
Biochar is gaining recognition as a sustainable material, with several applications in soil amendment, carbon sequestration, nutrient dynamics, the remediation of organic contaminants from soil, and water filtration. However, understanding its characteristics is limited due to its intricate structure. This study used response surface methodology (RSM) and artificial neural networks (ANNs) to optimize and predict the production of biochar from the pyrolysis of palm kernel shells. To determine how residence time, nitrogen flow rate, and pyrolysis temperature affected biochar production, a Box–Behnken experimental design was employed. The prediction of the biochar yield was modeled using four different models of ANNs: narrow, medium, wide, and optimum. The physicochemical properties of the biochar produced at pyrolysis temperatures ranging from 400 to 800 °C were determined using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), nitrogen (N2) physisorption analysis, and field emission scanning electron microscopy (FESEM). With a p-value significantly lower than 0.05, the response surface quadratic model was found to be the most suitable to optimize the biochar yield obtained from the PKS pyrolysis. Biochar production was very sensitive to the three operating parameters: pyrolysis temperature, nitrogen flow rate, and pyrolysis time. With a coefficient of determination (R2) of 0.900, root mean square error (RMSE) of 0.936, and mean absolute error (MAE) of 0.743, the optimized ANN outperformed the other three ANN models tested. When compared to the optimized ANN, the response surface quadratic model with an R2 of 0.989 had better prediction of biochar yield. At optimized experimental conditions for nitrogen flow rate (150.01 mL/min), temperature (799.71 °C), and pyrolysis time (107.61 min), a biochar yield of 37.87% was obtained at a desirability function of 1. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 5497 KB  
Article
The Apeli: An Affordable, Low-Emission and Fuel-Flexible Tier 4 Advanced Biomass Cookstove
by Dennis Krüger and Özge Mutlu
Energies 2023, 16(7), 3278; https://doi.org/10.3390/en16073278 - 6 Apr 2023
Cited by 2 | Viewed by 4272
Abstract
Based on the decision of representatives from the West African region and feedback from locals in Togo, an advanced continuous-feed, forced-draft, biomass cookstove named “Apeli” was developed. The stove was tested in modified ISO measurements based on the ISO 19867-1:2018 standard. This included [...] Read more.
Based on the decision of representatives from the West African region and feedback from locals in Togo, an advanced continuous-feed, forced-draft, biomass cookstove named “Apeli” was developed. The stove was tested in modified ISO measurements based on the ISO 19867-1:2018 standard. This included a long shutdown operation using wood pellets and short shutdown operations using wood pellets, bamboo pellets, wheat straw pellets and palm kernel shells. Due to the fast shutdown capability, the short shutdown was chosen for more realistic results using this stove type. For cold start and long shutdown operation using wood pellets, the thermal efficiency is determined as 44.1% at a 1116 W power output by emitting 0.272 g CO and 17.2 mg PM 2.5 per MJd at high load. At low load, the efficiency is 38.0% at a 526 W power output by emitting 1.1 g CO and 45.1 mg PM 2.5 per MJd. Due to a misinterpretation of the standard, the burnout duration of the tests with long shutdown is approx. 1.5 min shorter than required. Using a worst-case approximation, values for a theoretical ISO-conforming measurement were calculated and rated according to the ISO 19867-3:2018 standard. The results showed that the Apeli would correspond to Tier 4 for efficiency and PM 2.5 as well as Tier 5 for CO in high-power operation using wood pellets. The use of alternative fuels is possible, but can lead to higher emissions compared to the use of wood pellets. With regard to possibly using the biochar produced in the process for soil application, it has been demonstrated that the PAH content ensures European BioChar-Agro-Organic limitations. The first results of a field test in Togo have shown that operating and feeding the stove by the target group is easy. The required permanent presence of the user during cooking with this stove seems to have a limited influence on acceptance, which seems to primarily depend on the age of the user. Moreover, it can be concluded that the Apeli has good potential to be mass-produced locally at low costs with a reliable supply of spare parts. This can contribute not only to improving clean cooking, but also to fighting air pollution and deforestation caused by solid fuel burning due to the reduced consumption of resources in the form of fuel, especially wood. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

