Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = pack boriding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6707 KiB  
Article
The Effects of the Finishing Polish Process on the Tribological Properties of Boride Surfaces of AISI 4140 Steel
by Daniel Misael Flores-Arcos, Noé López-Perrusquia, Marco Antonio Doñu-Ruiz, Martin Flores-Martínez, Stephen Muhl Saunders, David Sánchez Huitron and Ernesto David García Bustos
Coatings 2025, 15(4), 474; https://doi.org/10.3390/coatings15040474 - 16 Apr 2025
Viewed by 510
Abstract
In sealing, sliding, and power transmission operations, surface quality and contact tolerances have high impacts on material system efficiency. Although the boriding process improves the wear resistance of metallic surfaces, it increases surface roughness, affecting the tribological efficiency of material systems. This study [...] Read more.
In sealing, sliding, and power transmission operations, surface quality and contact tolerances have high impacts on material system efficiency. Although the boriding process improves the wear resistance of metallic surfaces, it increases surface roughness, affecting the tribological efficiency of material systems. This study presents the tribological results of AISI 4140 boriding surfaces tested using a dehydrated paste pack boriding method with and without a finishing polish process to reduce the roughness. The duration of the boriding process was 1 h at 1123, 1173, 1223, and 1273 K using boron paste obtained from a commercial source and using a pot-polishing process with Al2O3 with a particle size of 0.5 μm for 25 min. The samples with and without the finishing polish process were structurally characterized using X-ray diffraction, and the boride coating adhesion was determined using Rockwell C indentation. The tribological properties of the boride surface with and without the finishing polish process were determined using a reciprocating sliding test, with a ZrO2 ball as a counter body. The boride surfaces’ crystalline structure changed with polishing, which revealed the FeB phase and reduced the roughness value. These modifications in the surface characteristics altered the adhesion and tribological performance of the coating, resulting in a more stable tribological performance on the polished boride surfaces, with a reduction in the coefficient of friction (Cof) value from 0.75 ± 0.02 for the tribological test on the 1123 K-P sample to 0.59 ± 0.002 for the 1273 K-P sample surface at 20 N of applied load. Full article
(This article belongs to the Special Issue Microstructure, Fatigue and Wear Properties of Steels, 2nd Edition)
Show Figures

Figure 1

14 pages, 4751 KiB  
Article
The Influence of an Alternating Current Field on Pack Boriding for Medium Carbon Steel at Moderate Temperature
by Xiaoxiao Li, Wei Liu, Jianguang Yuan, Jiaye Yuan, Xiaobao Zhou, Taijun Pan and Yanjie Ren
Coatings 2025, 15(1), 39; https://doi.org/10.3390/coatings15010039 - 3 Jan 2025
Viewed by 819
Abstract
The influence of alternating current (AC) field on the pack boriding process for medium carbon steel was investigated through characterization of microstructure, phase composition, microhardness, and corrosion resistance of the boride layer and its mechanism was revealed. Results showed that the boride layer [...] Read more.
The influence of alternating current (AC) field on the pack boriding process for medium carbon steel was investigated through characterization of microstructure, phase composition, microhardness, and corrosion resistance of the boride layer and its mechanism was revealed. Results showed that the boride layer obtained by AC field boriding was composed of the outer FeB and the inner Fe2B phase, which was similar to that of conventional boriding. Meanwhile, the effective thickness of the boride layer and proportion of Fe2B increased gradually with increasing current during AC field boriding. The introduction of an AC field during the boriding process served dual purposes. First, it facilitated the decomposition of the boriding medium, leading to an elevation in the concentration of active boron atoms. Second, it reduced the activation energy required for atomic diffusion, thereby accelerating the diffusion of both boron and iron atoms. These combined effects significantly enhanced the hardness distribution and corrosion resistance of the steel. Further insights into the process were gained by fitting the parabolic kinetics curves, which confirmed that the boriding process in an AC field was exclusively controlled by diffusion. This study also clarified the growth mechanism of the boride layer within an AC field. Full article
Show Figures

