Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (289)

Search Parameters:
Keywords = oxide metallic glasses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 227
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

24 pages, 4568 KiB  
Article
Greener Synthesis of Eco-Friendly Biodegradable Mesoporous Bioactive Glasses with and Without Thermal Treatment and Its Effects on Drug Delivery and In Vitro Bioactivity
by Dana Almasri and Yaser Dahman
Int. J. Mol. Sci. 2025, 26(13), 6524; https://doi.org/10.3390/ijms26136524 - 7 Jul 2025
Viewed by 342
Abstract
This study investigates the use of a salt template to synthesize mesoporous bioactive glass (MBG). Different salts were used as hard templates to create pores in the glass structure to investigate the possibility of using acid-soluble salt templates and to understand the properties [...] Read more.
This study investigates the use of a salt template to synthesize mesoporous bioactive glass (MBG). Different salts were used as hard templates to create pores in the glass structure to investigate the possibility of using acid-soluble salt templates and to understand the properties of glass synthesized without thermal treatment. The MBGs were synthesized in a TRIS buffer solution at a pH of 9.5 to allow hydrolysis of the metal oxide precursors. The glass was then washed with mild acid to remove the template. After the samples were washed, some were subjected to thermal treatment, while others were not to investigate the impact of thermal treatment on the structure of the MBG. The successful synthesis of MBG was confirmed by X-ray diffraction, Fourier-transfer infrared spectroscopy, scanning emission scanning microscope, and nitrogen adsorption–desorption analysis. This synthesized MBG had a large surface area, pore volume, pore size, and high drug loading efficiency. MBG synthesized without thermal treatment had slower degradation over the test period, but higher loading efficiency and slower drug release, making it appropriate for applications requiring long-term drug delivery while maintaining its bioactivity. Full article
Show Figures

Figure 1

32 pages, 947 KiB  
Systematic Review
The Impact of Environmental and Material Factors on Fluoride Release from Metal-Modified Glass Ionomer Cements: A Systematic Review of In Vitro Studies
by Sylwia Klimas, Sylwia Kiryk, Jan Kiryk, Agnieszka Kotela, Julia Kensy, Mateusz Michalak, Zbigniew Rybak, Jacek Matys and Maciej Dobrzyński
Materials 2025, 18(13), 3187; https://doi.org/10.3390/ma18133187 - 5 Jul 2025
Viewed by 488
Abstract
Objective: Fluoride is widely recognized for its preventive role against secondary caries. This systematic review aimed to evaluate how environmental and material factors influence fluoride ion release from metal-reinforced glass ionomer cements. Methods: A structured literature search was performed in March 2025 across [...] Read more.
Objective: Fluoride is widely recognized for its preventive role against secondary caries. This systematic review aimed to evaluate how environmental and material factors influence fluoride ion release from metal-reinforced glass ionomer cements. Methods: A structured literature search was performed in March 2025 across PubMed, Scopus, and Web of Science databases. Search terms included combinations of fluoride release AND glass ionomer AND silver OR zinc OR strontium OR copper. The study selection process followed PRISMA 2020 guidelines and was organized using the PICO framework. Out of 281 initially identified records, 153 were screened based on titles and abstracts. After applying predefined eligibility criteria, 23 studies met the inclusion requirements and were included in the qualitative analysis. Results: Among the 23 included publications, 12 involved glass ionomers modified with silver, and 6 of these reported an increase in fluoride release. Seven studies focused on zinc-modified cements, and four examined materials reinforced with strontium. Conclusions: The addition of strontium, titanium oxide, silver nanoparticles, or zirconium oxide increases the release of fluoride ions, while sintered silver reduces it. There is a great discrepancy among researchers regarding the effect of the addition of zinc oxide and its appropriate amount in the glass ionomer material. Full article
Show Figures