13 pages, 10539 KB  
Article
Synergistic Effect of Partial Replacement of Carbon Black by Palm Kernel Shell Biochar in Carboxylated Nitrile Butadiene Rubber Composites
by Zafirah Zainal Abidin, Siti Nur Liyana Mamauod, Ahmad Zafir Romli, Siti Salina Sarkawi and Nahrul Hayawin Zainal
Polymers 2023, 15(4), 943; https://doi.org/10.3390/polym15040943 - 14 Feb 2023
Cited by 20 | Viewed by 3291
Abstract
With the rapid development of the palm oil-related industry, this has resulted in the high production of palm oil waste. The increasing amount of palm oil waste has become an alarming issue in which researchers have carried out studies that this palm oil [...] Read more.
With the rapid development of the palm oil-related industry, this has resulted in the high production of palm oil waste. The increasing amount of palm oil waste has become an alarming issue in which researchers have carried out studies that this palm oil waste has the potential to be used as a biomass source. Carbon black (CB) is the most preferred reinforcing filler in the rubber industry but it has a disadvantage where CB is carcinogenic and a petroleum-based product. Hence CB is less sustainable. Palm kernel shell (PKS) derived from palm oil waste can be turned into palm kernel shell biochar (PKSBc) which can potentially be a value-added, sustainable biofiller as reinforcement in rubber composites. In this study, PKSBc is hybridized with CB (N660) at different loading ratios to be filled in carboxylated nitrile butadiene rubber (XNBR). This study aims to elucidate the effect of the varying ratios of hybrid CB/PKSBc on the rheological properties, abrasion resistance, and hardness of XNBR composites. In this study, both CB and PKSBc are incorporated into XNBR and were then cured with sulphur. The composites were prepared by using a two-roll mill. Different compositions of hybrid CB/PKSBc were incorporated. The rheological properties and physicomechanical properties, such as abrasion resistance and hardness of the vulcanizates, were investigated. Based on the results, as the loading ratio of PKSBc in hybrid CB/PKSBc increases, the cure time decreases, and the cure rate index increases. The abrasion resistance and hardness values of vulcanizates were maintained by the high loading of PKSBc which was due to the porous structure of PKSBc as shown in the morphological analysis of PKSBc. The pores of PKSBc provided mechanical interlocking to reduce volume loss and maintain the hardness of vulcanizates when subjected to force. With this, PKSBc is proven to be a semi-reinforcing filler that could not only act as a co-filler to existing commercialized CB, but PKSBc could also fully substitute CB as reinforcement in rubber, specifically XNBR as it is able to provide high abrasion resistance and hardness to the rubber composites. This would mean the performance of PKSBc is comparable with CB (N660) when it comes to maintaining the physicomechanical properties of XNBR composites in terms of abrasion resistance and hardness. Therefore, this approach of using eco-friendly filler derived from palm oil agricultural waste (PKSBc) can reduce the abundance of palm oil waste, be a sustainable alternative to act as a co-filler in hybrid CB/PKSBc to decrease the usage of CB, and helps to enhance the quality of existing rubber-based products. Full article
Show Figures

Figure 1

18 pages, 2857 KB  
Article
Optimization of Micro-Pollutants’ Removal from Wastewater Using Agricultural Waste-Derived Sustainable Adsorbent
by Areej Alhothali, Tahir Haneef, Muhammad Raza Ul Mustafa, Kawthar Mostafa Moria, Umer Rashid, Kashif Rasool and Omaimah Omar Bamasag
Int. J. Environ. Res. Public Health 2021, 18(21), 11506; https://doi.org/10.3390/ijerph182111506 - 1 Nov 2021
Cited by 17 | Viewed by 3722
Abstract
Water pollution due to the discharge of untreated industrial effluents is a serious environmental and public health issue. The presence of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) causes worldwide concern because of their mutagenic and carcinogenic effects on aquatic life, human [...] Read more.
Water pollution due to the discharge of untreated industrial effluents is a serious environmental and public health issue. The presence of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) causes worldwide concern because of their mutagenic and carcinogenic effects on aquatic life, human beings, and the environment. PAHs are pervasive atmospheric compounds that cause nervous system damage, mental retardation, cancer, and renal kidney diseases. This research presents the first usage of palm kernel shell biochar (PKSB) (obtained from agricultural waste) for PAH removal from industrial wastewater (oil and gas wastewater/produced water). A batch scale study was conducted for the remediation of PAHs and chemical oxygen demand (COD) from produced water. The influence of operating parameters such as biochar dosage, pH, and contact time was optimized and validated using a response surface methodology (RSM). Under optimized conditions, i.e., biochar dosage 2.99 g L−1, pH 4.0, and contact time 208.89 min, 93.16% of PAHs and 97.84% of COD were predicted. However, under optimized conditions of independent variables, 95.34% of PAH and 98.21% of COD removal was obtained in the laboratory. The experimental data were fitted to the empirical second-order model of a suitable degree for the maximum removal of PAHs and COD by the biochar. ANOVA analysis showed a high coefficient of determination value (R2 = 0.97) and a reasonable second-order regression prediction. Additionally, the study also showed a comparative analysis of PKSB with previously used agricultural waste biochar for PAH and COD removal. The PKSB showed significantly higher removal efficiency than other types of biochar. The study also provides analysis on the reusability of PKSB for up to four cycles using two different methods. The methods reflected a significantly good performance for PAH and COD removal for up to two cycles. Hence, the study demonstrated a successful application of PKSB as a potential sustainable adsorbent for the removal of micro-pollutants from produced water. Full article
Show Figures