Figure 1

14 pages, 4965 KiB  
Article
Effect of Layer Thickness on the Practical Adhesion of Borided Monel 400 Alloy
by Francisco Javier Alfonso-Reyes, José Martínez-Trinidad, Luis Alfonso Moreno-Pacheco, Osvaldo Quintana-Hernández, Wilbert Wong-Ángel and Ricardo Andrés García-León
Coatings 2024, 14(11), 1414; https://doi.org/10.3390/coatings14111414 - 7 Nov 2024
Cited by 2 | Viewed by 1013
Abstract
This study presents new results on the practical adhesion behavior of a boride layer formed on Monel 400 alloy, developed using the powder-pack boriding (PPBP) at 1223 K for 2, 4, and 6 h of exposure times, obtaining layer thicknesses from approximately 7.9 [...] Read more.
This study presents new results on the practical adhesion behavior of a boride layer formed on Monel 400 alloy, developed using the powder-pack boriding (PPBP) at 1223 K for 2, 4, and 6 h of exposure times, obtaining layer thicknesses from approximately 7.9 to 23.8 µm. The nickel boride layers were characterized using optical microscopy, Berkovich nanoindentation, X-ray diffraction (XRD), and scanning electron microscopy (SEM) to determine microstructure, hardness distribution, and failure mechanisms over the worn tracks. Scratch tests were conducted on the borided Monel 400 alloy according to the ASTM C-1624 standard, applying a progressively increasing normal load from 1 to 85 N using a Rockwell-C diamond indenter, revealing that critical loads (LC1, LC2, and LC3) increased with layer thickness. The tests monitored the coefficient of friction and residual stress in real time. Critical loads were determined based on the correlation between the normal force and visual inspection of the worn surface, identifying cracks (cohesive failure) or detachment (adhesive failure). The results exposed those cohesive failures that appeared as Hertzian cracks, while adhesive failures were chipping and delamination, with critical loads reaching up to 49.0 N for the 6 h borided samples. Also, the results indicated that critical loads increased with greater layer thickness. The boride layer hardness was approximately 12 ± 0.3 GPa, ~4.0 times greater than the substrate, and Young’s modulus reached 268 ± 15 GPa. These findings underscore that PPBP significantly enhances surface mechanical properties, demonstrating the potential for applications demanding high wear resistance and strong layer adhesion. Full article
(This article belongs to the Special Issue Enhanced Mechanical Properties of Metals by Surface Treatments)
Show Figures

Figure 1

16 pages, 3174 KiB  
Article
Characterization and Growth Kinetics of Borides Layers on Near-Alpha Titanium Alloys
by Rongxun Piao, Wensong Wang, Biao Hu and Haixia Hu
Materials 2024, 17(19), 4815; https://doi.org/10.3390/ma17194815 - 30 Sep 2024
Cited by 3 | Viewed by 1027
Abstract
Pack boriding with CeO2 was performed on the powder metallurgical (PM) near-α type titanium alloy at a temperature of 1273–1373 K for 5–15 h followed by air cooling. The microstructure analysis showed that the boride layer on the surface of the alloy [...] Read more.
Pack boriding with CeO2 was performed on the powder metallurgical (PM) near-α type titanium alloy at a temperature of 1273–1373 K for 5–15 h followed by air cooling. The microstructure analysis showed that the boride layer on the surface of the alloy was mainly composed of a monolithic TiB2 outer layer, inner whisker TiB and sub-micron sized flake-like TiB layer. The growth kinetics of the TiB2 and TiB layers obeyed the parabolic diffusion model. The diffusion coefficient of boron in the boride layers obtained in the present study was well within the ranges reported in the literature. The activation energies of boron in the TiB2 and TiB layers during the pack boriding were estimated to be 166.4 kJ/mol and 122.8 kJ/mol, respectively. Friction tests showed that alloys borided at moderate temperatures and times had lower friction coefficients, which may have been due to the fine grain strengthening effect of TiB whiskers. The alloy borided at 1273 K for 10 h had a minimum friction coefficient of 0.73. Full article
Show Figures

