Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ozone contact tank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6683 KB  
Article
Evaluation of Heterogeneous Catalytic Ozonation Process for the Removal of Micropollutants from Water/Wastewater: Application of a Novel Pilot-Scale Continuous Flow System
by Efthimia Kaprara, Charalampos Belesakos, Konstantinos Kollis, Savvina Psaltou, Anastasios Zouboulis and Manassis Mitrakas
Catalysts 2023, 13(5), 899; https://doi.org/10.3390/catal13050899 - 17 May 2023
Cited by 3 | Viewed by 2552
Abstract
The present study evaluates the removal of micropollutants from water/wastewater contaminated sources through the application of a heterogeneous catalytic ozonation process, using a pilot-scale continuous operation unit, composed of a membrane module for the diffusion and effective dilution of ozone into the liquid [...] Read more.
The present study evaluates the removal of micropollutants from water/wastewater contaminated sources through the application of a heterogeneous catalytic ozonation process, using a pilot-scale continuous operation unit, composed of a membrane module for the diffusion and effective dilution of ozone into the liquid phase to be treated and a plug flow reactor/continuous stirred tank reactor (PFR/CSTR) contact reactor system in series, where the catalyst is recirculated in dispersion mode. The solid materials tested as catalysts are natural and calcined zeolite, Bayoxide and alumina, whereas the examined micropollutants, used in this case as probe compounds, are p-chlorobenzoic acid (p-CBA), atrazine, benzotriazole and carbamazepine. A high-performance liquid chromatography system was used to determine the removal of micropollutants. In the case of p-CBA, an ozone-resistant compound, the addition of catalyst was found to significantly enhance its degradation rate, leading to >99% removal under the optimum defined conditions, i.e., in terms of catalyst concentration, pH, temperature, and process time. On the other hand, in the case of atrazine, a different ozone-resistant compound, the introduction of examined catalysts in the ozonation process was found to reduce the degradation of micropollutant, when compared with the application of single ozonation, indicating the importance of specific affinity between the pollutant and the solid material used as catalyst. Benzotriazole, a moderately ozone-reactive compound was degraded by more than 95% under all experimental conditions and catalysts tested in the pilot unit, while carbamazepine, a highly ozone-reactive compound, was completely removed even during the first stage of treatment process (i.e., at the membrane contactor). When increasing the pH value (in the range 6–8) and the contact time, the performance of catalytic ozonation process also improved. Full article
(This article belongs to the Special Issue Transition Metal Complexes as Catalysts)
Show Figures

Figure 1

14 pages, 55301 KB  
Article
Catalytic Ozonation of the Secondary Effluents from the Largest Chinese Petrochemical Wastewater Treatment Plant—A Stability Assessment
by Siyu Zhang, Hao Wang, Yuexi Zhou, Mohammadreza Kamali, Xuwen He, Mohammadreza Khalaj and Yu Xia
Sustainability 2022, 14(4), 2200; https://doi.org/10.3390/su14042200 - 15 Feb 2022
Cited by 7 | Viewed by 3478
Abstract
Effluents discharged from petrochemical facilities are complex and composed of various types of highly toxic contaminants, which necessitates the development of sustainable treatment technologies. Stability is among the most important sustainability criteria of the wastewater treatment processes. In the present manuscript, the standard-reaching [...] Read more.
Effluents discharged from petrochemical facilities are complex and composed of various types of highly toxic contaminants, which necessitates the development of sustainable treatment technologies. Stability is among the most important sustainability criteria of the wastewater treatment processes. In the present manuscript, the standard-reaching rate (η) index was used to evaluate the stability of the catalytic ozonation process for treating the secondary effluent from the petrochemical industry. A pilot-scale device was designed and implemented for catalytic ozonation. The effluents were taken from the secondary sedimentation tank of a petrochemical wastewater treatment plant in China. A commercially available γ-Al2O3 was used as the catalyst after a pre-treatment heating step. The catalyst was characterized using scanning electron microscopy. Three mathematical statistics indexes, discrete coefficient (Vσ), skewness coefficient (Cso), and range coefficient (VR), were used to analyze the results achieved from the catalytic ozonation process. Continuous operation of the pilot-scale device was monitored for 9 months under an ozone concentration of 36 mg/L and the contact oxidation time of 1 h. The results demonstrated that the stability evaluation grades of chemical oxygen demand (COD) and suspended solids (SS) in the effluent of the catalytic ozonation system were both 3 and A, indicating that the process was relatively stable over a long period of application. The effluent COD compliance grade was also calculated as B, indicating that the effluent COD does not meet the standard and the process parameters need to be further optimized. When the reflux ratio is 150%, the removal rate of COD is the highest (38.2%) and the COD of effluent is 49.34 mg/L. Meanwhile, to enhance the efficiency and stability of the system, the ozone concentration and the two-stage aeration ratio are 40 mg/L and 4:1, respectively. Moreover, the presence of SS in the water of the catalytic ozonation system will result in the waste of ozone and reduce the utilization rate of ozone. Full article
(This article belongs to the Special Issue Sustainability in Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Unified Analysis of Multi-Chamber Contact Tanks and Mixing Efficiency Evaluation Based on Vorticity Field. Part II: Transport Analysis
by Ender Demirel and Mustafa M. Aral
Water 2016, 8(11), 537; https://doi.org/10.3390/w8110537 - 16 Nov 2016
Cited by 22 | Viewed by 6636
Abstract
Mixing characteristics of multi-chambered contact tank are analyzed employing the validated three-dimensional numerical model developed in the companion paper. Based on the flow characterization, novel volumetric mixing efficiency definitions are proposed for the assessment of the hydrodynamic and chemical transport properties of the [...] Read more.
Mixing characteristics of multi-chambered contact tank are analyzed employing the validated three-dimensional numerical model developed in the companion paper. Based on the flow characterization, novel volumetric mixing efficiency definitions are proposed for the assessment of the hydrodynamic and chemical transport properties of the contact tank and its chambers. Residence time distribution functions are analyzed not only at the outlet of each chamber but also inside the chambers using the efficiency definitions for both Reynolds averaged Navier–Stokes (RANS) and large eddy simulation (LES) results. A novel tracer mixing index is defined to characterize short circuiting and mixing effects of the contact system. Comparisons of the results of these indexes for RANS and LES solutions indicate that mixing characteristics are stronger in LES due to the unsteady turbulent eddy mixing even though short circuiting effects are also more prominent in LES results. This result indicates that the mixing analysis based on the LES results simulates the mixing characteristics instantaneously, which is more realistic than that in RANS. Since LES analysis can capture turbulent eddy mixing better than RANS analysis, the interaction of recirculation and jet zones are captured more effectively in LES, which tends to predict higher turbulent mixing in the contact system. The analysis also shows that the mixing efficiency of each chamber of the contact tank is different, thus it is necessary to consider distinct chemical release and volumetric designs for each chamber in order to maximize the mixing efficiency of the overall process in a contact tank system. Full article
(This article belongs to the Special Issue Water Quality and Health)
Show Figures