Graphical abstract

14 pages, 6415 KiB  
Article
On the Wear Mechanism and Subsurface Deformation of Zr-Based Metallic Glass at Subzero Temperature
by Xin Li, Jianan Fu, Zhen Li, Fei Sun, Kaikai Song and Jiang Ma
Materials 2025, 18(13), 3012; https://doi.org/10.3390/ma18133012 - 25 Jun 2025
Viewed by 410
Abstract
Metallic glasses (MGs) with excellent mechanical properties have significant applications in frontier technological fields such as medical, energy and aerospace industries. Recently, MGs have been considered as ideal candidates for subzero engineering applications due to their disordered atomic structure array. However, the mechanical [...] Read more.
Metallic glasses (MGs) with excellent mechanical properties have significant applications in frontier technological fields such as medical, energy and aerospace industries. Recently, MGs have been considered as ideal candidates for subzero engineering applications due to their disordered atomic structure array. However, the mechanical properties and wear behaviors of MGs at subzero temperatures have rarely been explored. In this work, the wear properties and wear mechanisms of Zr-based MG were systematically evaluated at a subzero temperature of −50 °C. Compared to the wear results at room temperature, MG in a subzero environment shows a ~60% reduction in wear rate. The main contributing factor is that MG at room temperature will easily forms a thin, brittle oxide layer at the sliding interface, which will lead to oxidation, adhesive and abrasive wear on its surface, whereas these wear behaviors do not occur in subzero conditions where only abrasive wear occurs. Meanwhile, MG at subzero temperatures has a higher elastic modulus. These properties make MG more wear-resistant in subzero environments. The current study will provide new perspectives on the wear mechanisms and subsurface deformation of MG in subzero environments and valuable insights into the use of MG in subzero engineering applications, such as deep space and polar exploration. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 8597 KiB  
Article
Application of Two-Element Zn-Al Metallic Target for Deposition of Aluminum-Doped Zinc Oxide—Analysis of Sputtering Process and Properties of Obtained Transparent Conducting Films
by Szymon Kiełczawa, Artur Wiatrowski, Michał Mazur, Witold Posadowski and Jarosław Domaradzki
Coatings 2025, 15(6), 713; https://doi.org/10.3390/coatings15060713 - 13 Jun 2025
Viewed by 716
Abstract
This article analyzes the reactive magnetron sputtering process, using a two-element Zn-Al target, for depositing aluminum-doped zinc oxide (AZO) layers, aimed at transparent electronics. AZO films were deposited on Corning 7059 glass, flexible Corning Willow® glass and amorphous silica substrates. To optimize [...] Read more.
This article analyzes the reactive magnetron sputtering process, using a two-element Zn-Al target, for depositing aluminum-doped zinc oxide (AZO) layers, aimed at transparent electronics. AZO films were deposited on Corning 7059 glass, flexible Corning Willow® glass and amorphous silica substrates. To optimize the process, the study examined the target surface state across varying argon/oxygen ratios. The gas mixture significantly influenced the Al/Zn atomic ratio in the films, affecting their structural, optical and electrical performance. Films deposited at 80/20 argon/oxygen ratio—near the dielectric mode—showed high light transmission (84%) but high resistivity (47.4·10−3 Ω·cm). Films deposited at ratio of 84/16—close to metallic mode—exhibited lower resistivity (1.9·10−3 Ω·cm) but reduced light transmission (65%). The best balance was achieved with an 82/18 ratio, yielding high light transmission (83%) and low resistivity (1.4·10−3 Ω·cm). These findings highlight the critical role of sputtering atmosphere in tailoring AZO layer properties for use in transparent electronics. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