Figure 1

17 pages, 12044 KiB  
Article
Study on the Tribological Properties of DIN 16MnCr5 Steel after Duplex Gas-Nitriding and Pack Boriding
by Rafael Carrera Espinoza, Melvyn Alvarez Vera, Marc Wettlaufer, Manuel Kerl, Stefan Barth, Pablo Moreno Garibaldi, Juan Carlos Díaz Guillen, Héctor Manuel Hernández García, Rita Muñoz Arroyo and Javier A. Ortega
Materials 2024, 17(13), 3057; https://doi.org/10.3390/ma17133057 - 21 Jun 2024
Cited by 5 | Viewed by 1576
Abstract
DIN 16MnCr5 is commonly used in mechanical engineering contact applications such as gears, joint parts, shafts, gear wheels, camshafts, bolts, pins, and cardan joints, among others. This study examined the microstructural and mechanical properties and tribological behavior of different surface treatments applied to [...] Read more.
DIN 16MnCr5 is commonly used in mechanical engineering contact applications such as gears, joint parts, shafts, gear wheels, camshafts, bolts, pins, and cardan joints, among others. This study examined the microstructural and mechanical properties and tribological behavior of different surface treatments applied to DIN 16MnCr5 steel. The samples were hardened at 870 °C for 15 min and then quenched in water. The surface conditions evaluated were as follows: quenched and tempered DIN 16MnCr5 steel samples without surface treatments (control group), quenched and tempered DIN 16MnCr5 steel samples with gas-nitriding at 560 °C for 6 h, quenched and tempered DIN 16MnCr5 steel samples with pack boriding at 950 °C for 4 h, and quenched and tempered DIN 16MnCr5 steel samples with duplex gas-nitriding and pack boriding. Microstructure characterization was carried out using metallographic techniques, optical microscopy, scanning electron microscopy with energy-dispersive spectroscopy, and X-ray diffraction. The mechanical properties were assessed through microhardness and elastic modulus tests using nanoindentation. The tribological behavior was evaluated using pin-on-disc tests following the ASTM G99-17 standard procedure under dry sliding conditions. The results indicated that the surface treated with duplex gas-nitriding and pack boriding exhibited the highest wear resistance and a reduced coefficient of friction due to improved mechanical properties, leading to increased hardness and elastic modulus. Full article
Show Figures

Figure 1

14 pages, 3056 KiB  
Article
Tribological and Mechanical Behavior of Automotive Crankshaft Steel Superficially Modified Using the Boriding Hardening Process
by Enrique Hernández-Sánchez, Diego Hernández-Domínguez, Raúl Tadeo-Rosas, Yesenia Sánchez-Fuentes, Luz Alejandra Linares-Duarte, Carlos Orozco-Álvarez, José Guadalupe Miranda-Hernández and Rafael Carrera-Espinoza
Coatings 2024, 14(6), 716; https://doi.org/10.3390/coatings14060716 - 5 Jun 2024
Cited by 3 | Viewed by 1499
Abstract
One of the primary challenges in the automotive industry is the wear of engine components, such as the crankshaft and camshaft, which is the most pronounced during the engine’s startup phase, when the amount of lubricant fluid is at its lowest. This study [...] Read more.
One of the primary challenges in the automotive industry is the wear of engine components, such as the crankshaft and camshaft, which is the most pronounced during the engine’s startup phase, when the amount of lubricant fluid is at its lowest. This study aims to enhance the surface wear resistance of automotive crankshaft steel by applying a boriding thermochemical process. This process forms a hard surface layer on the steel, improving its mechanical properties and bolstering its wear resistance, especially under dry conditions. Boride layers were achieved using the powder-pack boriding process in a conventional furnace, with meticulous treatment times of 2, 4, and 6 h at a constant temperature of 950 °C. The nature of the layers was analyzed using X-ray diffraction, and their tribological behavior was evaluated using the pin-on-disk test. The growth of the layers was directly proportional to the treatment time and was estimated at 145 µm and 48 µm for the 6 and 2 h of treatment, respectively. The surface hardness increased from 320 HV for the non-treated steel to 2034 HV for the sample exposed to 950 °C for 6 h. The results indicate a significant reduction in the coefficient of friction from 0.43 for the non-treated steel to 0.12 for the samples exposed to 950 °C for 6 h, suggesting potential wear protection during the engine starting period. Full article
(This article belongs to the Special Issue Surface Treatment on Metals and Their Alloys)
Show Figures