Figure 1

21 pages, 8681 KB  
Article
Unified Analysis of Multi-Chamber Contact Tanks and Mixing Efficiency Based on Vorticity Field. Part I: Hydrodynamic Analysis
by Ender Demirel and Mustafa M. Aral
Water 2016, 8(11), 495; https://doi.org/10.3390/w8110495 - 2 Nov 2016
Cited by 24 | Viewed by 6699
Abstract
Multi-chamber contact tanks have been extensively used in industry for water treatment to provide potable water to communities, which is essential for human health. To evaluate the efficiency of this treatment process, flow and tracer transport analysis have been used in the literature [...] Read more.
Multi-chamber contact tanks have been extensively used in industry for water treatment to provide potable water to communities, which is essential for human health. To evaluate the efficiency of this treatment process, flow and tracer transport analysis have been used in the literature using Reynolds averaged Navier–Stokes (RANS) and large-eddy simulations (LES). The purpose of this study is two-fold. First a unifying analysis of the flow field is presented and similarities and differences in the numerical results that were reported in the literature are discussed. Second, the vorticity field is identified as the key parameter to use in separating the mean flow (jet zone) and the recirculating zones. Based on the concepts of vorticity gradient and flexion product, it is demonstrated that the separation of the recirculation zone and the jet zone, fluid-fluid flow separation, is possible. The separation of the recirculation zones and vortex core lines are characterized using the definition of the Lamb vector. The separated regions are used to characterize the mixing efficiency in the chambers of the contact tank. This analysis indicates that the recirculation zone and jet zone formation are three-dimensional and require simulations over a long period of time to reach stability. It is recognized that the characteristics of the jet zones and the recirculation zones are distinct for each chamber and they follow a particular pattern and symmetry between the alternating chambers. Hydraulic efficiency coefficients calculated for each chamber show that the chambers having an inlet adjacent to the free surface may be designed to have larger volumes than the chambers having wall bounded inlets to improve the efficiency of the contact tank. This is a simple design alternative that would increase the efficiency of the system. Other observations made through the chamber analysis are also informative in redefining the characteristics of the efficiency of the contact tank system. Full article
(This article belongs to the Special Issue Water Quality and Health)
Show Figures

Figure 1

20 pages, 298 KB  
Review
Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water
by Jennifer L. Banach, Imca Sampers, Sam Van Haute and H.J. (Ine) Van der Fels-Klerx
Int. J. Environ. Res. Public Health 2015, 12(8), 8658-8677; https://doi.org/10.3390/ijerph120808658 - 23 Jul 2015
Cited by 189 | Viewed by 15482
Abstract
The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water [...] Read more.
The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water disinfectants during produce processing with the aim to prevent cross-contamination of pathogens. Process wash water disinfection requires short contact times so microorganisms are rapidly inactivated. Free chlorine, chlorine dioxide, ozone, and peracetic acid were considered suitable disinfectants. A disinfectant’s reactivity with the organic matter will determine the disinfectant residual, which is of paramount importance for microbial inactivation and should be monitored in situ. Furthermore, the chemical and worker safety, and the legislative framework will determine the suitability of a disinfection technique. Current research often focuses on produce decontamination and to a lesser extent on preventing cross-contamination. Further research on a sanitizer’s efficacy in the washing water is recommended at the laboratory scale, in particular with experimental designs reflecting industrial conditions. Validation on the industrial scale is warranted to better understand the overall effects of a sanitizer. Full article
(This article belongs to the Special Issue Food Safety)
Back to TopTop