15 pages, 5997 KiB  
Article
Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors
by Baichuan Zhang, Libin Gao, Hongwei Chen and Jihua Zhang
Nanomaterials 2025, 15(11), 819; https://doi.org/10.3390/nano15110819 - 28 May 2025
Viewed by 418
Abstract
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through [...] Read more.
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through anodic oxidation. After undergoing high-temperature thermal oxidation, a monolithic Ni-NiO-Pt metal–insulator–metal (MIM) capacitor with a nanoporous dielectric architecture is achieved. Structurally, this innovative design brings about several remarkable benefits. Due to the nanoporous structure, it has a significantly increased surface area, which can effectively store more charges. As a result, it exhibits an equivalent capacitance density of 69.95 nF/cm2, which is approximately 18 times higher than that of its planar, non-porous counterpart. This high capacitance density enables it to store more electrical energy in a given volume, making it highly suitable for applications where miniaturization and high energy storage in a small space is crucial. The second type of capacitor makes use of Through-Glass Via (TGV) technology. This technology is employed to create an interdigitated blind-via array within a glass substrate, attaining an impressively high aspect ratio of 22.5:1 (with a via diameter of 20 μm and a depth of 450 μm). By integrating atomic layer deposition (ALD), a conformal interdigital electrode structure is realized. Glass, as a key material in this capacitor, has outstanding insulating properties. This characteristic endows the capacitor with a high breakdown field strength exceeding 8.2 MV/cm, corresponding to a withstand voltage of 5000 V. High breakdown field strength and withstand voltage mean that the capacitor can handle high-voltage applications without breaking down easily, which is essential for power-intensive systems like high-voltage power supplies and some high-power pulse-generating equipment. Moreover, due to the low-loss property of glass, the capacitor can achieve an energy conversion efficiency of up to 95%. Such a high energy conversion efficiency ensures that less energy is wasted during the charge–discharge process, which is highly beneficial for energy-saving applications and systems that require high-efficiency energy utilization. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 1900 KiB  
Review
Electrodes for pH Sensing Based on Stainless Steel: Mechanism, Surface Modification, Potentiometric Performance, and Prospects
by Javier E. Vilasó-Cadre, Juan Hidalgo, María A. Arada-Pérez, Iván A. Reyes-Domínguez, Graziella L. Turdean, Roel Cruz, Juan J. Piña Leyte-Vidal, Lázaro A. González-Fernández, Manuel Sánchez-Polo and Luis Hidalgo
Chemosensors 2025, 13(5), 160; https://doi.org/10.3390/chemosensors13050160 - 1 May 2025
Viewed by 913
Abstract
The fabrication of miniaturized and durable pH electrodes is a key requirement for developing advanced analytical devices for both industrial and biomedical applications. Glass electrodes are not an option in these cases. Electrodes based on metal oxides have been the most studied for [...] Read more.
The fabrication of miniaturized and durable pH electrodes is a key requirement for developing advanced analytical devices for both industrial and biomedical applications. Glass electrodes are not an option in these cases. Electrodes based on metal oxides have been the most studied for pH sensing in these and other applications. Stainless steel pH electrodes have been an option for many years, both for measurement using steel as a sensitive material and using it as a substrate for the deposition of other metal oxides; in the latter case, the sensitive ability of stainless steel seems to play a crucial role. In addition, recent use as a substrate for materials such as polymers, carbon nanotubes, and metallic nanoparticles should be considered. This paper presents a review of this type of pH electrode, covering aspects related to the sensing mechanism, the treatment of stainless steel, potentiometric performances, applications, and the prospects of these sensors for use in modern analytical instruments. Sensing with the oxide passive layer and the artificial layer by oxidation treatments is analyzed. The use of metal oxides and other materials as the sensitive layer on stainless steel, their application in wearable devices, microneedle sensors, and combination with field-effect transistors for high-temperature pH sensing are covered as the most current and promising applications. Full article
Show Figures

Graphical abstract

15 pages, 2888 KiB  
Article
Functional Analysis of FoCrpA in Fusarium oxysporum Causing Rice Seedling Blight
by Chun Wang, Liang Wang, Xuanjie Zhao, Lei Hou, Qingran Liu, Rui Ren, Anqi Lv, Xinyang Liu, Tianliang Xiong, Peng Guo, Xiaofeng Xu, Zhe Ni, Chunlai Liu and Junhua Zhang
J. Fungi 2025, 11(4), 317; https://doi.org/10.3390/jof11040317 - 17 Apr 2025
Viewed by 480
Abstract
Fusarium oxysporum is one of the main pathogens causing rice seedling blight disease. Revealing its pathogenic mechanism is of great significance for formulating prevention and control strategies for rice seedling blight disease. Copper transporting P-type ATPases (Cu-ATPase) is a large class of proteins [...] Read more.
Fusarium oxysporum is one of the main pathogens causing rice seedling blight disease. Revealing its pathogenic mechanism is of great significance for formulating prevention and control strategies for rice seedling blight disease. Copper transporting P-type ATPases (Cu-ATPase) is a large class of proteins located on the plasma membrane that utilize the energy provided by ATP hydrolysis phosphorylation to transport substrates across the membrane. It plays a crucial role in signal transduction, the maintenance of cell membrane stability, and material transport. The main function of Cu-ATPase is to maintain the homeostasis of copper in cells, which is essential for the normal growth and development of organisms. This study utilized the ATMT-mediated gene knockout method to obtain the knockout mutant ∆FoCrpA and the complementation strain ∆FoCrpA-C, which are highly homologous to the P-type heavy metal transport ATPase family in F. oxysporum. The results showed that, compared with the wild-type strain, the knockout mutant ∆FoCrpA had a lighter colony color; a reduced tolerance to copper ion, osmotic, and oxidative stress; a weakened ability to penetrate glass paper; and decreased pathogenicity. However, there was no significant difference in pathogenicity and other biological phenotypes between the complementation strain ∆FoCrpA-C and the wild-type strain. In summary, the FoCrpA gene is involved in osmotic and oxidative stress, affecting the invasion and penetration ability and pathogenicity of F. oxysporum, laying a theoretical foundation for understanding the development and pathogenic mechanism of F. oxysporum. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

