Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = ovarian fibrosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 1134 KiB  
Review
Endometriosis: An Immunologist’s Perspective
by Jenny Valentina Garmendia, Claudia Valentina De Sanctis, Marian Hajdúch and Juan Bautista De Sanctis
Int. J. Mol. Sci. 2025, 26(11), 5193; https://doi.org/10.3390/ijms26115193 - 28 May 2025
Viewed by 1510
Abstract
Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10–15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general [...] Read more.
Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10–15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general inflammation and pain, are key features of endometriosis. Endometriotic lesions are associated with the overproduction of cytokines, metalloproteinases, prostaglandins, reactive oxygen radicals, and extracellular vesicles. Genetic predisposition and cytokine gene polymorphisms have been documented. Macrophages, dendritic cells, mast cells, Th1 in the early phase, Th2 in the late phase, and T regulatory cells play a crucial role in endometriosis. Reduced NK cell function and impaired immune vigilance contribute to endometrial growth. The strong inflammatory condition of the endometrium poses a barrier to the proper implantation of the zygote, contributing to the infertility of these patients. Cytokines from various cell types vary with the severity of the disease. The role of microbiota in endometriosis is still under study. Endometriosis is associated with autoimmunity and ovarian cancer. Hormonal treatments and surgery are commonly used; however, recent interest focuses on anti-inflammatory and immunomodulatory therapies, including cytokine and anti-cytokine antibodies. Modulating the immune response has proven critical; however, more research is needed to optimize treatment for these patients. Full article
Show Figures

Figure 1

15 pages, 9386 KiB  
Article
Ovarian Endometriosis Accelerates Premature Ovarian Failure and Contributes to Osteoporosis and Cognitive Decline in Aging Mice
by Lei Ge, Yali Yang, Tianxia Xiao, Yuqing Gao, Wakam Chang, Feifei Du, Ming Yu and Jian V. Zhang
Int. J. Mol. Sci. 2025, 26(7), 3313; https://doi.org/10.3390/ijms26073313 - 2 Apr 2025
Viewed by 1006
Abstract
Ovarian endometriosis (OEM) is a chronic inflammatory condition that impairs ovarian function. While its effects on ovarian reserve are well established, the long-term consequences of OEM on ovarian dysfunction, premature ovarian failure (POF), and systemic health, particularly in the context of accelerated aging, [...] Read more.
Ovarian endometriosis (OEM) is a chronic inflammatory condition that impairs ovarian function. While its effects on ovarian reserve are well established, the long-term consequences of OEM on ovarian dysfunction, premature ovarian failure (POF), and systemic health, particularly in the context of accelerated aging, remain insufficiently studied. In this study, we employed an OEM mouse model and bulk RNA sequencing to investigate the underlying mechanisms. Our results show that OEM accelerates primordial follicle depletion and upregulates mTOR signaling pathway gene expression, along with mechanical stress and paracrine signaling via the Hippo and Myc pathways. OEM also induces irregular estrus and ovarian fibrosis in aging mice, decreases serum AMH levels, and increases FSH levels. Systemically, elevated serum IgG levels contribute to osteoporosis and cognitive decline, both linked to ovarian dysfunction and POF in OEM. These findings elucidate the mechanisms driving premature ovarian reserve depletion in OEM and highlight its broader systemic effects. This study emphasizes the importance of monitoring ovarian health and ectopic tissue to safeguard ovarian reserves and mitigate long-term risks such as osteoporosis and cognitive decline. Full article
Show Figures