Figure 1

11 pages, 10979 KiB  
Article
Synthesis and Characterization of High-Purity, High-Entropy Diboride Ceramic Powders by a Liquid Phase Method
by Weilu Gong, Tiyuan Wang, Wei Luo, Youpei Du, Li Ye, Riheng Song, Haifeng Cui, Tong Zhao, Wei Yang, Zhen Dai and Yiqiang Hong
Materials 2023, 16(23), 7431; https://doi.org/10.3390/ma16237431 - 29 Nov 2023
Cited by 7 | Viewed by 1904
Abstract
A nano-dual-phase powder with ultra-fine grain size was synthesized by the liquid precursor method at 1200 °C. A series of single-phase high-entropy ceramic powders ((Ti, Zr, Hf, Nb)B2, (Ti, Zr, Hf, Nb, Ta)B2, (Ti, Zr, Hf, Nb, Mo)B2 [...] Read more.
A nano-dual-phase powder with ultra-fine grain size was synthesized by the liquid precursor method at 1200 °C. A series of single-phase high-entropy ceramic powders ((Ti, Zr, Hf, Nb)B2, (Ti, Zr, Hf, Nb, Ta)B2, (Ti, Zr, Hf, Nb, Mo)B2, (Ti, Zr, Hf, Nb, Ta, Mo)B2) with high purity (C content less than 0.9 wt% and O content less than 0.7 wt%) and ultrafine (average grain sizes of 340–570 nm) were successfully synthesized at 1800 °C. The sample of (TiZrHfNbTa)B2 exhibited a hexagonal close-packed (HCP) structure, and the metal elements were uniformly distributed at the nanoscale, microscale, and macroscale. This method did not apply to the preparation of all high-entropy ceramic powders and was unfavorable for the formation of single-phase high-entropy borides when the size difference factor exceeded 3.9%. The present work provides a guide for the development of ceramic-based composites through precursor impregnation pyrolysis. Full article
Show Figures

Figure 1

11 pages, 6541 KiB  
Article
Influence of Surface Nanocrystallization on Two-Step Pack-Boronizing of AISI 5120 Steel
by Xinyu Zhang, Na Tian, Baojian Liu, Zhanwei Yuan, Runze Zhao and Liling Ge
Coatings 2023, 13(7), 1242; https://doi.org/10.3390/coatings13071242 - 13 Jul 2023
Cited by 2 | Viewed by 1472
Abstract
AISI 5120 steel, which underwent 30 min single-surface nanocrystallization via supersonic fine particle bombarding (SFPB), was pre-boronized at 600 °C for 2 h, and then final-boronized at 800 °C or 900 °C for 2–6 h, i.e., two-step pack-boronizing. The specimens’ microstructure and mechanical [...] Read more.
AISI 5120 steel, which underwent 30 min single-surface nanocrystallization via supersonic fine particle bombarding (SFPB), was pre-boronized at 600 °C for 2 h, and then final-boronized at 800 °C or 900 °C for 2–6 h, i.e., two-step pack-boronizing. The specimens’ microstructure and mechanical characteristics before and after two-step boronizing were examined in detail. The results showed that the hardness of the SFPB surface reached 570 HV, which was 2.73 times higher than its original hardness (209 HV). The nanocrystallized surface exhibited the increased thickness and hardness of the boride layer, in comparison to that of the un-SFPB surface. Two-step pack-boronizing further improved the thickness and hardness of the SFPB surface of AISI 5120 steel. When final-boronizing at 900 °C for 6 h, the thickness and hardness of the boronizing layer in the SFPB surface was 88 µm and 2196 HV, respectively, which was 10.5 times higher than the original hardness. Additionally, the CeO2 added in the boronizing agent was helpful in obtaining the boride layer with the ductile-serrated Fe2B phase rather than the brittle phase of FeB in the boride layer, which was expected for industrial applications. Full article
Show Figures