Figure 1

30 pages, 6633 KB  
Article
An Insight into a Sustainable Removal of Bisphenol A from Aqueous Solution by Novel Palm Kernel Shell Magnetically Induced Biochar: Synthesis, Characterization, Kinetic, and Thermodynamic Studies
by Kamil Kayode Katibi, Khairul Faezah Yunos, Hasfalina Che Man, Ahmad Zaharin Aris, Mohd Zuhair Mohd Nor and Rabaah Syahidah Azis
Polymers 2021, 13(21), 3781; https://doi.org/10.3390/polym13213781 - 31 Oct 2021
Cited by 48 | Viewed by 4765
Abstract
Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants in the environment, that can trigger a severe threat to humans and environment even at minuscule concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) [...] Read more.
Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants in the environment, that can trigger a severe threat to humans and environment even at minuscule concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) as a sustainable and inexpensive adsorbent to remove BPA from aqueous environment. Novel magnetic biochar was efficiently synthesized by utilizing palm kernel shell, using ferric chloride and ferrous chloride as magnetic medium via chemical co-precipitation technique. In this experimental study, the influence of operating factors comprising contact time (20–240 min), pH (3.0–12.0), adsorbent dose (0.2–0.8 g), and starting concentrations of BPA (8.0–150 ppm) were studied in removing BPA during batch adsorption system using neat biochar and magnetic biochar. It was observed that the magnetically loaded BC demonstrates superior maximum removal efficiency of BPA with 94.2%, over the neat biochar. The functional groups (FTIR), Zeta potential, vibrating sample magnetometer (VSM), surface and textural properties (BET), surface morphology, and mineral constituents (FESEM/EDX), and chemical composition (XRD) of the adsorbents were examined. The experimental results demonstrated that the sorption isotherm and kinetics were suitably described by pseudo-second-order model and Freundlich model, respectively. By studying the adsorption mechanism, it was concluded that π-π electron acceptor–donor interaction (EAD), hydrophobic interaction, and hydrogen bond were the principal drives for the adsorption of BPA onto the neat BC and magnetic BC. Full article
Show Figures

Figure 1

15 pages, 1140 KB  
Article
Chemical and Biological Characteristics of Organic Amendments Produced from Selected Agro-Wastes with Potential for Sustaining Soil Health: A Laboratory Assessment
by Kevin Muyang Tawie Sulok, Osumanu Haruna Ahmed, Choy Yuen Khew, Jarroop Augustine Mercer Zehnder, Mohamadu Boyie Jalloh, Adiza Alhassan Musah and Arifin Abdu
Sustainability 2021, 13(9), 4919; https://doi.org/10.3390/su13094919 - 28 Apr 2021
Cited by 16 | Viewed by 22970
Abstract
Sustaining soil health cannot be divorced from sustainable crop production. Organic, or natural, farming is being promoted as a good sustainable agriculture practice. One aspect of organic farming that could significantly enhance and sustain soil health, soil quality, and crop productivity is the [...] Read more.
Sustaining soil health cannot be divorced from sustainable crop production. Organic, or natural, farming is being promoted as a good sustainable agriculture practice. One aspect of organic farming that could significantly enhance and sustain soil health, soil quality, and crop productivity is the use of high-quality soil conditioners or organic amendments produced from agro-wastes. Thus, the objective of this study was to characterize the chemical and biological properties of selected agro-wastes with potential for use as organic amendments in sustaining soil health. Standard procedures were used to produce and characterize the soil conditioners, namely fermented plant juice (FPJ), fermented fruit juice (FFJ), palm kernel shell (PKS) biochar, and kitchen waste (KW) compost. The fermented juices (FPJ and FFJ), PKS biochar, and KW compost exhibited chemical and biological properties with good potential as soil conditioners or organic amendments to sustain soil health. The fermented juices contained important microbes that can solubilize P and K in soil for crop use. The high pH and C content of the biochar and compost and the high cation exchange capacity of the biochar are good indicators of the potential of these materials to sustain soil health in terms of the liming effect of acid soils, nutrient and water retention, nutrient reserves, and a suitable habitat for microbial life. Moreover, the organic amendments contain reasonable amounts of macro- and micro-nutrients, which could be released to increase soil fertility. Despite these potential benefits, field application of these organic amendments is necessary to evaluate their effects on soil health and crop production in both the short and long term. Full article
Show Figures