Figure 1

13 pages, 826 KiB  
Review
Mechanisms of Endometrioma-Mediated Ovarian Damage: Myths and Facts
by Pınar Özcan, Bulut Varlı, Ertan Sarıdoğan, Engin Oral, Muhammed Mabrouk, Taner Usta and Alin Stefan Constantin
J. Clin. Med. 2025, 14(7), 2147; https://doi.org/10.3390/jcm14072147 - 21 Mar 2025
Viewed by 1863
Abstract
Ovarian endometriomas (OEMs), cystic formations within the ovaries, are a significant manifestation of endometriosis and present in 20–40% of affected women. Despite extensive research, the pathogenesis of endometriosis remains unclear, with retrograde menstruation, coelomic metaplasia, and lymphatic dissemination being proposed mechanisms. OEMs negatively [...] Read more.
Ovarian endometriomas (OEMs), cystic formations within the ovaries, are a significant manifestation of endometriosis and present in 20–40% of affected women. Despite extensive research, the pathogenesis of endometriosis remains unclear, with retrograde menstruation, coelomic metaplasia, and lymphatic dissemination being proposed mechanisms. OEMs negatively impact ovarian function by reducing the ovarian reserve, disrupting folliculogenesis, and altering the ovarian microenvironment through oxidative stress, inflammation, and fibrosis. Elevated reactive oxygen species (ROS) accelerate follicular atresia, and extracellular matrix remodeling contributes to ovarian damage, while immune dysregulation and cytokine imbalances further exacerbate the condition. The presence of OEMs does not significantly affect live birth rates in in vitro fertilization (IVF) treatments, despite potential reductions in the quality and quantity of oocytes. However, their surgical excision compromises the ovarian reserve. This review highlights the complex mechanisms by which OEMs impair ovarian function and emphasizes the need for further research to develop strategies that mitigate these effects, ultimately improving reproductive outcomes for women with endometriomas. Full article
Show Figures