Figure 1

31 pages, 5921 KiB  
Article
Analysis of Diffusion Coefficients of Iron Monoboride and Diiron Boride Coating Formed on the Surface of AISI 420 Steel by Two Different Models: Experiments and Modelling
by Martín Ortiz-Domínguez, Ángel Jesús Morales-Robles, Oscar Armando Gómez-Vargas and Teresita de Jesús Cruz-Victoria
Materials 2023, 16(13), 4801; https://doi.org/10.3390/ma16134801 - 3 Jul 2023
Cited by 4 | Viewed by 1934
Abstract
In the present work, two mathematical diffusion models have been used to estimate the growth of the iron monoboride and diiron boride coating formed on AISI 420 steel. The boronizing of the steel was carried out with the solid diffusion packing method at [...] Read more.
In the present work, two mathematical diffusion models have been used to estimate the growth of the iron monoboride and diiron boride coating formed on AISI 420 steel. The boronizing of the steel was carried out with the solid diffusion packing method at a boronizing temperature of 1123 K–1273 K. Experimental results show the two-coating system consists of an outer monoboride and an inner diiron boride coating with a predominantly planar structure at the propagation front. The depth of the boride coating increases according to temperature and treatment time. A parabolic curve characterizes the propagation of the boride coatings. The two proposed mathematical models of mass transfer diffusion are founded on the solution corresponding to Fick’s second fundamental law. The first is based on a linear boron concentration–penetration profile without time dependence, and the second model with time dependence (exact solution). For both models, the theoretical law of parabolic propagation and the average flux of boron atoms (Fick’s first fundamental law) at the growth interfaces (monoboride/diiron boride and diiron boride/substrate) are considered to estimate the propagation of the boride coatings (monoboride and diiron boride). To validate the mathematical models, a programming code is written in the MATLAB program (adaptation 7.5) designed to simulate the growth of the boride coatings (monoboride and diiron boride). The following parameters are used as input data for this computer code: (the layer thicknesses of the FeB and Fe2B phases, the operating temperature, the boronizing time, initial formation time of the boride coating, the surface boron concentration limits, FeB/Fe2B and Fe2B/Fe growth interfaces, and the mass transfer diffusion coefficient of boron in the iron monoboride and diiron boride phases). The outputs of the computer code are the constants εFeB and εFe2B. The assessment of activation energies of AISI 420 steel for the two mathematical models of mass transfer is coincident (QFeB=221.9 kJ∙mol−1 and QFe2B=209.1 kJ∙mol−1). A numerical analysis was performed using a standard Taylor series for clarification of the proximity between the two models. SEM micrographs exhibited a strong propensity toward a flat-fronted composition at expansion interfaces of the iron monoboride and diiron boride coating, confirmed by XRD analysis. Tribological characterizations included the Vickers hardness test method, pin-on-disc, and Daimler–Benz Rockwell-C indentation adhesion tests. After thorough analysis, the energies were compared to the existing literature to validate our experiment. We found that our models and experimental results agreed. The diffusion models we utilized were crucial in gaining a deeper understanding of the boronizing behavior of AISI 420 steel, and they also allowed us to predict the thicknesses of the iron monoboride and diiron boride coating. These models provide helpful approaches for predicting the behavior of these steels. Full article
Show Figures

