Etoricoxib–NLC Mitigates Radiation-Induced Ovarian Damage in Rats: Insights into Pro-Inflammatory Cytokines, Antioxidant Activity, and Hormonal Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of ETO-NLC
2.3. Experimental Animal Groups
2.4. Sample Preparation
2.5. Histopathological Examination
2.6. Assessment of Oxidative Stress Biomarkers
2.7. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. RNA Extraction and Quantitative RT-PCR Analysis
2.9. Statistical Analysis
3. Results
3.1. Histopathological Examination
3.2. Oxidative Stress Markers
3.3. Assessment of Pro-Inflammatory Cytokine Levels
3.4. Evaluation of AKT Activation and ROS Levels
3.5. Assessment of PI3K and AMPK Activities
3.6. Expression Levels of TGF-β and Nrf2
3.7. Evaluation of Hormone Levels
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, R.; He, Y.; Zhang, S.; Pu, D.; Wu, J. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy-induced ovarian damage in mice. J. Ovarian Res. 2019, 12, 65. [Google Scholar] [CrossRef]
- Duncan, F.E.; Kimler, B.F.; Briley, S.M. Combating radiation therapy-induced damage to the ovarian environment. Future Oncol. 2016, 12, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Reiser, E.; Bazzano, M.V.; Solano, M.E.; Haybaeck, J.; Schatz, C.; Mangesius, J.; Ganswindt, U.; Toth, B. Unlaid eggs: Ovarian damage after low-dose radiation. Cells 2022, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, S.W.; Han, S.J.; Lee, S.; Park, H.T.; Song, J.Y.; Kim, T. Molecular mechanism and prevention strategy of chemotherapy-and radiotherapy-induced ovarian damage. Int. J. Mol. Sci. 2021, 22, 7484. [Google Scholar] [CrossRef] [PubMed]
- Alhumaidha, K.A.; Saleh, D.O.; Abd El Fattah, M.A.; El-Eraky, W.I.; Moawad, H. Cardiorenal protective effect of taurine against cyclophosphamide-induced toxicity in albino rats. Can. J. Physiol. Pharmacol. 2016, 94, 131–139. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Long, X.; Yu, N.; Li, Y.; Liu, X.; Cheng, X. Premature Ovarian Insufficiency (POI) Induced by Dynamic Intensity Modulated Radiation Therapy via P13K-AKT-FOXO3a in Rat Models. BioMed Res. Int. 2021, 2021, 7273846. [Google Scholar] [CrossRef]
- He, F.; Antonucci, L.; Karin, M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020, 41, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H.; Dix, T.A. Redox-mediated activation of latent transforming growth factor-beta 1. Mol. Endocrinol. 1996, 10, 1077–1083. [Google Scholar] [PubMed]
- Mantawy, E.M.; Said, R.S.; Abdel-Aziz, A.K. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: Emphasis on TGF-β/MAPKs signaling pathway. Biomed. Pharmacother. 2019, 109, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef]
- Ali, G.; Omar, H.; Hersi, F.; Abo-Youssef, A.; Ahmed, O.; Mohamed, W. The protective role of etoricoxib against diethylnitrosamine/2-acetylaminofluorene-induced hepatocarcinogenesis in wistar rats: The impact of NF-κB/COX-2/PGE2 signaling. Curr. Mol. Pharmacol. 2022, 15, 252–262. [Google Scholar] [PubMed]
- Narayanan, B.L.; Venkatesan, N.; Subburaju, T.; Fathah, A.B.D.U.L. Chemopreventive Role of Combination of Etoricoxib and Atorvastatin on Colon Cancer Induced by 1, 2-Dimethyl Hydrazine on Rats. Int. J. Pharm. Pharm. Sci. 2015, 7, 299–303. [Google Scholar]
- Subish, R. Formulation Development and Evaluation of Etoricoxib Oral Disintegration Tablet by Using Ion Exchange Resin Complexation Technique. Ph.D. Thesis, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil, India, 2017. [Google Scholar]
- Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanostructured lipid carriers based nanogel for meloxicam delivery: Mechanistic, in-vivo and stability evaluation. Drug Dev. Ind. Pharm. 2015, 41, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid-based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bagherpour, S.; Alizadeh, A.; Ghanbarzadeh, S.; Mohammadi, M.; Hamishehkar, H. Preparation and characterization of Betasitosterol-loaded nanostructured lipid carriers for butter enrichment. Food Biosci. 2017, 20, 51–55. [Google Scholar] [CrossRef]
- Taha, E.F.; Hamed, N.S.; Khateeb, S. Etoricoxib nanostructured lipid carriers attenuate inflammation by modulating Cyclooxygenase-2 signaling and activation of nuclear factor-κB-p65 pathways in radiation-induced acute cardiotoxicity in rats. Eur. J. Pharmacol. 2023, 957, 176029. [Google Scholar] [CrossRef]
- Sachan, A.K.; Gupta, A.; Arora, M. Formulation & characterization of nanostructured lipid carrier (NLC) based gel for topical delivery of etoricoxib. J. Drug Deliv. Ther. 2016, 6, 4–13. [Google Scholar]
- Dave, V.; Srivastava, P.; Sharma, S.; Bajaj, J.; Tak, K. PEGylated PLA-Phospholipon 90G complex hybrid nanoparticles loaded with etoricoxib for effective treatment pain relief potential. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 640–652. [Google Scholar] [CrossRef]
- Abd El-Kader, M.; Taha, R.I. Comparative nephroprotective effects of curcumin and etoricoxib against cisplatin-induced acute kidney injury in rats. Acta Histochem. 2020, 122, 151534. [Google Scholar] [CrossRef] [PubMed]
- Azoubel, M.C.F.; Menezes, A.M.A.; Bezerra, D.; Oriá, R.B.; Ribeiro, R.D.A.; Brito, G.A.D.C. Comparison of etoricoxib and indomethacin for the treatment of experimental periodontitis in rats. Braz. J. Med. Biol. Res. 2007, 40, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D.; Stevens, A.; Turner, D.R. Theory and Practice of Histological Techniques, 4th ed.; Churchill Livingstone: Edinburgh, Scotland; London, UK; Melbourne, NY, USA, 2013. [Google Scholar]
- Eser, A.; Hizli, D.; Haltas, H.; Namuslu, M.; Kosus, A.; Kosus, N.; Kafali, H. Effects of curcumin on ovarian ischemia-reperfusion injury in a rat model. Biomed. Rep. 2015, 3, 807–813. [Google Scholar] [CrossRef]
- Plowchalk, D.R.; Smith, B.J.; Mattison, D.R. Assessment of toxicity to the ovary using follicle quantitation and morphometrics. Methods in Toxicology 1993, 3, 57–68. [Google Scholar]
- Hanoux, V.; Pairault, C.; Bakalska, M.; Habert, R.; Livera, G. Caspase-2 involvement during ionizing radiation-induced oocyte death in the mouse ovary. Cell Death Differ. 2007, 14, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Absolom, K.; Eiser, C.; Turner, L.; Ledger, W.; Ross, R.; Davies, H.; Coleman, R.; Hancock, B.; Snowden, J.; Greenfield, D. Ovarian failure following cancer treatment: Current management and quality of life. Hum. Reprod. 2008, 23, 2506–2512. [Google Scholar] [CrossRef]
- Meirow, D.; Biederman, H.; Anderson, R.A.; Wallace, W.H.B. Toxicity of chemotherapy and radiation on female reproduction. Clin. Obstet. Gynecol. 2010, 53, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Brewster, D.H.; Wood, R.; Nowell, S.; Fischbacher, C.; Kelsey, T.W.; Wallace, W.H.B. The impact of cancer on subsequent chance of pregnancy: A population-based analysis. Hum. Reprod. 2018, 33, 1281–1290. [Google Scholar] [CrossRef]
- Shilpa, S.P.; Sudha, K.; Gayathri, M.; Beena, V.S. Oxidative stress and low dose ionizing radiation. Indian J. Physiol. Pharmacol. 2009, 53, 181–184. [Google Scholar]