Figure 1

24 pages, 3678 KiB  
Article
The Simultaneous Deletion of pH-Sensing Receptors GPR4 and OGR1 (GPR68) Ameliorates Colitis with Additive Effects on Multiple Parameters of Inflammation
by Federica Foti, Cordelia Schuler, Pedro A. Ruiz, Leonie Perren, Ermanno Malagola, Cheryl de Vallière, Klaus Seuwen, Martin Hausmann and Gerhard Rogler
Int. J. Mol. Sci. 2025, 26(4), 1552; https://doi.org/10.3390/ijms26041552 - 12 Feb 2025
Cited by 1 | Viewed by 1249
Abstract
G protein-coupled receptors (GPRs), including pro-inflammatory GPR4 and ovarian cancer GPR1 (OGR1/GPR68), are involved in the pH sensing of the extracellular space and have been implicated in inflammatory bowel disease (IBD). Previous data show that a loss of GPR4 or OGR1 independently is [...] Read more.
G protein-coupled receptors (GPRs), including pro-inflammatory GPR4 and ovarian cancer GPR1 (OGR1/GPR68), are involved in the pH sensing of the extracellular space and have been implicated in inflammatory bowel disease (IBD). Previous data show that a loss of GPR4 or OGR1 independently is associated with reduced intestinal inflammation in mouse models of experimental colitis. In the present manuscript, we investigated the impact of the simultaneous loss of GPR4 and OGR1 in animal models of IBD. To study the effects of combined loss of Gpr4 Ogr1 in IBD we used the well-established acute dextran sodium sulfate (DSS) and spontaneous Il10−/− murine colitis models. Disease severity was assessed using multiple clinical scores (e.g., body weight loss, disease activity score, murine endoscopic index of colitis severity (MEICS) and histological analyses). Real-time quantitative polymerase chain reaction (qPCR), Western blot, and flow cytometry were used to investigate changes in pro-inflammatory cytokines expression and immune cells infiltration. We found that a combined loss of GPR4 and OGR1 significantly reduces colon inflammation in IBD relative to single deficiencies as evidenced by reduced body weight loss, disease score, CD4/CD8 ratio, and Il1β, Il6, and Tnf in the colon. Similarly, in the II10 deficiency model, the inflammation was significantly ameliorated upon the simultaneous deletion of GPR4 and OGR1, evidenced by a reduction in the MEICS score, colon length, Tnf and Il1β measurements, and a decrease in the number of macrophages in the colon, as compared to single deletions. Importantly, hydroxyproline levels were decreased close to baseline in Il10−/− × Gpr4−/− × Ogr1−/− mice. Our findings demonstrate that the simultaneous loss of GRP4 and OGR1 functions exerts an additive effect on multiple parameters associated with colonic inflammation. These results further reinforce the hypothesis that chronic inflammatory acidosis is a driver of fibrosis and is dependent on GPR4 and OGR1 signaling. The inhibition of both GPR4 and OGR1 by pH-sensing receptor modulators may constitute as a potential therapeutic option for IBD, as both pH-sensing receptors appear to sustain inflammation by acting on complementary pro-inflammatory pathways. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 3068 KiB  
Article
Etoricoxib–NLC Mitigates Radiation-Induced Ovarian Damage in Rats: Insights into Pro-Inflammatory Cytokines, Antioxidant Activity, and Hormonal Responses
by Sahar Khateeb
Biomolecules 2025, 15(1), 12; https://doi.org/10.3390/biom15010012 - 25 Dec 2024
Cited by 2 | Viewed by 1259
Abstract
Radiotherapy is a critical treatment for cancer but poses significant risks to ovarian tissue, particularly in young females, leading to premature ovarian failure (POF). This study examines the therapeutic potential of etoricoxib nanostructured lipid carriers (ETO-NLC) in mitigating radiation-induced ovarian damage in female [...] Read more.
Radiotherapy is a critical treatment for cancer but poses significant risks to ovarian tissue, particularly in young females, leading to premature ovarian failure (POF). This study examines the therapeutic potential of etoricoxib nanostructured lipid carriers (ETO-NLC) in mitigating radiation-induced ovarian damage in female Wistar rats. Twenty-four female rats were randomly assigned to four groups: a control group receiving normal saline, a group exposed to a single dose of whole-body gamma radiation (6 Gy), a group treated with etoricoxib (10 mg/kg) post-radiation, and a group treated with ETO-NLC for 14 days following radiation. Histopathological evaluations and oxidative stress biomarker assessments were conducted, including ELISAs for reactive oxygen species (ROS), pro-inflammatory cytokines (IL-1β, TNF-α), and signaling molecules (PI3K, AKT, P38MAPK, AMH). Serum levels of estrogen, FSH, and LH were measured, and gene expression analysis for TGF-β and Nrf2 was performed using qRT-PCR. The findings indicate that ETO-NLC has the potential to ameliorate the harmful effects of ovarian damage induced by γ-radiation. These therapeutic effects were achieved through the modulation of oxidative stress, inflammation, augmentation of antioxidant defenses (including Nrf2 activation), support for cell survival pathways (via PI3K/Akt signaling), regulation of MAPK, mitigation of fibrosis (TGF-β), and preservation of ovarian reserve (as evidenced by AMH, FSH/LH, and estrogen levels). ETO-NLC shows promise as an effective strategy for attenuating radiation-induced ovarian damage, highlighting the need for further research to enhance therapeutic interventions aimed at preserving ovarian function during cancer treatment. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 10683 KiB  
Article
Activation of P2X7 Receptor Mediates the Abnormal Ovulation Induced by Chronic Restraint Stress and Chronic Cold Stress
by Xiang Fan, Jing Wang, Yinyin Ma, Dandan Chai, Suo Han, Chuyu Xiao, Yingtong Huang, Xiaojie Wang, Jianming Wang, Shimeng Wang, Li Xiao and Chunping Zhang
Biology 2024, 13(8), 620; https://doi.org/10.3390/biology13080620 - 15 Aug 2024
Cited by 1 | Viewed by 1536
Abstract
Chronic stress has become a major problem that endangers people’s physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced [...] Read more.
Chronic stress has become a major problem that endangers people’s physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced by chronic stress. Whether P2X7R is involved in the effect of chronic stress on female reproduction has not been studied. In this study, we established a chronic restraint stress mouse model and chronic cold stress mouse model. We found that the number of corpora lutea was significantly reduced in the two chronic stress models. The number of corpora lutea indirectly reflects the ovulation, suggesting that chronic stress influences ovulation. P2X7R expression was significantly increased in ovaries of the two chronic stress models. A superovulation experiment showed that P2X7R inhibitor A-438079 HCL partially rescued the ovulation rate of the two chronic stress models. Further studies showed that activation of P2X7R signaling inhibited the cumulus expansion and promoted the expression of NPPC in granulosa cells, one key negative factor of cumulus expansion. Moreover, sirius red staining showed that the ovarian fibrosis was increased in the two chronic stress models. For the fibrosis-related factors, TGF-β1 was increased and MMP2 was decreased. In vitro studies also showed that activation of P2X7R signaling upregulated the expression of TGF-β1 and downregulated the expression of MMP2 in granulosa cells. In conclusion, P2X7R expression was increased in the ovaries of the chronic restraint-stress and chronic cold-stress mouse models. Activation of P2X7R signaling promoted NPPC expression and cumulus expansion disorder, which contributed to the abnormal ovulation of the chronic stress model. Activation of P2X7R signaling is also associated with the ovarian fibrosis changes in the chronic stress model. Full article
Show Figures

