Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = paleodrainage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 31593 KiB  
Article
Satellite Advanced Spaceborne Thermal Emission and Reflection Radiometer Mineral Maps of Australia Unmixed of Their Green and Dry Vegetation Components: Implications for Mapping (Paleo) Sediment Erosion–Transport–Deposition Processes
by Tom Cudahy and Liam Cudahy
Remote Sens. 2024, 16(10), 1740; https://doi.org/10.3390/rs16101740 - 14 May 2024
Viewed by 2160
Abstract
The 2012 satellite ASTER geoscience maps of Australia were designed to provide public, web-accessible, and spatially comprehensive surface mineralogy for improved mapping and solutions to geoscience challenges. However, a number of the 2012 products were clearly compromised by variable green and/or dry vegetation [...] Read more.
The 2012 satellite ASTER geoscience maps of Australia were designed to provide public, web-accessible, and spatially comprehensive surface mineralogy for improved mapping and solutions to geoscience challenges. However, a number of the 2012 products were clearly compromised by variable green and/or dry vegetation cover. Here, we show a strategy to first estimate and then unmix the contributions of both these vegetation components to leave, as residual, the target surface mineralogy. The success of this unmixing process is validated by (i) visual suppression/removal of the regional climate and/or local fire-scar vegetation patterns; and (ii) pixel values more closely matching field sample data. In this process, we also found that the 2012 spectral indices used to gauge the AlOH content, AlOH composition, and water content can be improved. The updated (new indices and vegetation unmixed) maps reveal new geoscience information, including: (i) regional “wet” and “dry” zones that appear to express “deep” geological characters often expressed through thick regolith cover, with one zone over the Yilgarn Craton spatially anti-correlated with Archaean gold deposits; (ii) a ~1000 km wide circular feature over the Lake Eyre region defined by a rim of abundant “muscovite” that appears to coincide with opal deposits; (iii) a N–S zonation across the western half of the continent defined by abundant muscovite in the south and kaolinite in the north, which appears to reflect opposing E ↔ W aeolian sediment transport directions across the high-pressure belt; (iv) various paleo-drainage networks, including those over aeolian sand covered the “lowlands” of the Canning Basin, which are characterized by low AlOH content, as well as those over eroding “uplands”, such as the Yilgarn Craton, which have complicated compositional patterns; and (v) a chronological history of Miocene barrier shorelines, back-beach lagoons, and alluvial fans across the Eucla Basin, which, to date, had proved elusive to map using other techniques, with potential implications for heavy mineral sand exploration. Here, we explore the latter three issues. Full article
(This article belongs to the Special Issue New Trends on Remote Sensing Applications to Mineral Deposits-II)
Show Figures

Figure 1

24 pages, 17547 KiB  
Article
A Morphing-Based Method for Paleotopographic Reconstruction of the Transverse Canyon
by Yangen Shen, Anbo Li, Shiyu Xu and Xianli Xie
Remote Sens. 2022, 14(23), 6109; https://doi.org/10.3390/rs14236109 - 2 Dec 2022
Cited by 1 | Viewed by 2229
Abstract
The transverse canyon is a V-shaped, fluvial-genetic canyon, a secondary valley formed by transverse drainage crossing a tectonically uplifted mountain. Paleotopography of the transverse canyon is vital to drainage connection and river capture, offering insight into the processes that link large-scale river systems, [...] Read more.
The transverse canyon is a V-shaped, fluvial-genetic canyon, a secondary valley formed by transverse drainage crossing a tectonically uplifted mountain. Paleotopography of the transverse canyon is vital to drainage connection and river capture, offering insight into the processes that link large-scale river systems, analyzing paleodrainage patterns, and recreating headward erosion. Notably, modern paleotopographic reconstruction methods are usually limited to reconstructions of paleotopography in vast sedimentary basins and denuded hills in orogenic belts. When applied to transverse canyons, a specific secondary valley found in tiny locations, these techniques are difficult, expensive, and ineffective. This paper proposes an automated method for reconstructing the paleotopography of the transverse canyon using the digital elevation model (DEM) and river. (1) Restore the ridgeline above the transverse canyon based on the ridgelines of the mountains on both sides; (2) create a buffer zone based on the river centerline with unequal buffer distances on each side; (3) construct a mesh surface by interpolating transition curves from the morphing method, using the three-edge type; (4) apply a spatial interpolation method to the elevation points on the mesh surface to construct the DEM above the transverse canyon and stitch it to the input DEM to obtain the paleotopographic DEM; (5) calculate the spatial attributes. The objective of this study is to reconstruct the paleotopography of eight typical transverse canyons in the comb-like fold belt of northern Chongqing. As part of the paleotopographic reconstruction of the transverse canyon, we address the effects of dislocated mountains, erosion gullies, and different morphing techniques, as well as the applicability of the proposed method to reconstructing other secondary valleys. In conclusion, we reconstruct paleotopographic DEMs of transverse canyons to replicate headward erosion processes, assess paleodrainage patterns, and build three-dimensional solid models. Full article
Show Figures