- Spitz, D.R.; Azzam, E.I.; Jian Li, J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev. 2004, 23, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Devine, P.J.; Perreault, S.D.; Luderer, U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol. Reprod. 2012, 86, 27. [Google Scholar] [CrossRef] [PubMed]
- Mantawy, E.M.; Said, R.S.; Kassem, D.H.; Abdel-Aziz, A.K.; Badr, A.M. Novel molecular mechanisms underlying the ameliorative effect of N-acetyl-L-cysteine against ϒ-radiation-induced premature ovarian failure in rats. Ecotoxicol. Environ. Saf. 2020, 206, 111190. [Google Scholar] [CrossRef] [PubMed]
- Haddad, Y.H.; Said, R.S.; Kamel, R.; Morsy, E.M.E.; El-Demerdash, E. Phytoestrogen genistein hinders ovarian oxidative damage and apoptotic cell death-induced by ionizing radiation: Co-operative role of ER-β, TGF-β, and FOXL-2. Sci. Rep. 2020, 10, 13551. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Yoon, Y.D. γ-Radiation-induced follicular degeneration in the prepubertal mouse ovary. Mutat. Res. 2005, 578, 247–255. [Google Scholar] [CrossRef]
- Can, B.; Atilgan, R.; Pala, S.; Kuloğlu, T.; Kiray, S.; Ilhan, N. Examination of the effect of ovarian radiation injury induced by hysterosalpingography on ovarian proliferating cell nuclear antigen and the radioprotective effect of amifostine: An experimental study. Drug Des. Devel. Ther. 2018, 12, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Pacelli, R.; Mansi, L. Eric Hall and Amato J. Giaccia: Radiobiology for the Radiologist, 6th ed.; Lippincott Wilkins & Williams: Philadelphia, MA, USA, 2006; ISBN 0-7817-4151-3. [Google Scholar]
- Tawfik, S.S.; Elkady, A.A.; Mansour, H.H. Does pomegranate protect against gamma-rays-induced cardiac illnesses in rats? Frontiers 2020, 3, 1–6. [Google Scholar]
- Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Eleojo Musa, A. Genomic instability and carcinogenesis of heavy charged particles radiation: Clinical and environmental implications. Medicina 2019, 55, 591. [Google Scholar] [CrossRef] [PubMed]
- Hamed, N.S.; Khateeb, S.; Elfouly, S.A.; Tolba, A.M.; Hassan, A.I. Mitigation of radiation-induced jejunum injuries in rats through modulation of the p53-miR34a axis using etoricoxib-loaded nanostructured lipid carriers. Sci. Rep. 2024, 14, 23728. [Google Scholar] [CrossRef] [PubMed]
- Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in disease: Timing is everything. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 555–575. [Google Scholar] [CrossRef]
- Venugopal, R.; Jaiswal, A.K. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 1998, 17, 3145–3156. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Wang, J.; Ji, K.; Wang, Y.; Sun, X.; Xu, C.; Wang, Q.; He, N.; Song, H.; et al. NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7. Free Radic. Biol. Med. 2022, 193, 342–353. [Google Scholar] [CrossRef]
- Lee, W.H.; Sonntag, W.E.; Mitschelen, M.; Yan, H.; Lee, Y.W. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int. J. Radiat. Biol. 2010, 86, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.; Grosshans, D.; Duman, J.; Brown, P.; Li, J. Radiation-induced cognitive toxicity: Pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol. 2018, 20, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Marino, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2014, 15, 81–94. [Google Scholar] [CrossRef]
- Ding, L.; Yan, G.; Wang, B.; Xu, L.; Gu, Y.; Ru, T.; Cui, X.; Lei, L.; Liu, J.; Sheng, X.; et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci. China Life Sci. 2018, 61, 1554–1565. [Google Scholar] [CrossRef]