Figure 1

29 pages, 4733 KiB  
Article
Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity
by Ali Farajpour and Wendy V. Ingman
Computers 2024, 13(7), 179; https://doi.org/10.3390/computers13070179 - 19 Jul 2024
Cited by 2 | Viewed by 1610
Abstract
Biomechanical characteristics can be used to assist the early detection of many diseases, including breast cancer, thyroid nodules, prostate cancer, liver fibrosis, ovarian diseases, and tendon disorders. In this paper, a scale-dependent viscoelastic model is developed to assess the biomechanical behaviour of biological [...] Read more.
Biomechanical characteristics can be used to assist the early detection of many diseases, including breast cancer, thyroid nodules, prostate cancer, liver fibrosis, ovarian diseases, and tendon disorders. In this paper, a scale-dependent viscoelastic model is developed to assess the biomechanical behaviour of biological tissues subject to flexural waves. The nonlocal strain gradient theory, in conjunction with machine learning techniques such as extreme gradient boosting, k-nearest neighbours, support vector machines, and random forest, is utilised to develop a computational platform for biomechanical analysis. The coupled governing differential equations are derived using Hamilton’s law. Transverse wave analysis is conducted to investigate different normal and pathological human conditions including ovarian cancer, breast cancer, and ovarian fibrosis. Viscoelastic, strain gradient, and nonlocal effects are used to describe the impact of fluid content, stiffness hardening caused by the gradients of strain components, and stiffness softening associated with the nonlocality of stress components within the biological tissues and cells. The integration of the scale-dependent biomechanical continuum model with machine learning facilitates the adoption of the developed model in practical applications by allowing for learning from clinical data, alongside the intrinsic mechanical laws that govern biomechanical responses. Full article
(This article belongs to the Special Issue Machine and Deep Learning in the Health Domain 2024)
Show Figures

Figure 1

19 pages, 5060 KiB  
Article
Withaferin A as a Potential Therapeutic Target for the Treatment of Angiotensin II-Induced Cardiac Cachexia
by Vasa Vemuri, Nicholas Kratholm, Darini Nagarajan, Dakotah Cathey, Ahmed Abdelbaset-Ismail, Yi Tan, Alex Straughn, Lu Cai, Jiapeng Huang and Sham S. Kakar
Cells 2024, 13(9), 783; https://doi.org/10.3390/cells13090783 - 3 May 2024
Cited by 3 | Viewed by 2691
Abstract
In our previous studies, we showed that the generation of ovarian tumors in NSG mice (immune-compromised) resulted in the induction of muscle and cardiac cachexia, and treatment with withaferin A (WFA; a steroidal lactone) attenuated both muscle and cardiac cachexia. However, our studies [...] Read more.
In our previous studies, we showed that the generation of ovarian tumors in NSG mice (immune-compromised) resulted in the induction of muscle and cardiac cachexia, and treatment with withaferin A (WFA; a steroidal lactone) attenuated both muscle and cardiac cachexia. However, our studies could not address if these restorations by WFA were mediated by its anti-tumorigenic properties that might, in turn, reduce the tumor burden or WFA’s direct, inherent anti-cachectic properties. To address this important issue, in our present study, we used a cachectic model induced by the continuous infusion of Ang II by implanting osmotic pumps in immunocompetent C57BL/6 mice. The continuous infusion of Ang II resulted in the loss of the normal functions of the left ventricle (LV) (both systolic and diastolic), including a significant reduction in fractional shortening, an increase in heart weight and LV wall thickness, and the development of cardiac hypertrophy. The infusion of Ang II also resulted in the development of cardiac fibrosis, and significant increases in the expression levels of genes (ANP, BNP, and MHCβ) associated with cardiac hypertrophy and the chemical staining of the collagen abundance as an indication of fibrosis. In addition, Ang II caused a significant increase in expression levels of inflammatory cytokines (IL-6, IL-17, MIP-2, and IFNγ), NLRP3 inflammasomes, AT1 receptor, and a decrease in AT2 receptor. Treatment with WFA rescued the LV functions and heart hypertrophy and fibrosis. Our results demonstrated, for the first time, that, while WFA has anti-tumorigenic properties, it also ameliorates the cardiac dysfunction induced by Ang II, suggesting that it could be an anticachectic agent that induces direct effects on cardiac muscles. Full article
Show Figures