27 pages, 8371 KiB  
Review
Electrochromic Efficiency in AxB(1−x)Oy-Type Mixed Metal Oxide Alloys
by Zoltán Lábadi, Noor Taha Ismaeel, Péter Petrik and Miklós Fried
Int. J. Mol. Sci. 2025, 26(8), 3547; https://doi.org/10.3390/ijms26083547 - 10 Apr 2025
Viewed by 614
Abstract
Electrochromic materials have a wide range of energy-effective applications, such as in mirrors, smart windows, automobile sunroofs, and display devices. The electrochromic behavior of mixed metal oxides is focused on in this review. Extra heat absorbed by buildings is one of the major [...] Read more.
Electrochromic materials have a wide range of energy-effective applications, such as in mirrors, smart windows, automobile sunroofs, and display devices. The electrochromic behavior of mixed metal oxides is focused on in this review. Extra heat absorbed by buildings is one of the major problems in our modern era, so electrochromic films have been used as components of smart windows to reduce heat absorption through glass windows. Transition metal (W, V, Ti, Mo, and Ni) oxides are considered popular electrochromic materials for this purpose. Smart windows consist of electrochromic material layers (such as metal oxide layers) and solid electrolytes sandwiched between transparent conductive layers. Few publications have studied the use of mixtures of different metal oxides as electrochromic materials. This study focuses on the results of investigations of such multicomponent materials, such as the effects on the electrochromic properties of mixed metal oxides and how they contrast with pure metal oxides. Reviewing these papers, we found WO3- and MoO3-based mixtures to be the most promising, especially the magnetron-sputtered, amorphous WO3(40%)–MoO3(60%) composition, which had 200–300 cm2/C coloration efficiency. The mixed oxide materials reported in this review have room for development (and even commercialization) in the oxide-based electrochromic device market. Full article
(This article belongs to the Special Issue Latest Review Papers in Physical Chemistry and Chemical Physics 2024)
Show Figures

Figure 1

22 pages, 2821 KiB  
Review
Pixel Circuit Designs for Active Matrix Displays
by Dan-Mei Wei, Hua Zheng, Chun-Hua Tan, Shenghao Zhang, Hua-Dan Li, Lv Zhou, Yuanrui Chen, Chenchen Wei, Miao Xu, Lei Wang, Wei-Jing Wu, Honglong Ning and Baohua Jia
Appl. Syst. Innov. 2025, 8(2), 46; https://doi.org/10.3390/asi8020046 - 31 Mar 2025
Cited by 1 | Viewed by 2976
Abstract
Pixel circuits are key components of flat panel displays, including liquid crystal displays (LCDs), organic light-emitting diode displays (OLEDs), and micro light-emitting diode displays (micro-LEDs). Depending on the active layer material of the thin film transistor (TFT), pixel circuits are categorised into amorphous [...] Read more.
Pixel circuits are key components of flat panel displays, including liquid crystal displays (LCDs), organic light-emitting diode displays (OLEDs), and micro light-emitting diode displays (micro-LEDs). Depending on the active layer material of the thin film transistor (TFT), pixel circuits are categorised into amorphous silicon (a-Si) technology, low-temperature polycrystalline silicon (LTPS) technology, metal oxide (MO) technology, and low-temperature polycrystalline silicon and oxide (LTPO) technology. In this review, we outline the fundamental display principles and four major TFT technologies, covering conventional single-gated TFTs to novel two-gated TFTs. We focus on novel pixel circuits for three glass-based display technologies with additional mention of pixel circuits for silicon-based OLED and silicon-based micro-LED. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

