Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = osteosarcoma U20S cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 19172 KiB  
Communication
DEAD-Box Helicase 3 Modulates the Non-Coding RNA Pool in Ribonucleoprotein Condensates During Stress Granule Formation
by Elizaveta Korunova, B. Celia Cui, Hao Ji, Aliaksandra Sikirzhytskaya, Srestha Samaddar, Mengqian Chen, Vitali Sikirzhytski and Michael Shtutman
Non-Coding RNA 2025, 11(4), 59; https://doi.org/10.3390/ncrna11040059 - 1 Aug 2025
Viewed by 201
Abstract
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of [...] Read more.
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of mammalian stress granules is the DEAD-box RNA helicase DDX3, which unwinds RNA in an ATP-dependent manner. DDX3 is involved in multiple steps of RNA metabolism, facilitating gene transcription, splicing, and nuclear export and regulating cytoplasmic translation. In this study, we investigate the role of the RNA helicase DDX3’s enzymatic activity in shaping the RNA content of ribonucleoprotein (RNP) condensates formed during arsenite-induced stress by inhibiting DDX3 activity with RK-33, a small molecule previously shown to be effective in cancer clinical studies. Using the human osteosarcoma U2OS cell line, we purified the RNP granule fraction and performed RNA sequencing to assess changes in the RNA pool. Our results reveal that RK-33 treatment alters the composition of non-coding RNAs within the RNP granule fraction. We observed a DDX3-dependent increase in circular RNA (circRNA) content and alterations in the granule-associated intronic RNAs, suggesting a novel role for DDX3 in regulating the cytoplasmic redistribution of non-coding RNAs. Full article
Show Figures

Figure 1

16 pages, 5518 KiB  
Communication
Extremely Rapid Gelling Curcumin Silk-Tyrosine Crosslinked Hydrogels
by Aswin Sundarakrishnan
Gels 2025, 11(4), 288; https://doi.org/10.3390/gels11040288 - 14 Apr 2025
Viewed by 1011
Abstract
Systemic chemotherapy is still the first-line treatment for cancer, and it’s associated with toxic side effects, chemoresistance, and ultimately cancer recurrence. Rapid gelling hydrogels can overcome this limitation by providing localized delivery of anti-cancer agents to solid tumors. Silk hydrogels are extremely biocompatible [...] Read more.
Systemic chemotherapy is still the first-line treatment for cancer, and it’s associated with toxic side effects, chemoresistance, and ultimately cancer recurrence. Rapid gelling hydrogels can overcome this limitation by providing localized delivery of anti-cancer agents to solid tumors. Silk hydrogels are extremely biocompatible and suitable for anti-cancer drug delivery, but faster gelling formulations are needed. In this study, we introduce a rapid gelling hydrogel formulation (<3 min gelling time) due to chemical crosslinking between silk fibroin and curcumin, initiated by the addition of minute quantities of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The novel observation in this study is that curcumin, while being a free-radical scavenger, also participates in accelerating silk di-tyrosine crosslinking in the presence of HRP and H2O2. Using UV-Vis, rheology, and time-lapse videos, we convincingly show that curcumin accelerates silk di-tyrosine crosslinking reaction in a concentration-dependent manner, and curcumin remains entrapped in the hydrogel post-crosslinking. FTIR results show an increase in secondary beta-sheet structures within hydrogels, with increasing concentrations of curcumin. Furthermore, we show that curcumin-silk di-tyrosine hydrogels are toxic to U2OS osteosarcoma cells, and most cancer cells are dead within short time scales of 4 h post-encapsulation. Full article
Show Figures