Figure 1

14 pages, 6360 KiB  
Article
Targeting Paleovalley-Related Ferricrete Units in Yilgarn Craton Using High-Resolution Aeromagnetic Data and Spatial Machine Learning
by Hassan Talebi, Jelena Markov, Walid Salama, Alex Otto, Vasek Metelka, Ravi Anand and Dave Cole
Minerals 2022, 12(7), 879; https://doi.org/10.3390/min12070879 - 13 Jul 2022
Viewed by 2383
Abstract
The ferricrete units (Fe oxide cemented colluvial-alluvial sediment) of the Yilgarn Craton in Western Australia formed during the humid tropical and sub-tropical climates of the Cenozoic. Ferricretes are generally developed on long-lived paleodrainage systems and are products of the ferruginisation of detritus provided [...] Read more.
The ferricrete units (Fe oxide cemented colluvial-alluvial sediment) of the Yilgarn Craton in Western Australia formed during the humid tropical and sub-tropical climates of the Cenozoic. Ferricretes are generally developed on long-lived paleodrainage systems and are products of the ferruginisation of detritus provided by the continuous erosion of upslopes. These iron-rich accumulations can become Au-enriched, as is the case in several locations previously discovered in the Yilgarn Craton; many of these host economic secondary gold deposits (e.g., Moolart Well, Mt Gibson, and Bulchina), typically occurring downslope of low saprolite hills and near paleovalleys (i.e., inset-valleys). Inset-valleys are a common paleotopographic feature buried under Quaternary alluvial and colluvial sedimentary cover. Maps of these ancient channel networks can be used as a proxy for targeting ferricrete gold deposits. These inset-valley systems generally form dendritic and noisy patterns in high-resolution aeromagnetic data due to the presence of maghemite-rich nodules and detrital magnetic pisoliths on their flanks. The main aim of this study was to use high-resolution aeromagnetic data to target ferricrete units related to inset-valleys systems across the Yilgarn Craton. A spatial predictive model was used to learn and predict the geological units of interest from pre-processed aeromagnetic data. The predicted inset-valleys systems were able to confine the exploration space and define a new exploration frontier for ferricrete gold deposits. Full article
(This article belongs to the Special Issue Mineral Exploration in Weathered and Covered Terrains)
Show Figures