10 pages, 2196 KiB  
Article
Solar Fabric Based on Amorphous Silicon Thin Film Solar Cells on Flexible Textiles
by Jonathan Plentz, Uwe Brückner, Gabriele Schmidl, Annett Gawlik, Klaus Richter and Gudrun Andrä
Energies 2025, 18(6), 1448; https://doi.org/10.3390/en18061448 - 15 Mar 2025
Viewed by 926
Abstract
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An [...] Read more.
Three-dimensional flexible solar fabrics based on hydrogenated amorphous silicon (a-Si:H) thin film solar cells were prepared and characterized. A glass fiber fabric with a polytetrafluoroethylene (PTFE) coating proved to be a suitable textile substrate. Interwoven metal wires enable an integrated electrical interconnection. An array of solar cells consisting of an a-Si:H layer stack with a highly p-type/intrinsic/highly n-type doping profile was deposited onto it. Silver was used as the back contact with indium tin oxide (ITO) as the front contact. The best solar cells show an efficiency of 3.9% with an open-circuit voltage of 876 mV and a short-circuit current density of 11.4 mA/cm2. The high series resistance limits the fill factor to 39%. The potential of the textile solar cells is shown by the achieved pseudo fill factor of 79% when neglecting the series resistance, resulting in a pseudo efficiency of 7.6%. With four textile solar cells connected in a series, an open-circuit voltage of about 3 V is achieved. Full article
(This article belongs to the Special Issue Recent Advances in Solar Cells and Photovoltaics)
Show Figures

Figure 1

17 pages, 7276 KiB  
Article
No More Purification: A Straightforward and Green Process for the Production of Melamine–Vanillylamine-Based Benzoxazine-Rich Resins for Access to Various Composite Materials
by Lisa Guinebaud, Huihui Qiao, Erwann Guenin, Adama Konate and Frederic Delbecq
J. Compos. Sci. 2025, 9(3), 92; https://doi.org/10.3390/jcs9030092 - 20 Feb 2025
Cited by 1 | Viewed by 808
Abstract
A rapid microwave-assisted process minimizing waste was set up to produce bio-based benzoxazine-like monomers produced from vanillylamine and melamine. Without excessive purification, different viscous liquid precursors had a remarkable ability to form four strong and transparent different solid cross-linked thermosets, displaying lower curing [...] Read more.
A rapid microwave-assisted process minimizing waste was set up to produce bio-based benzoxazine-like monomers produced from vanillylamine and melamine. Without excessive purification, different viscous liquid precursors had a remarkable ability to form four strong and transparent different solid cross-linked thermosets, displaying lower curing temperatures under 130 °C. The long and strong adhesive performance of the cured materials was observed using glass slides or aluminum surfaces and they could become a good alternative to adhesive epoxy resin for metal surfaces. At the higher temperatures, these solids could act as efficient flame-retardants proven by thermogravimetric measurements. The best candidates gave a limiting oxidation index value of 41.9. In order to improve the intrinsic surface hydrophobicity of the phenolic resins, slight amounts of silica and iron oxide nanoparticles were dispersed in the polymer matrix, and finally mechanical resistance was pointed out. The most promising of our melamine-based resin was loaded with aluminum pigment to furnish a silver-colored paste ready for being cured to afford a robust solid, which does not undergo contraction or deformation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

13 pages, 5304 KiB  
Article
Effect of Ag and Ti Addition on the Deformation and Tribological Behavior of Zr-Co-Al Bulk Metallic Glass
by Siva Shankar Alla, Mohammad Eskandari, Shristy Jha, Ziyu Pei, S. Vincent, Wook Ha Ryu, Eun Soo Park and Sundeep Mukherjee
Metals 2025, 15(2), 213; https://doi.org/10.3390/met15020213 - 18 Feb 2025
Viewed by 815
Abstract
The effects of a small addition of Ag and Ti on the thermal stability, mechanical properties, and tribological behavior of Zr-Co-Al bulk metallic glass (BMG) were investigated. A 5 at.% addition of Ag and Ti to the Zr-Co-Al base alloy improved the thermal [...] Read more.
The effects of a small addition of Ag and Ti on the thermal stability, mechanical properties, and tribological behavior of Zr-Co-Al bulk metallic glass (BMG) were investigated. A 5 at.% addition of Ag and Ti to the Zr-Co-Al base alloy improved the thermal stability and had no significant effect on the mechanical properties but considerably improved the wear behavior. The coefficient of friction decreased while the wear rate increased with increasing normal loads for all three alloys. Zr-Co-Al-Ti showed the best tribological performance among the studied alloys, with coefficient of friction and wear rate lower by a factor of four compared to Zr-Co-Al BMG. Predominantly oxidative wear was seen for the quaternary Zr-Co-Al-Ag and Zr-Co-Al-Ti BMGs at higher loads in contrast to abrasive and adhesive wear for the ternary Zr-Co-Al base alloy. These results highlight the potential of Ag and Ti micro-alloying for improving the mechanical and tribological properties of Zr-based amorphous alloys. Full article
Show Figures