Graphical abstract

21 pages, 2703 KiB  
Article
Gallic Acid Enhances Olaparib-Induced Cell Death and Attenuates Olaparib Resistance in Human Osteosarcoma U2OS Cell Line
by Mehmet Kadir Erdogan and Ayse Busra Usca
Curr. Issues Mol. Biol. 2025, 47(2), 104; https://doi.org/10.3390/cimb47020104 - 7 Feb 2025
Viewed by 1317
Abstract
Cancer remains one of the most formidable diseases globally and continues to be a leading cause of mortality. While chemotherapeutic agents are crucial in cancer treatment, they often come with severe side effects. Furthermore, the development of acquired drug resistance poses a significant [...] Read more.
Cancer remains one of the most formidable diseases globally and continues to be a leading cause of mortality. While chemotherapeutic agents are crucial in cancer treatment, they often come with severe side effects. Furthermore, the development of acquired drug resistance poses a significant challenge in the ongoing battle against cancer. Combining these chemotherapeutic agents with plant-derived phenolic compounds offers a promising approach, potentially reducing side effects and counteracting drug resistance. Phytochemicals, the bioactive compounds found in plants, exhibit a range of health-promoting properties, including anticarcinogenic, antimutagenic, antiproliferative, antioxidant, antimicrobial, neuroprotective, and cardioprotective effects. Their ability to enhance treatment, coupled with their non-toxic, multi-targeted nature and synergistic potential when used alongside conventional drugs, underscores the growing importance of natural therapeutics. In this study, we investigated the anticancer effects of olaparib (OL), a small-molecule PARP inhibitor that has shown promising results in both preclinical and clinical trials, and gallic acid (GA), a phenolic compound, in olaparib-resistant human osteosarcoma U2OS cells (U2OS-PIR). Both parental U2OS and U2OS-PIR cell lines were treated with increasing concentrations of olaparib and gallic acid, and their cytotoxic effects were assessed using the WST-1 cell viability assay. The synergistic potential of OL and GA, based on their determined IC50 values, was further explored in combination treatment. A colony survival assay revealed the combination’s ability to significantly reduce the colony-forming capacity of cancer cells. Additionally, the apoptotic effects of OL and GA, both individually and in combination, were examined in U2OS-PIR cells using acridine orange/ethidium bromide dual staining. The anti-angiogenic properties were assessed through a VEGF ELISA, while the expression of proteins involved in DNA damage and apoptotic signaling pathways was analyzed via Western blot. The results of this study demonstrate that gallic acid effectively suppresses cell viability and colony formation, particularly when used in combination therapy to combat OL resistance. Additionally, GA inhibits angiogenesis and induces DNA damage and apoptosis by modulating key apoptosis-related proteins, including cPARP, Bcl-2, and Bax. These findings highlight gallic acid as a potential compound for enhancing therapeutic efficacy in overcoming acquired drug resistance. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer Therapy)
Show Figures

Figure 1

25 pages, 3859 KiB  
Article
Polydatin-Induced Shift of Redox Balance and Its Anti-Cancer Impact on Human Osteosarcoma Cells
by Alessio Cimmino, Magda Gioia, Maria Elisabetta Clementi, Isabella Faraoni, Stefano Marini and Chiara Ciaccio
Curr. Issues Mol. Biol. 2025, 47(1), 21; https://doi.org/10.3390/cimb47010021 - 31 Dec 2024
Viewed by 1341
Abstract
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on [...] Read more.
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100–200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis. Notably, the ROS scavenger N-acetylcysteine (NAC) and the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially reverse PD’s cytotoxic effects. Interestingly, PD’s ability to hinder cell adhesion and migration appears independent of its pro-oxidant effect. Analysis of the oxidative stress regulators SIRT1 and Nrf2 at the gene and protein levels using real-time PCR and Western blot indicates an early oxidative response to PD treatment. PD remains effective under tumor-like conditions of hypoxia and serum starvation, and sensitizes OS cells to ROS-inducing chemotherapeutics like doxorubicin (DOX) and cisplatin (CIS). Importantly, PD exhibits minimal toxicity to non-tumorigenic cells (hFOB), suggesting a favorable therapeutic profile. Overall, our findings underscore that PD-induced redox imbalance plays a crucial role in its anti-OS effects, warranting further exploration into the molecular mechanisms behind its pro-oxidant activity. Full article
(This article belongs to the Special Issue Phytochemicals and Cancer, 2nd Edition)
Show Figures