Figure 1

15 pages, 9205 KiB  
Article
Abnormal Expression of Prolyl Oligopeptidase (POP) and Its Catalytic Products Ac-SDKP Contributes to the Ovarian Fibrosis Change in Polycystic Ovary Syndrome (PCOS) Mice
by Suo Han, Shimeng Wang, Xiang Fan, Mengchi Chen, Xiaojie Wang, Yingtong Huang, Hongdan Zhang, Yinyin Ma, Jing Wang and Chunping Zhang
Biomedicines 2023, 11(7), 1927; https://doi.org/10.3390/biomedicines11071927 - 7 Jul 2023
Cited by 4 | Viewed by 2428
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people’s attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian [...] Read more.
Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people’s attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-β1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-β1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-β1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen. Full article
Show Figures

Figure 1

10 pages, 254 KiB  
Article
The CFTR Gene Germline Heterozygous Pathogenic Variants in Russian Patients with Malignant Neoplasms and Healthy Carriers: 11,800 WGS Results
by Maria Makarova, Marina Nemtsova, Anastasiia Danishevich, Denis Chernevskiy, Maxim Belenikin, Anastasiia Krinitsina, Elena Baranova, Olesya Sagaydak, Maria Vorontsova, Igor Khatkov, Lyudmila Zhukova, Natalia Bodunova, Sergey Nikolaev, Mariya Byakhova, Anna Semenova, Vsevolod Galkin and Saida Gadzhieva
Int. J. Mol. Sci. 2023, 24(9), 7940; https://doi.org/10.3390/ijms24097940 - 27 Apr 2023
Cited by 5 | Viewed by 3966
Abstract
More than 275 million people in the world are carriers of a heterozygous mutation of the CFTR gene, associated with cystic fibrosis, the most common autosomal recessive disease among Caucasians. Some recent studies assessed the association between carriers of CFTR variants and some [...] Read more.
More than 275 million people in the world are carriers of a heterozygous mutation of the CFTR gene, associated with cystic fibrosis, the most common autosomal recessive disease among Caucasians. Some recent studies assessed the association between carriers of CFTR variants and some pathologies, including cancer risk. The aim of this study is to analyze the landscape of germline pathogenic heterozygous CFTR variants in patients with diagnosed malignant neoplasms. For the first time in Russia, we evaluated the frequency of CFTR pathogenic variants by whole-genome sequencing in 1800 patients with cancer and compared this with frequencies of CFTR variants in the control group (1825 people) adjusted for age and 10,000 healthy individuals. In the issue, 47 out of 1800 patients (2.6%) were carriers of CFTR pathogenic genetic variants: 0.028 (42/1525) (2.8%) among breast cancer patients, 0.017 (3/181) (1.7%) among colorectal cancer patients and 0.021 (2/94) (2.1%) among ovarian cancer patients. Pathogenic CFTR variants were found in 52/1825 cases (2.85%) in the control group and 221 (2.21%) in 10,000 healthy individuals. Based on the results of the comparison, there was no significant difference in the frequency and distribution of pathogenic variants of the CFTR gene, which is probably due to the study limitations. Obviously, additional studies are needed to assess the clinical significance of the heterozygous carriage of CFTR pathogenic variants in the development of various pathologies in the future, particularly cancer. Full article
(This article belongs to the Special Issue Advances in Human Hereditary Diseases: Genetics and Genomics Research)
18 pages, 6288 KiB  
Article
Two-Pore-Domain Potassium Channel TREK–1 Mediates Pulmonary Fibrosis through Macrophage M2 Polarization and by Direct Promotion of Fibroblast Differentiation
by Yunna Zhang, Jiafeng Fu, Yang Han, Dandan Feng, Shaojie Yue, Yan Zhou and Ziqiang Luo
Biomedicines 2023, 11(5), 1279; https://doi.org/10.3390/biomedicines11051279 - 26 Apr 2023
Cited by 12 | Viewed by 3383
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation and abnormal accumulation of extracellular matrix in the lungs. After lung injury, M2 macrophages mediate the pathogenesis of pulmonary fibrosis by secreting fibrotic cytokines that promote myofibroblast activation. The TWIK-related potassium [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation and abnormal accumulation of extracellular matrix in the lungs. After lung injury, M2 macrophages mediate the pathogenesis of pulmonary fibrosis by secreting fibrotic cytokines that promote myofibroblast activation. The TWIK-related potassium channel (TREK–1, also known as KCNK2) is a K2P channel that is highly expressed in cardiac, lung, and other tissues; it worsens various tumors, such as ovarian cancer and prostate cancer, and mediates cardiac fibrosis. However, the role of TREK–1 in lung fibrosis remains unclear. This study aimed to examine the effects of TREK–1 on bleomycin (BLM)-induced lung fibrosis. The results show that TREK–1 knockdown, mediated by the adenovirus or pharmacological inhibition of TREK–1 with fluoxetine, resulted in diminished BLM-induced lung fibrosis. TREK–1 overexpression in macrophages remarkably increased the M2 phenotype, resulting in fibroblast activation. Furthermore, TREK–1 knockdown and fluoxetine administration directly reduced the differentiation of fibroblasts to myofibroblasts by inhibiting the focal adhesion kinase (FAK)/p38 mitogen-activated protein kinases (p38)/Yes-associated protein (YAP) signaling pathway. In conclusion, TREK–1 plays a central role in the pathogenesis of BLM-induced lung fibrosis, which serves as a theoretical basis for the inhibition of TREK–1 as a potential therapy protocol for lung fibrosis. Full article
(This article belongs to the Special Issue Treatment for Pulmonary Fibrosis, Volume II)
Show Figures