- Jain, S.; Ghanghas, P.; Rana, C.; Sanyal, S.N. Role of GSK-3β in regulation of canonical Wnt/β-catenin signaling and PI3-K/Akt oncogenic pathway in colon cancer. Cancer Investig. 2017, 35, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.F.; Zhong, Y.J.; Ma, Z.; Li, L.; Shi, L.; Chen, L.; Li, C.; Wu, D.; Chen, Q.; Li, Y.W. NOX4/ROS mediate ethanol-induced apoptosis via MAPK signal pathway in L-02 cells. Int. J. Mol. Med. 2018, 41, 2306–2316. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Wang, L.; Wang, X.; Li, J.; Yang, Z. IL-1α up-regulates IL-6 expression in bovine granulosa cells via MAPKs and NF-κB signaling pathways. Cell. Physiol. Biochem. 2017, 41, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 2000, 103, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.X.; Tang, S.S.; Jin, X.; Zhang, C.M.; Zhang, T.; Wang, C.C.; Sun, Y.; Xiao, X.L. Olaquindox-induced apoptosis is suppressed through p38 MAPK and ROS-mediated JNK pathways in HepG2 cells. Cell Biol. Toxicol. 2013, 29, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Shite, J.; Liang, C.S. Antioxidants attenuate myocyte apoptosis and improve cardiac function in CHF: Association with changes in MAPK pathways. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H822–H832. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Lefaix, J.L.; Delanian, S. TGF-β1 and radiation fibrosis: A master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Chaurio, R.A.; Anadon, C.M.; Costich, T.L.; Payne, K.K.; Biswas, S.; Harro, C.M.; Moran, C.; Ortiz, A.C.; Cortina, C.; Rigolizzo, K.E.; et al. TGF-β-mediated silencing of genomic organizer SATB1 promotes Tfh cell differentiation and formation of intra-tumoral tertiary lymphoid structures. Immunity 2022, 55, 115–128. [Google Scholar] [CrossRef]
- He, R.; Wang, M.; Zhao, C.; Shen, M.; Yu, Y.; He, L.; Zhao, Y.; Chen, H.; Shi, X.; Zhou, M.; et al. TFEB-driven autophagy potentiates TGF-β induced migration in pancreatic cancer cells. J. Exp. Clin. Cancer Res. 2019, 38, 340. [Google Scholar] [CrossRef]
- Van Houten, E.L.A.F.; Themmen, A.P.N.; Visser, J.A. Anti-Müllerian hormone (AMH): Regulator and marker of ovarian function. Ann. Endocrinol. 2010, 71, 191–197. [Google Scholar] [CrossRef]
- Chu, Y.L.; Xu, Y.R.; Yang, W.X.; Sun, Y. The role of FSH and TGF-β superfamily in follicle atresia. Aging 2018, 10, 305–321. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, G.S.; Dusting, G.J.; Chan, E.C. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses. Redox Biol. 2014, 2, 267–272. [Google Scholar] [CrossRef]
- Tao, S.; Liu, M.; Shen, D.; Zhang, W.; Wang, T.; Bai, Y. TGF-β/Smads signaling affects radiation response and prolongs survival by regulating DNA repair genes in malignant glioma. DNA Cell Biol. 2018, 37, 909–916. [Google Scholar] [CrossRef]
- Tolikas, A.; Tsakos, E.; Gerou, S.; Prapas, Y.; Loufopoulos, A. Anti-Mullerian Hormone (AMH) levels in serum and follicular fluid as predictors of ovarian response in stimulated (IVF and ICSI) cycles. Hum. Fertil. 2011, 14, 246–253. [Google Scholar] [CrossRef]
- Visser, J.A.; Schipper, I.; Laven, J.S.; Themmen, A.P. Anti-Müllerian hormone: An ovarian reserve marker in primary ovarian insufficiency. Nat. Rev. Endocrinol. 2012, 8, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, M.W. A putative role for anti-Müllerian hormone (AMH) in optimising ovarian reserve expenditure. J. Endocrinol. 2017, 233, R1–R13. [Google Scholar] [CrossRef]