Figure 1

15 pages, 2062 KiB  
Article
Chemical Profile of Kumquat (Citrus japonica var. margarita) Essential Oil, In Vitro Digestion, and Biological Activity
by Ivana Vrca, Željana Fredotović, Blaž Jug, Marija Nazlić, Valerija Dunkić, Dina Jug, Josip Radić, Sonja Smole Možina and Ivana Restović
Foods 2024, 13(22), 3545; https://doi.org/10.3390/foods13223545 - 6 Nov 2024
Cited by 2 | Viewed by 2092
Abstract
Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil’s biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate [...] Read more.
Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil’s biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate the chemical profile of kumquat essential oils (KEOs) isolated by microwave-assisted distillation (MAD) and Clevenger hydrodistillation using GC-MS analysis. To test the bioaccessibility of their bioactive components, in vitro digestion with commercially available enzymes was performed. The final step of this research was to test their cytotoxic activity against a cervical cancer cell line (HeLa), a human colon cancer cell line (HCT116), a human osteosarcoma cell line (U2OS), and a healthy cell line (RPE1). Two methods were used to test the antioxidant activity: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity). The antibacterial activity was tested in relation to the growth and adhesion of Escherichia coli and Staphylococcus aureus on a polystyrene surface. The GC-MS analysis showed that the major compound in both kumquat essential oils was limonene, which was stable before and after in vitro digestion (>90%). The results showed that the cytotoxic activity of the KEOs in all three cancer cell lines tested was IC50 1–2 mg/mL, and in the healthy cell line (RPE1), the IC50 value was above 4 mg/mL. The antibacterial activity of the KEOs obtained after MAD and Clevenger hydrodistillation was 4 mg/mL against E. coli and 1 mg/mL against S. aureus. The KEOs after MAD and Clevenger hydrodistillation reduced the adhesion of E. coli by more than 1 log, while there was no statistically significant effect on the adhesion of S. aureus to the polystyrene surface. Both KEOs exhibited comparable levels of antioxidant activity using both methods tested, with IC50 values of 855.25 ± 26.02 μg/mL (after MAD) and 929.41 ± 101.57 μg/mL (after Clevenger hydrodistillation) for DPPH activity and 4839.09 ± 91.99 μmol TE/g of EO (after MAD) and 4928.78 ± 275.67 μmol TE/g of EO (after Clevenger hydrodistillation) for ORAC. The results obtained show possible future applications in various fields (e.g., in the food, pharmaceutical, cosmetic, and agricultural industries). Full article
Show Figures

Figure 1

13 pages, 3748 KiB  
Article
Influence of Metamizole on Antitumour Activity of Risedronate Sodium in In Vitro Studies on Canine (D-17) and Human (U-2 OS) Osteosarcoma Cell Lines
by Dominik Poradowski, Aleksander Chrószcz, Radosław Spychaj, Joanna Wolińska and Vedat Onar
Biomedicines 2024, 12(8), 1869; https://doi.org/10.3390/biomedicines12081869 - 15 Aug 2024
Cited by 1 | Viewed by 1744
Abstract
The availability of metamizole varies greatly around the world. There are countries such as the USA, UK, or Australia where the use of metamizole is completely forbidden, and there are also countries where this drug is available only on prescription (e.g., Greece, Italy, [...] Read more.
The availability of metamizole varies greatly around the world. There are countries such as the USA, UK, or Australia where the use of metamizole is completely forbidden, and there are also countries where this drug is available only on prescription (e.g., Greece, Italy, Spain, etc.) and those in which it is sold OTC—over the counter (e.g., most Asian and South American countries). Metamizole, as a drug with a strong analgesic effect, is used as an alternative to other non-steroidal anti-inflammatory drugs, alone or in combination with opioid drugs. Risedronate sodium is a third-generation bisphosphonate commonly used in orthopaedic and metabolic diseases of the musculoskeletal system, including hypercalcemia, postmenopausal osteoporosis, Paget’s disease, etc. The aim of this study was to check whether there were any pharmacological interactions between metamizole and risedronate sodium in in vitro studies. Cell viability was assessed using the MTT method, the number of apoptotic cells was assessed using the labelling TUNEL method, and the cell cycle assessment was performed with a flow cytometer and propidium iodide. This was a pilot study, which is why only two cancer cell lines were tested: D-17 of canine osteosarcoma and U-2 OS of human osteosarcoma. Exposure of the canine osteosarcoma cell line to a combination of risedronate sodium (100 µg/mL) and metamizole (50, 5, and 0.5 µg/mL) resulted in the complete abolition of the cytoprotective activity of metamizole. In the human osteosarcoma cell line, the cytotoxic effect of risedronate sodium was entirely eliminated in the presence of 50 µg/mL of metamizole. The cytoprotective and anti-apoptotic effect of metamizole in combination with risedronate sodium in the tested human and canine osteosarcoma cell lines indicates an urgent need for further in vivo studies to confirm or disprove the potential dose-dependent undesirable effect of such a therapy. Full article
(This article belongs to the Special Issue Molecular Insights into Osteosarcoma)
Show Figures