Figure 1

21 pages, 5383 KiB  
Article
Plio-Pleistocene Landscape Evolution of the Turano River Basin (Central Apennines, Italy): Insights from Continental Deposits’ Analysis and Drainage Network Development
by Vania Mancinelli, Gian Paolo Cavinato, Francesco Ciavattella, Alessandro Cecili, Maurizio D’Orefice, Carmela Epifani, Gianluca Esposito, Massimiliano Fazzini, Giorgio Paglia, Maurizio Parotto and Enrico Miccadei
Geosciences 2021, 11(6), 245; https://doi.org/10.3390/geosciences11060245 - 5 Jun 2021
Viewed by 3904
Abstract
Quaternary continental deposits record spatio-temporal changes of the landscape and offer insights for drainage network analysis and paleoenvironmental reconstructions. This paper focuses on the Turano River, a left tributary of the Velino River, which flows in the southwestern Abruzzo area at the boundary [...] Read more.
Quaternary continental deposits record spatio-temporal changes of the landscape and offer insights for drainage network analysis and paleoenvironmental reconstructions. This paper focuses on the Turano River, a left tributary of the Velino River, which flows in the southwestern Abruzzo area at the boundary with Lazio Region. Its basin preserves lithological and morphological field evidence particularly suitable for reconstructing the long-term geomorphological evolution of the Central Apennines and the drainage network development. In detail, the Turano River was investigated through a drainage basin-scale analysis incorporating morphometric analysis, field mapping, continental deposits analysis, and integrated drainage network analysis. This approach allowed us to define a drainage network reversal process, clearly highlighted by the spatial arrangement of continental deposits, spanning from Upper Pliocene to Holocene. The results also indicated tectonic activity as the main factor driving incision and river inversion processes. The work contributes to identifying and describing the main steps of the Quaternary landscape evolution of this mountainous catchment and its morphoneotectonic framework. Therefore, it could represent a methodological tool for multidisciplinary studies in similar mountainous catchments to support any territorial planning activity, from large infrastructure localization (i.e., artificial dams) to sustainable land management. Full article
Show Figures

Figure 1

32 pages, 14820 KiB  
Article
A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada
by Matthew Scott, Paul J. Sylvester and Derek H. C. Wilton
Minerals 2021, 11(3), 265; https://doi.org/10.3390/min11030265 - 4 Mar 2021
Cited by 4 | Viewed by 3296
Abstract
A number of hydrocarbon discoveries have been made recently in the Flemish Pass Basin and Central Ridge, offshore Newfoundland, Canada, but there is only limited geological information available. The primary goal of this study was to determine the sedimentary provenance and paleodrainage patterns [...] Read more.
A number of hydrocarbon discoveries have been made recently in the Flemish Pass Basin and Central Ridge, offshore Newfoundland, Canada, but there is only limited geological information available. The primary goal of this study was to determine the sedimentary provenance and paleodrainage patterns of mudstones and sandstones from the Upper Jurassic Rankin Formation, including the Upper and Lower Kimmeridgian Source Rock (organic-rich shale) members and Upper and Lower Tempest Sandstone Member reservoirs, in this area. A combination of heavy mineral analysis, whole-rock geochemistry and detrital zircon U-Pb geochronology was determined from cores and cuttings from four offshore wells in an attempt to decipher provenance. Detrital heavy minerals in 20 cuttings samples from the studied geologic units are dominated by either rutile + zircon + apatite ± chromite or rutile + apatite + tourmaline, with minor zircon, indicating diverse source lithologies. Whole rock Zr-Th-Sc trends suggest significant zircon recycling in both mudstones and sandstones. Detrital zircon U-Pb ages were determined in two mudstone and four sandstone samples from the four wells. Five major U-Pb age groups of grains were found: A Late Jurassic group that represents an unknown source of syn-sedimentary magmatism, a Permian–Carboniferous age group which is interpreted to be derived from Iberia, a Cambrian–Devonian group derived from the Central Mobile Belt of the Newfoundland–Ireland conjugate margin, and two older age groups (late Neoproterozoic and >1 Ga) linked to Avalonia. The Iberian detritus is abundant in the Central Ridge and southern Flemish Pass region and units containing sizable populations of these grains are interpreted to be derived from the east whereas units lacking this population are interpreted to be sourced from the northeast and possibly also the west. The Upper Tempest Sandstone contains Mesozoic zircons, which constrain the depositional age of this unit to be no older than Late Tithonian. Full article
Show Figures