Figure 1

16 pages, 6732 KiB  
Article
Glyphosate Interference in Follicular Organization in the Wall Lizard Podarcis siculus
by Luigi Rosati, Teresa Chianese, Vincenza De Gregorio, Mariailaria Verderame, Anja Raggio, Chiara Maria Motta and Rosaria Scudiero
Int. J. Mol. Sci. 2023, 24(8), 7363; https://doi.org/10.3390/ijms24087363 - 17 Apr 2023
Cited by 12 | Viewed by 2057
Abstract
Glyphosate (Gly) is a broad-spectrum herbicide widely used thanks to its high efficiency and low toxicity. However, evidence exists of its toxic effects on non-target organisms. Among these, the animals inhabiting agricultural fields are particularly threatened. Recent studies demonstrated that exposure to Gly [...] Read more.
Glyphosate (Gly) is a broad-spectrum herbicide widely used thanks to its high efficiency and low toxicity. However, evidence exists of its toxic effects on non-target organisms. Among these, the animals inhabiting agricultural fields are particularly threatened. Recent studies demonstrated that exposure to Gly markedly affected the morphophysiology of the liver and testis of the Italian field lizard Podarcis siculus. The present study aimed to investigate the effects of the herbicide on the female reproductive system of this lizard in order to have a full picture of Gly-induced reproductive impairment. The animals were exposed to 0.05 and 0.5 μg/kg of pure Gly by gavage for 3 weeks. The results demonstrated that Gly, at both doses tested, profoundly interfered with ovarian function. It induced germ cells’ recruitment and altered follicular anatomy by anticipating apoptotic regression of the pyriform cells. It also induced thecal fibrosis and affected oocyte cytoplasm and zona pellucida organizations. At the functional levels, Gly stimulated the synthesis of estrogen receptors, suggesting a serious endocrine-disrupting effect. Overall, the follicular alterations, combined with those found at the level of the seminiferous tubules in males, suggest serious damage to the reproductive fitness of these non-target organisms, which over time could lead to a decline in survival. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Toxicity 2.0)
Show Figures

Figure 1

18 pages, 7336 KiB  
Article
Low Gut Microbial Diversity Augments Estrogen-Driven Pulmonary Fibrosis in Female-Predominant Interstitial Lung Disease
by Ozioma S. Chioma, Elizabeth Mallott, Binal Shah-Gandhi, ZaDarreyal Wiggins, Madison Langford, Andrew William Lancaster, Alexander Gelbard, Hongmei Wu, Joyce E. Johnson, Lisa Lancaster, Erin M. Wilfong, Leslie J. Crofford, Courtney G. Montgomery, Luc Van Kaer, Seth Bordenstein, Dawn C. Newcomb and Wonder Puryear Drake
Cells 2023, 12(5), 766; https://doi.org/10.3390/cells12050766 - 28 Feb 2023
Cited by 6 | Viewed by 4135
Abstract
Although profibrotic cytokines, such as IL-17A and TGF-β1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. [...] Read more.
Although profibrotic cytokines, such as IL-17A and TGF-β1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. Here, through chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells, we show that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. The genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after the repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. An assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota in relation to lung fibrosis severity. An analysis of female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-β1 levels in CD4+ T cells compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis. Full article
(This article belongs to the Special Issue Gut Microbiota in Intestinal Homeostasis)
Show Figures