- Seifer, D.B.; Merhi, Z. Is AMH a regulator of follicular atresia? J. Assist. Reprod. Genet. 2014, 31, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Deckers, P.; Ribeiro, S.C.; Simões, R.D.S.; da Fonseca Miyahara, C.B.; Baracat, E.C. Systematic review and meta-analysis of the effect of bipolar electrocoagulation during laparoscopic ovarian endometrioma stripping on ovarian reserve. Int. J. Gynaecol. Obstet. 2018, 140, 11–17. [Google Scholar] [CrossRef]
- Alipour, F.; Rasekhjahromi, A.; Maalhagh, M.; Sobhanian, S.; Hosseinpoor, M. Comparison of specificity and sensitivity of AMH and FSH in diagnosis of premature ovarian failure. Dis. Markers 2015, 2015, 585604. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Cameron, D.A. Pretreatment serum anti-müllerian hormone predicts long-term ovarian function and bone mass after chemotherapy for early breast cancer. J. Clin. Endocrinol. Metab. 2011, 96, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Said, R.S.; El-Demerdash, E.; Nada, A.S.; Kamal, M.M. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly (ADP-ribose) polymerase 1 (PARP-1). Biochem. Pharmacol. 2016, 103, 140–150. [Google Scholar] [CrossRef]
- Osman, A.H. Sodium Thiosulfate (Hydrogen Sulfide Donor): Ameliorates the Pituitary-testicular Axis Dysfunction Induced by Cyclophosphamide and/or Ionizing Gamma Radiation in Albino Rats. BR Nahata Smriti Sansthan Int. J. Phramaceutical Sci. Clin. Res. 2022, 2, 91–104. [Google Scholar]
Forward Sequence | Reverse Sequence | GenBank Accession Number | |
---|---|---|---|
TGF-β | GTGTGGAGCAACATGTGGAA | TTGGTTCAGCCACTGCCGTA | NC_086019.1 |
Nrf2 | CCAGAAGCCACACTGACAGA | GGAGAGGATGCTGCTGAAAG | NC_086021.1 |
GAPDH | TGGATTTGGACGCATTGGTC | TTTGCACTGGTACGTGTTGAT | NM_017008.4 2 |
Parameters/Groups | Control | γ-Rad | γ-Rad + ETO | γ-Rad + ETO-NLC |
---|---|---|---|---|
Congestion | 0 | 3 | 2 | 1 |
Edema | 0 | 3 | 2 | 2 |
Hemorrhage | 0 | 4 | 1 | 0 |
Follicular Degeneration | 0 | 3 | 2 | 1 |
Parameters/Groups | Control | γ-Rad | γ-Rad + ETO | γ-Rad + ETO-NLC |
---|---|---|---|---|
Primordial Follicle | 147.7 ± 7.6 | 51.7 ± 7.1 # | 102.0 ± 10.02 #,$ | 145.7 ± 8.8 $ |
Growing Follicle | 136.3 ± 2.9 | 46.0 ± 4.5 # | 102.0 ± 12.2 $ | 148.3 ± 19.01 $ |
Mature Follicle | 20.0 ± 3.0 | 6.0 ± 1.7 | 15.3 ± 4.2 | 20.3 ± 3.2 |
Corpus Luteum | 7.0 ± 2.1 | 15.0 ± 1.5 | 10.0 ± 3.7 | 7.4 ± 2.6 |
Control | γ-Rad | γ-Rad + ETO | γ-Rad + ETO-NLC | |
---|---|---|---|---|
MDA (n mol/mg/protein) | 0.83 ± 0.01 | 4.92 ± 0.09 # | 2.89 ± 0.08 #,$ | 1.61 ± 0.02 #,$ |
CAT (U/mg/protein) | 4.61 ± 0.09 | 0.92 ± 0.006 # | 2.07 ± 0.05 #,$ | 3.54 ± 0.04 #,$ |
SOD (U/mg/protein) | 3.98 ± 0.03 | 0.74 ± 0.01 # | 1.89 ± 0.02 #,$ | 3.00 ± 0.02 #,$ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khateeb, S. Etoricoxib–NLC Mitigates Radiation-Induced Ovarian Damage in Rats: Insights into Pro-Inflammatory Cytokines, Antioxidant Activity, and Hormonal Responses. Biomolecules 2025, 15, 12. https://doi.org/10.3390/biom15010012
Khateeb S. Etoricoxib–NLC Mitigates Radiation-Induced Ovarian Damage in Rats: Insights into Pro-Inflammatory Cytokines, Antioxidant Activity, and Hormonal Responses. Biomolecules. 2025; 15(1):12. https://doi.org/10.3390/biom15010012
Chicago/Turabian StyleKhateeb, Sahar. 2025. "Etoricoxib–NLC Mitigates Radiation-Induced Ovarian Damage in Rats: Insights into Pro-Inflammatory Cytokines, Antioxidant Activity, and Hormonal Responses" Biomolecules 15, no. 1: 12. https://doi.org/10.3390/biom15010012
APA StyleKhateeb, S. (2025). Etoricoxib–NLC Mitigates Radiation-Induced Ovarian Damage in Rats: Insights into Pro-Inflammatory Cytokines, Antioxidant Activity, and Hormonal Responses. Biomolecules, 15(1), 12. https://doi.org/10.3390/biom15010012