Figure 1

17 pages, 1295 KiB  
Review
Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions
by Winston J. T. Tan and Srdjan M. Vlajkovic
Int. J. Mol. Sci. 2023, 24(22), 16545; https://doi.org/10.3390/ijms242216545 - 20 Nov 2023
Cited by 54 | Viewed by 9139
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its [...] Read more.
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40–60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 1818 KiB  
Article
Significant Benefits of Environmentally Friendly Hydrosols from Tropaeolum majus L. Seeds with Multiple Biological Activities
by Ivana Vrca, Blaž Jug, Željana Fredotović, Elma Vuko, Valentina Brkan, Loriana Šestić, Lea Juretić, Valerija Dunkić, Marija Nazlić, Dina Ramić, Sonja Smole Možina and Dario Kremer
Plants 2023, 12(22), 3897; https://doi.org/10.3390/plants12223897 - 18 Nov 2023
Cited by 6 | Viewed by 3270
Abstract
Tropaeolum majus L. is a traditional medicinal plant with a wide range of biological activities due to the degradation products of the glucosinolate glucotropaeolin. Therefore, the goals of this study were to identify volatiles using gas chromatography–mass spectrometry analysis (GC-MS) of the hydrosols [...] Read more.
Tropaeolum majus L. is a traditional medicinal plant with a wide range of biological activities due to the degradation products of the glucosinolate glucotropaeolin. Therefore, the goals of this study were to identify volatiles using gas chromatography–mass spectrometry analysis (GC-MS) of the hydrosols (HYs) isolated using microwave-assisted extraction (MAE) and microwave hydrodiffusion and gravity (MHG). Cytotoxic activity was tested against a cervical cancer cell line (HeLa), human colon cancer cell line (HCT116), human osteosarcoma cell line (U2OS), and healthy cell line (RPE1). The effect on wound healing was investigated using human keratinocyte cells (HaCaT), while the antibacterial activity of the HYs was tested against growth and adhesion to a polystyrene surface of Staphylococcus aureus and Escherichia coli. Antiphytoviral activity against tobacco mosaic virus (TMV) was determined. The GC-MS analysis showed that the two main compounds in the HYs of T. majus are benzyl isothiocyanate (BITC) and benzyl cyanide (BCN) using the MAE (62.29% BITC and 15.02% BCN) and MHG (17.89% BITC and 65.33% BCN) extraction techniques. The HYs obtained using MAE showed better cytotoxic activity against the tested cancer cell lines (IC50 value of 472.61–637.07 µg/mL) compared to the HYs obtained using MHG (IC50 value of 719.01–1307.03 μg/mL). Both concentrations (5 and 20 µg/mL) of T. majus HYs using MAE showed a mild but statistically non-significant effect in promoting gap closure compared with untreated cells, whereas the T. majus HY isolated using MHG at a concentration of 15 µg/mL showed a statistically significant negative effect on wound healing. The test showed that the MIC concentration was above 0.5 mg/mL for the HY isolated using MAE, and 2 mg/mL for the HY isolated using MHG. The HY isolated using MHG reduced the adhesion of E. coli at a concentration of 2 mg/mL, while it also reduced the adhesion of S. aureus at a concentration of 1 mg/mL. Both hydrosols showed excellent antiphytoviral activity against TMV, achieving100% inhibition of local lesions on the leaves of infected plants, which is the first time such a result was obtained with a hydrosol treatment. Due to the antiphytoviral activity results, hydrosols of T. majus have a promising future for use in agricultural production. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