Figure 1

14 pages, 3342 KiB  
Article
Kinetic Modelling of Powder-Pack Boronized 4Cr5MoSiV1 Steel by Two Distinct Approaches
by Katia Benyakoub, Mourad Keddam, Brahim Boumaali and Michał Kulka
Coatings 2023, 13(6), 1132; https://doi.org/10.3390/coatings13061132 - 20 Jun 2023
Cited by 6 | Viewed by 1887
Abstract
This work attempts to model the powder-pack boronizing kinetics of 4Cr5MoSiV1 steel in the interval of 1133 and 1253 K in order to predict the layers’ thicknesses. The first approach is referred to as the bilayer model and relies on the conservation principle [...] Read more.
This work attempts to model the powder-pack boronizing kinetics of 4Cr5MoSiV1 steel in the interval of 1133 and 1253 K in order to predict the layers’ thicknesses. The first approach is referred to as the bilayer model and relies on the conservation principle of mass balance equations at the two phase fronts accounting for the linearity of boron distribution across each boride phase. The second approach deals with the application of dimensional analysis to simulate the boronizing kinetics of 4Cr5MoSiV1 steel. Using the bilayer model and the classical parabolic law, the boron activation energies in FeB and Fe2B were evaluated and discussed in light of the literature data. The estimated boron activation energies from the bilayer model were respectively equal to 164.92 and 153.39 kJ mol−1. These values were very comparable to those calculated from the classical parabolic law. Finally, it was proven that the dimensional analysis was able to simulate the layers’ thicknesses for the selected processing parameters. Full article
(This article belongs to the Special Issue Surface Treatment on Metals and Their Alloys)
Show Figures

Figure 1

18 pages, 11415 KiB  
Article
Effect of Prior Boriding on Microstructure and Mechanical Properties of Nanobainitic X37CrMoV5-1 Hot-Work Tool Steel
by Grzegorz Łukaszewicz, Michał Tacikowski, Michał Kulka, Krzysztof Chmielarz, Monika Węsierska-Hinca and Wiesław A. Świątnicki
Materials 2023, 16(12), 4237; https://doi.org/10.3390/ma16124237 - 7 Jun 2023
Cited by 6 | Viewed by 1725
Abstract
The influence of prior pack boriding on the microstructure and properties of nanobainitised X37CrMoV5-1 hot-work tool steel was investigated in the present work. Pack boriding was conducted at 950 °C for 4 h. Nanobainitising consisted of two-step isothermal quenching at 320 °C for [...] Read more.
The influence of prior pack boriding on the microstructure and properties of nanobainitised X37CrMoV5-1 hot-work tool steel was investigated in the present work. Pack boriding was conducted at 950 °C for 4 h. Nanobainitising consisted of two-step isothermal quenching at 320 °C for 1 h, followed by annealing at 260 °C for 18 h. A combination of boriding with nanobainitising constituted a new hybrid treatment. The obtained material exhibited a hard borided layer (up to 1822 ± 226 HV0.05) and a strong (rupture strength 1233 ± 41 MPa) nanobainitic core. However, the presence of a borided layer decreased mechanical properties under tensile and impact load conditions (total elongation decreased by 95% and impact toughness by 92%). Compared with borided and conventionally quenched and tempered steel, the hybrid–treated material retained higher plasticity (total elongation higher by 80%) and higher impact toughness (higher by 21%). It was found that the boriding led to the redistribution of carbon and silicon atoms between the borided layer and substrate, which could influence bainitic transformation in the transition zone. Furthermore, the thermal cycle in the boriding process also influenced the phase transformations during subsequent nanobainitising. Full article
(This article belongs to the Special Issue Enhancing In-Use Properties of Advanced Steels)
Show Figures