Figure 1

13 pages, 1277 KB  
Article
The Removal of Crystal Violet from Textile Wastewater Using Palm Kernel Shell-Derived Biochar
by Phyo Phyo Kyi, Jude Ofei Quansah, Chang-Gu Lee, Joon-Kwan Moon and Seong-Jik Park
Appl. Sci. 2020, 10(7), 2251; https://doi.org/10.3390/app10072251 - 26 Mar 2020
Cited by 93 | Viewed by 7142
Abstract
In this study, we explored the adsorption potential of biochar derived from palm kernel shell (BC-PKS) as an affordable adsorbent for the removal of crystal violet from wastewater. Kinetics, equilibrium, and thermodynamics studies were carried out to evaluate the adsorption of crystal violet [...] Read more.
In this study, we explored the adsorption potential of biochar derived from palm kernel shell (BC-PKS) as an affordable adsorbent for the removal of crystal violet from wastewater. Kinetics, equilibrium, and thermodynamics studies were carried out to evaluate the adsorption of crystal violet onto BC-PKS. The kinetics adsorption process followed the pseudo-second-order model, indicating that the rate of adsorption is principally controlled by chemisorption. The adsorption equilibrium data were better fitted by the Langmuir isotherm model with a determination coefficient of 0.954 and a maximum adsorption of 24.45 mg/g. Thermodynamics studies found the adsorption of crystal violet by BC-PKS to be endothermic with increasing randomness at the BC-PKS/crystal violet interface. The percentage removal and adsorption capacity increased with the pH of the solution, as the negative charges on the biochar surface at high pH enhance the electrostatic attraction between crystal violet molecules and BC-PKS. Increasing the BC-PKS dosage from 0.1 to 1.0 g increased percent removal and decreased the adsorption capacity of crystal violet onto BC-PKS. Therefore, biochar from agricultural by-products, i.e., palm kernel shell, can be cost-effective adsorbents for the removal of crystal violet from textile wastewater. Full article
Show Figures

Figure 1

14 pages, 6122 KB  
Article
Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage
by Martin Luther Yeboah, Xinyuan Li and Shixue Zhou
Materials 2020, 13(3), 625; https://doi.org/10.3390/ma13030625 - 31 Jan 2020
Cited by 72 | Viewed by 6499
Abstract
In this investigation, an easily-operated and cost-effective method is utilized to synthesize biochar in ambient air, and the prepared biochar is used in a novel manner as a milling aid for fabricating Mg-biochar composites for hydrogen storage. X-ray diffractometry reveals that increasing the [...] Read more.
In this investigation, an easily-operated and cost-effective method is utilized to synthesize biochar in ambient air, and the prepared biochar is used in a novel manner as a milling aid for fabricating Mg-biochar composites for hydrogen storage. X-ray diffractometry reveals that increasing the content of palm kernel shell biochar (PKSBC) from 5 wt.% to 20 wt.% enhances the hydrogen absorption performance by increasing the conversion of Mg into MgH2 from 83% to 93%. A 40 °C reduction in decomposition temperature of MgH2 is recorded from differential scanning calorimetry curves when the content of PKSBC is increased to 20 wt.%. Magnesium is milled and hydrided under the same experimental conditions and used as a reference material. It is proposed that these property enhancements can be attributed to the fact that PKSBC acts as an anti-sticking agent for elemental Mg powders, helping in the achievement of a more dispersed composite with reduced Mg particle size due to its layered-like carbon structure. Full article
Show Figures

Figure 1

Back to TopTop