25 pages, 13542 KiB  
Article
Comparative Analysis of Image Processing Techniques for Enhanced MRI Image Quality: 3D Reconstruction and Segmentation Using 3D U-Net Architecture
by Chee Chin Lim, Apple Ho Wei Ling, Yen Fook Chong, Mohd Yusoff Mashor, Khalilalrahman Alshantti and Mohd Ezane Aziz
Diagnostics 2023, 13(14), 2377; https://doi.org/10.3390/diagnostics13142377 - 14 Jul 2023
Cited by 5 | Viewed by 3183
Abstract
Osteosarcoma is a common type of bone tumor, particularly prevalent in children and adolescents between the ages of 5 and 25 who are experiencing growth spurts during puberty. Manual delineation of tumor regions in MRI images can be laborious and time-consuming, and results [...] Read more.
Osteosarcoma is a common type of bone tumor, particularly prevalent in children and adolescents between the ages of 5 and 25 who are experiencing growth spurts during puberty. Manual delineation of tumor regions in MRI images can be laborious and time-consuming, and results may be subjective and difficult to replicate. Therefore, a convolutional neural network (CNN) was developed to automatically segment osteosarcoma cancerous cells in three types of MRI images. The study consisted of five main stages. First, 3692 DICOM format MRI images were acquired from 46 patients, including T1-weighted, T2-weighted, and T1-weighted with injection of Gadolinium (T1W + Gd) images. Contrast stretching and median filter were applied to enhance image intensity and remove noise, and the pre-processed images were reconstructed into NIfTI format files for deep learning. The MRI images were then transformed to fit the CNN’s requirements. A 3D U-Net architecture was proposed with optimized parameters to build an automatic segmentation model capable of segmenting osteosarcoma from the MRI images. The 3D U-Net segmentation model achieved excellent results, with mean dice similarity coefficients (DSC) of 83.75%, 85.45%, and 87.62% for T1W, T2W, and T1W + Gd images, respectively. However, the study found that the proposed method had some limitations, including poorly defined borders, missing lesion portions, and other confounding factors. In summary, an automatic segmentation method based on a CNN has been developed to address the challenge of manually segmenting osteosarcoma cancerous cells in MRI images. While the proposed method showed promise, the study revealed limitations that need to be addressed to improve its efficacy. Full article
(This article belongs to the Special Issue Artificial Intelligence and Robotics in Interventional Radiology)
Show Figures

Figure 1

15 pages, 5081 KiB  
Article
Selective Effects of Cold Atmospheric Plasma on Bone Sarcoma Cells and Human Osteoblasts
by Andreas Nitsch, Konrad F. Sieb, Sara Qarqash, Janosch Schoon, Axel Ekkernkamp, Georgi I. Wassilew, Maya Niethard and Lyubomir Haralambiev
Biomedicines 2023, 11(2), 601; https://doi.org/10.3390/biomedicines11020601 - 17 Feb 2023
Cited by 9 | Viewed by 2518
Abstract
Background: The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this [...] Read more.
Background: The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells. Thus, the current in vitro study deals with the effect of CAP on human bone cancer cells and human osteoblasts. Here, identical CAP treatment regimens were applied to the malignant and non-malignant bone cells and their impact was compared. Methods: Two different human bone cancer cell types, U2-OS (osteosarcoma) and A673 (Ewing’s sarcoma), and non-malignant primary osteoblasts (HOB) were used. The CAP treatment was performed with the clinically approved kINPen MED. After CAP treatment, growth kinetics and a viability assay were performed. For detecting apoptosis, a caspase-3/7 assay and a TUNEL assay were used. Accumulated ROS was measured in cell culture medium and intracellular. To investigate the influence of CAP on cell motility, a scratch assay was carried out. Results: The CAP treatment showed strong inhibition of cell growth and viability in bone cancer cells. Apoptotic processes were enhanced in the malignant cells. Osteoblasts showed a higher potential for ROS resistance in comparison to malignant cells. There was no difference in cell motility between benign and malignant cells following CAP treatment. Conclusions: Osteoblasts show better tolerance to CAP treatment, indicated by less affected viability compared to CAP-treated bone cancer cells. This points toward the selective effect of CAP on sarcoma cells and represents a further step toward the clinical application of CAP. Full article
(This article belongs to the Special Issue Plasma Applications in Biomedicine)
Show Figures