Figure 1

13 pages, 4580 KiB  
Article
Effect of Boronizing on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy
by Mingyu Hu, Xuemei Ouyang, Fucheng Yin, Xu Zhao, Zuchuan Zhang and Xinming Wang
Materials 2023, 16(10), 3754; https://doi.org/10.3390/ma16103754 - 16 May 2023
Cited by 8 | Viewed by 2098
Abstract
The CoCrFeNiMn high-entropy alloys were treated by powder-pack boriding to improve their surface hardness and wear resistance. The variation of boriding layer thickness with time and temperature was studied. Then, the frequency factor D0 and diffusion activation energy Q of element B [...] Read more.
The CoCrFeNiMn high-entropy alloys were treated by powder-pack boriding to improve their surface hardness and wear resistance. The variation of boriding layer thickness with time and temperature was studied. Then, the frequency factor D0 and diffusion activation energy Q of element B in HEA are calculated to be 9.15 × 10−5 m2/s and 206.93 kJ/mol, respectively. The diffusion behavior of elements in the boronizing process was investigated and shows that the boride layer forms with the metal atoms diffusing outward and the diffusion layer forms with the B atoms diffusing inward by the Pt-labeling method. In addition, the surface microhardness of CoCrFeNiMn HEA was significantly improved to 23.8 ± 1.4 Gpa, and the friction coefficient was reduced from 0.86 to 0.48~0.61. Full article
Show Figures

Figure 1

17 pages, 56302 KiB  
Article
The Effect of Hybrid Treatment Combining Boriding and Nanobainitising on the Tribological and Mechanical Properties of 66SiMnCrMo6-6-4 Bearing Steel
by Grzegorz Łukaszewicz, Michał Tacikowski, Michał Kulka, Krzysztof Chmielarz and Wiesław A. Świątnicki
Materials 2023, 16(9), 3436; https://doi.org/10.3390/ma16093436 - 28 Apr 2023
Cited by 5 | Viewed by 1812
Abstract
The effect of a new hybrid heat treatment consisting of pack-boriding and nanobainitising on the microstructure and properties of EN 66SiMnCrMo6-6-4 bearing steel was investigated. The hybrid treatment produces a new high-strength (ca. 1480 MPa) material with a hard boride (ca. 2000 HV0.05) [...] Read more.
The effect of a new hybrid heat treatment consisting of pack-boriding and nanobainitising on the microstructure and properties of EN 66SiMnCrMo6-6-4 bearing steel was investigated. The hybrid treatment produces a new high-strength (ca. 1480 MPa) material with a hard boride (ca. 2000 HV0.05) surface layer and a relatively ductile nanobainitic core. The formation of the boride layer significantly improves wear resistance. The boride layer, which is hard but susceptible to cracking, reduces the mechanical properties under tensile and impact loads. However, the borided and nanobainitised steel exhibits much higher tensile strength and ductility and slightly better impact toughness than steel after post-boriding quenching and tempering. Full article
(This article belongs to the Special Issue Enhancing In-Use Properties of Advanced Steels)
Show Figures