Figure 1

33 pages, 6638 KiB  
Article
Detrital Zircon Provenance and Lithofacies Associations of Montmorillonitic Sands in the Maastrichtian Ripley Formation: Implications for Mississippi Embayment Paleodrainage Patterns and Paleogeography
by Jennifer N. Gifford, Elizabeth J. Vitale, Brian F. Platt, David H. Malone and Inoka H. Widanagamage
Geosciences 2020, 10(2), 80; https://doi.org/10.3390/geosciences10020080 - 22 Feb 2020
Cited by 6 | Viewed by 4649
Abstract
We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County, Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages [...] Read more.
We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County, Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input. The stratigraphic positions of the montmorillonitic sands suggest that these deposits represent some of the youngest Late Cretaceous volcanism in the MSE. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

19 pages, 18029 KiB  
Article
Mapping Paleohydrologic Features in the Arid Areas of Saudi Arabia Using Remote-Sensing Data
by Mohamed Abdelkareem, Fathy Abdalla, Samar Y. Mohamed and Farouk El-Baz
Water 2020, 12(2), 417; https://doi.org/10.3390/w12020417 - 4 Feb 2020
Cited by 19 | Viewed by 9873
Abstract
At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which [...] Read more.
At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas. Full article
(This article belongs to the Special Issue Advances in Paleohydrology Using Remote Sensing)
Show Figures

Figure 1

27 pages, 8830 KiB  
Article
Multimineral Fingerprinting of Transhimalayan and Himalayan Sources of Indus-Derived Thal Desert Sand (Central Pakistan)
by Wendong Liang, Eduardo Garzanti, Sergio Andò, Paolo Gentile and Alberto Resentini
Minerals 2019, 9(8), 457; https://doi.org/10.3390/min9080457 - 26 Jul 2019
Cited by 18 | Viewed by 7277
Abstract
As a Quaternary repository of wind-reworked Indus River sand at the entry point in the Himalayan foreland basin, the Thal Desert in northern Pakistan stores mineralogical information useful to trace erosion patterns across the western Himalayan syntaxis and the adjacent orogenic segments that [...] Read more.
As a Quaternary repository of wind-reworked Indus River sand at the entry point in the Himalayan foreland basin, the Thal Desert in northern Pakistan stores mineralogical information useful to trace erosion patterns across the western Himalayan syntaxis and the adjacent orogenic segments that fed detritus into the Indus delta and huge deep-sea fan throughout the Neogene. Provenance analysis of Thal Desert sand was carried out by applying optical and semi-automated Raman spectroscopy on heavy-mineral suites of four eolian and 11 fluvial sand samples collected in selected tributaries draining one specific tectonic domain each in the upper Indus catchment. In each sample, the different types of amphibole, garnet, epidote and pyroxene grains—the four dominant heavy-mineral species in orogenic sediment worldwide—were characterized by SEM-EDS spectroscopy. The chemical composition of 4249 grains was thus determined. Heavy-mineral concentration, the relative proportion of heavy-mineral species, and their minerochemical fingerprints indicate that the Kohistan arc has played the principal role as a source, especially of pyroxene and epidote. Within the western Himalayan syntaxis undergoing rapid exhumation, the Southern Karakorum belt drained by the Hispar River and the Nanga Parbat massif were revealed as important sources of garnet, amphibole, and possibly epidote. Sediment supply from the Greater Himalaya, Lesser Himalaya, and Subhimalaya is dominant only for Punjab tributaries that join the Indus River downstream and do not contribute sand to the Thal Desert. The detailed compositional fingerprint of Thal Desert sand, if contrasted with that of lower course tributaries exclusively draining the Himalaya, provides a semi-actualistic key to be used, in conjunction with complementary provenance datasets and geological information, to reconstruct changes in paleodrainage and unravel the relationship between climatic and tectonic forces that controlled the erosional evolution of the western Himalayan-Karakorum orogen in space and time. Full article
(This article belongs to the Special Issue Heavy Minerals: Methods & Case Histories)
Show Figures