Figure 1

19 pages, 8804 KiB  
Article
Modulating Morphological and Redox/Glycative Alterations in the PCOS Uterus: Effects of Carnitines in PCOS Mice
by Maria Grazia Palmerini, Guido Macchiarelli, Domenica Cocciolone, Ilaria Antenisca Mascitti, Martina Placidi, Teresa Vergara, Giovanna Di Emidio and Carla Tatone
Biomedicines 2023, 11(2), 374; https://doi.org/10.3390/biomedicines11020374 - 27 Jan 2023
Cited by 7 | Viewed by 2868
Abstract
(1) Background: Polycystic ovarian syndrome (PCOS) is a common and multifactorial disease affecting reproductive-age women. Although PCOS ovarian and metabolic features have received extensive research, uterine dysfunction has been poorly investigated. This research aims to investigate morphological and molecular alterations in the PCOS [...] Read more.
(1) Background: Polycystic ovarian syndrome (PCOS) is a common and multifactorial disease affecting reproductive-age women. Although PCOS ovarian and metabolic features have received extensive research, uterine dysfunction has been poorly investigated. This research aims to investigate morphological and molecular alterations in the PCOS uterus and search for modulating effects of different carnitine formulations. (2) Methods: CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg L-carnitine (LC) and 0.20 mg acetyl-L-carnitine (ALC) in the presence or absence of 0.08 mg propionyl-L-carnitine (PLC). Uterine horns from the four groups were subjected to histology, immunohistochemistry and immunoblotting analyses to evaluate their morphology, collagen deposition, autophagy and steroidogenesis. Oxidative-/methylglyoxal (MG)-dependent damage was investigated along with the effects on the mitochondria, SIRT1, SOD2, RAGE and GLO1 proteins. (3) Results: The PCOS uterus suffers from tissue and oxidative alterations associated with MG-AGE accumulation. LC-ALC administration alleviated PCOS uterine tissue alterations and molecular damage. The presence of PLC prevented fibrosis and maintained mitochondria content. (4) Conclusions: The present results provide evidence for oxidative and glycative damage as the main factors contributing to PCOS uterine alterations and include the uterus in the spectrum of action of carnitines on the PCOS phenotype. Full article
(This article belongs to the Special Issue Molecular Research on Polycystic Ovary Syndrome (PCOS) 2.0)
Show Figures

Figure 1

11 pages, 468 KiB  
Review
Pathogenic Role of the Sphingosine 1-Phosphate (S1P) Pathway in Common Gynecologic Disorders (GDs): A Possible Novel Therapeutic Target
by Alice Di Paolo, Arianna Vignini, Sonila Alia, Valentina Membrino, Giovanni Delli Carpini, Luca Giannella and Andrea Ciavattini
Int. J. Mol. Sci. 2022, 23(21), 13538; https://doi.org/10.3390/ijms232113538 - 4 Nov 2022
Cited by 12 | Viewed by 2817
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement both in the modulation of various biological processes and in the development of many diseases. S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)–S1P–S1P receptor (S1PR) axis is [...] Read more.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement both in the modulation of various biological processes and in the development of many diseases. S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)–S1P–S1P receptor (S1PR) axis is a factor in accelerating the growth of several cells, including endometriotic cells and fibrosis. Gynecologic disorders, including endometriosis, adenomyosis, and uterine fibroids are characterized by inflammation and fibrosis. S1P signaling and metabolism have been shown to be dysregulated in those disorders and they are likely implicated in their pathogenesis and pathophysiology. Enzymes responsible for inactivating S1P are the most affected by the dysregulation of S1P balanced levels, thus causing accumulation of sphingolipids within these cells and tissues. The present review highlights the past and latest evidence on the role played by the S1P pathways in common gynecologic disorders (GDs). Furthermore, it discusses potential future approaches in the regulation of this signaling pathway that could represent an innovative and promising therapeutical target, also for ovarian cancer treatment. Full article
(This article belongs to the Special Issue Bioactive Lipids for Health Benefits)
Show Figures

Figure 1

Back to TopTop