Graphical abstract

10 pages, 2252 KiB  
Article
Evaluation of Wear Resistance of AISI L6 and 5140 Steels after Surface Hardening with Boron and Copper
by Stepan Lysykh, Vasily Kornopoltsev, Undrakh Mishigdorzhiyn, Yuri Kharaev and Zhongliang Xie
Lubricants 2023, 11(2), 48; https://doi.org/10.3390/lubricants11020048 - 29 Jan 2023
Cited by 6 | Viewed by 2331
Abstract
(1) Background: Boriding is one of the most common methods of thermal-chemical treatment due to its excellent hardness and wear resistance of the produced diffusion layers. However, it has limited application compared to carburizing and nitriding because of fragility and chipping. Introducing another [...] Read more.
(1) Background: Boriding is one of the most common methods of thermal-chemical treatment due to its excellent hardness and wear resistance of the produced diffusion layers. However, it has limited application compared to carburizing and nitriding because of fragility and chipping. Introducing another alloying element into the boron media helps avoid those drawbacks and improve other surface properties of the layer. The purpose of this work is to improve the surface mechanical properties of L6 and 5140 low alloy steels by two-component surface hardening with boron and copper. (2) Methods: The treatment was performed by means of a powder-pack method using boron, copper, and aluminum powders in the following proportions: 60% B4C + 20% Al2O3 + 16% CuO + 4% NaF. The time–temperature parameters of the treatment were four hours exposure at 950 °C. Microstructure, elemental, and phase composition were investigated as well as microhardness and wear resistance of the obtained layers. (3) Results: Layers of up to 180–200 μm thick are formed on both steels as a result of treatment. Needle-like structures similar to pure boriding was obtained. The maximum microhardness was 2000 HV on L6 steel and 1800 HV on 5140 steel. These values correspond to iron borides and were confirmed by XRD analysis revealing FeB, Fe2B, and Cr5B3. The wear resistance of both steels was about ten times higher after the treatment compared to non-treated samples. (4) Conclusions: Surface hardening with boron and copper significantly improves the mechanical properties of both alloy steels. The results obtained are beneficial for different tribo-pair systems or three-body wear with abrasion and minimum impact loads. Full article
Show Figures

Figure 1

28 pages, 13676 KiB  
Article
Growth Kinetics, Microstructure Evolution, and Some Mechanical Properties of Boride Layers Produced on X165CrV12 Tool Steel
by Natalia Makuch, Michał Kulka, Mourad Keddam and Adam Piasecki
Materials 2023, 16(1), 26; https://doi.org/10.3390/ma16010026 - 21 Dec 2022
Cited by 11 | Viewed by 2261
Abstract
The powder-pack boriding technique with an open retort was used to form borided layers on X165CrV12 tool steel. The process was carried out at 1123, 1173, and 1223 K for 3, 6, and 9 h. As a result of boriding the high-chromium substrate, [...] Read more.
The powder-pack boriding technique with an open retort was used to form borided layers on X165CrV12 tool steel. The process was carried out at 1123, 1173, and 1223 K for 3, 6, and 9 h. As a result of boriding the high-chromium substrate, the produced layers consisted of three zones: an outer FeB layer, an inner Fe2B layer, and a transition zone, below which the substrate material was present. Depending on the applied parameters of boriding, the total thickness of the borided layers ranged from 12.45 to 78.76 µm. The increased temperature, as well as longer duration, was accompanied by an increase in the thickness of the FeB zone and the total layer thickness. The integral diffusion model was utilized to kinetically describe the time evolution of the thickness of the FeB and (FeB + Fe2B) layers grown on the surface of powder-pack borided X165CrV12 steel. The activation energy of boron for the FeB phase was lower than that for the Fe2B phase. This suggested that the FeB phase could be formed before the Fe2B phase appeared in the microstructure. The high chromium concentration in X165CrV12 steel led to the formation of chromium borides in the borided layer, which increased the hardness (21.88 ± 1.35 GPa for FeB zone, 17.45 ± 1.20 GPa for Fe2B zone) and Young’s modulus (386.27 ± 27.04 GPa for FeB zone, 339.75 ± 17.44 GPa for Fe2B zone). The presence of the transition zone resulted from the accumulation of chromium and carbon atoms at the interface between the tips of Fe2B needles and the substrate material. The presence of hard iron and chromium borides provided significant improvement in the wear resistance of X165CrV12 steel. The powder-pack borided steel was characterized by a four times lower mass wear intensity factor and nine times lower ratio of mass loss to the length or wear path compared to the non-borided material. Full article
Show Figures

Figure 1

Back to TopTop