Figure 1

29 pages, 57047 KiB  
Article
Paleo-Drainage Network, Morphotectonics, and Fluvial Terraces: Clues from the Verde Stream in the Middle Sangro River (Central Italy)
by Enrico Miccadei, Cristiano Carabella, Giorgio Paglia and Tommaso Piacentini
Geosciences 2018, 8(9), 337; https://doi.org/10.3390/geosciences8090337 - 8 Sep 2018
Cited by 19 | Viewed by 6539
Abstract
This work analyzes the role of paleo-drainage network, morphotectonics, and surface processes in landscape evolution in a sector of the transition zone between the chain and the piedmont area of Central Apennines. Particularly, it focuses on the Verde Stream, a tributary of the [...] Read more.
This work analyzes the role of paleo-drainage network, morphotectonics, and surface processes in landscape evolution in a sector of the transition zone between the chain and the piedmont area of Central Apennines. Particularly, it focuses on the Verde Stream, a tributary of the middle Sangro River valley, which flows in the southeastern Abruzzo area at the boundary with the Molise region. The Verde Stream was investigated through a drainage basin scale geomorphological analysis incorporating the morphometry of the orography and hydrography, structural geomorphological field mapping, and the investigation of morphological field evidence of tectonics with their statistical azimuthal distributions. The local data obtained were compared with the analysis of the middle Sangro River valley and the tectonic features of the Abruzzo–Molise area. This approach led us to also provide relevant clues about the definition of the role of karst features and paleo-landscapes in the general setting of the study area and to identify the impact of active tectonics, confirmed by recent and active seismicity. In conclusion, the paper contributes to defining the main stages of the geomorphological evolution of this area, driven by uplift and local tectonics and due to a combination of fluvial, karst, and landslide processes. Full article
Show Figures

Figure 1

22 pages, 5993 KiB  
Article
Fluvial Transport Model from Spatial Distribution Analysis of Libyan Desert Glass Mass on the Great Sand Sea (Southwest Egypt): Clues to Primary Glass Distribution
by Nancy Jimenez-Martinez, Marius Ramirez, Raquel Diaz-Hernandez and Gustavo Rodriguez-Gomez
Geosciences 2015, 5(2), 95-116; https://doi.org/10.3390/geosciences5020095 - 2 Apr 2015
Cited by 13 | Viewed by 9193
Abstract
Libyan Desert Glass (LDG) is a natural silica-rich melted rock found as pieces scattered over the sand and bedrock of the Western Desert of Egypt, northeast of the Gilf Kebir. In this work, a population mixture analysis serves to relate the present spatial [...] Read more.
Libyan Desert Glass (LDG) is a natural silica-rich melted rock found as pieces scattered over the sand and bedrock of the Western Desert of Egypt, northeast of the Gilf Kebir. In this work, a population mixture analysis serves to relate the present spatial distribution of LDG mass density with the Late Oligocene–Early Miocene fluvial dynamics in the Western Desert of Egypt. This was verified from a spatial distribution model that was predicted from the log-normal kriging method using the LDG–mass-dependent transformed variable, Y(x). Both low- and high-density normal populations (–9.2 < Y(x) < –3.5 and –3.8 < Y(x) < 2.1, respectively) were identified. The low-density population was the result of an ordinary fluvial LDG transport/deposition sequence that was active from the time of the melting process, and which lasted until the end of activity of the Gilf River. The surface distribution of the high-density population allowed us to restrict the source area of the melting process. We demonstrate the importance of this geostatistical study in unveiling the probable location of the point where the melting of surficial material occurred and the role of the Gilf River in the configuration of the observed strewn field. Full article
(This article belongs to the Special Issue Planetary Geosciences and Space Exploration)
Show Figures

Graphical abstract

Back to TopTop