Figure 1

15 pages, 5437 KiB  
Article
Deposition and Characterization of Zinc–Tin Oxide Thin Films with Varying Material Compositions
by Stanka Spasova, Vladimir Dulev, Alexander Benkovsky, Vassil Palankovski, Ekaterina Radeva, Rumen Stoykov, Zoya Nenova, Hristosko Dikov, Atanas Katerski, Olga Volobujeva, Daniela Lilova and Maxim Ganchev
Coatings 2025, 15(2), 225; https://doi.org/10.3390/coatings15020225 - 13 Feb 2025
Viewed by 1181
Abstract
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show [...] Read more.
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show gradual phase transitions up to 480 °C. These data are used for an appropriate regime for thermal annealing of the layers. X-ray photoelectron spectroscopy (XPS) data show mixed oxide compound formation in states Zn2+, Sn4+ and O2− of the constituents. Optical investigation manifests high transmittance above 80% in the visible spectral range and an optical band gap of 3.3–3.7 eV. The work functions vary between 4.1 eV and 5 eV, depending on the annealing, with deviations less than 1% for surface 1 mm2 scans. Stack devices ITO/ZTO/metal with different metal contacts are formed. The I–V (current–voltage) measurements of the fabricated stacks exhibit Ohmic or nonlinear behavior, depending on the material composition and the work function levels. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

60 pages, 6034 KiB  
Review
Nanomaterials in Photocatalysis: An In-Depth Analysis of Their Role in Enhancing Indoor Air Quality
by Enrico Greco, Alessia De Spirt, Alessandro Miani, Prisco Piscitelli, Rita Trombin, Pierluigi Barbieri and Elia Marin
Appl. Sci. 2025, 15(3), 1629; https://doi.org/10.3390/app15031629 - 6 Feb 2025
Cited by 2 | Viewed by 2662
Abstract
Since people spend most of their time in indoor environments, they are continuously exposed to various contaminants that threaten human health. The air quality in these settings is therefore a crucial factor in maintaining health safety. In order to reduce the concentration of [...] Read more.
Since people spend most of their time in indoor environments, they are continuously exposed to various contaminants that threaten human health. The air quality in these settings is therefore a crucial factor in maintaining health safety. In order to reduce the concentration of indoor air pollutants and improve air quality, photocatalytic oxidation has drawn the attention of researchers. This study aims to provide a comprehensive view of the nanomaterials used in the photocatalytic oxidation of the most common pollutants in indoor environments. The effects of various parameters like humidity, airflow, deposition time, and light intensity were also evaluated, as they can significantly influence photocatalytic reactions. The most common nanomaterials used in photocatalysis are TiO2-based and, in this study, they were classified and examined based on their morphology. TiO2 doping with metals and non-metals has demonstrated an enhancement of its adsorption properties and photocatalytic efficiency for the removal of several pollutants. The role of carbon-based nanomaterials in photocatalysis was also evaluated due to their adsorption capabilities towards various pollutants. In addition, other less common photocatalysts such as ZnO, MnO2, WO3, CeO2, and CdS also exhibited high photocatalytic activity for pollutant degradation. Applications of these photocatalysts in air purifiers, paints, and building materials e.g., concrete, glass, and wallpapers, lead to efficient reduction of pollutants in indoor settings. Full article
(This article belongs to the Special Issue Advances in Nanomaterials and Their Applications)
Show Figures

Figure 1

Back to TopTop