Figure 1

28 pages, 3772 KiB  
Article
Evaluating the Potential Anticancer Properties of Salvia triloba in Human-Osteosarcoma U2OS Cell Line and Ovarian Adenocarcinoma SKOV3 Cell Line
by Naela Adel Mohammed Saleh, Rowan Bahaa El-din Abd El-bary, Eric Zadok Mpingirika, Hanaa L. Essa, Mayyada M. H. El-Sayed, Mirna Sarkis Sherbetjian, Hanin Fadel Elfandi, Muhammad Adel Abdel Wahed, Rami Arafeh and Asma Amleh
Appl. Sci. 2022, 12(22), 11545; https://doi.org/10.3390/app122211545 - 15 Nov 2022
Cited by 2 | Viewed by 3731
Abstract
Salvia triloba (S. triloba) is an herb inherently linked to traditional medicine systems in the Eastern Mediterranean region. There is minimal experimental evidence however, regarding the anticancer effects of S. triloba in both osteosarcoma and ovarian cancer. In this study, we [...] Read more.
Salvia triloba (S. triloba) is an herb inherently linked to traditional medicine systems in the Eastern Mediterranean region. There is minimal experimental evidence however, regarding the anticancer effects of S. triloba in both osteosarcoma and ovarian cancer. In this study, we investigated the effects of crude (macerated) S. triloba ethanol and acetone leaf extracts on viability, migratory ability, and the expression of genes regulating these activities in U2OS and SKOV3 cells using MTT assay, scratch-wound healing/trans-well migration assay, and RT-qPCR respectively. MTT assay results indicated that the acetone extract significantly reduced both U2OS and SKOV3 cell viability with half-maximal inhibitory concentrations (IC50) of 54.51 ± 1.10 µg/mL and 75.96 ± 1.0237 µg/mL respectively; these concentrations further displayed negligible hemolytic activity. The combination of acetone extract (19 µg/mL) and paclitaxel (0.787 µg/mL) displayed synergy and reduced SKOV3 cell viability by over 90%. Additionally, the trans-well migration assay illustrated that the acetone extract (IC50) inhibited both U2OS and SKOV3 cell migration by more than 50%. Moreover, S. triloba acetone extract significantly downregulated the steady-state mRNA expression of key genes involved in driving select cancer hallmarks. Four fractions were generated from the acetone extract by thin layer chromatography (TLC), and the obtained retention factors (Rf) (ranging from 0.2 to 0.8) suggested a mixture of high and moderately polar compounds whose bioactivities require further investigation. In addition, FTIR measurements of the extract revealed peaks corresponding to OH, aliphatic CH, and ester groups suggesting the presence of phenolic compounds, terpenes, and polysaccharides. Altogether, these results suggest that S. triloba possesses potential therapeutic compounds that inhibit cell proliferation and migration, and modulate several genes involved in osteosarcoma and ovarian carcinoma progression. Full article
(This article belongs to the Special Issue Natural Products: Sources and Applications)
Show Figures

Figure 1

14 pages, 2299 KiB  
Article
LRP1-Mediated Endocytosis May Be the Main Reason for the Difference in Cytotoxicity of Curcin and Curcin C on U2OS Osteosarcoma Cells
by Siying Qin, Xueying Wang, Pan Han, Zhiping Lai, Yingying Ren, Rui Ma, Cheng Cheng, Ting Wang and Ying Xu
Toxins 2022, 14(11), 771; https://doi.org/10.3390/toxins14110771 - 8 Nov 2022
Cited by 4 | Viewed by 3149
Abstract
Curcin and Curcin C, both of the ribosome-inactivating proteins of Jatropha curcas, have apparent inhibitory effects on the proliferation of osteosarcoma cell line U20S. However, the inhibitory effect of the latter is 13-fold higher than that of Curcin. The mechanism responsible for [...] Read more.
Curcin and Curcin C, both of the ribosome-inactivating proteins of Jatropha curcas, have apparent inhibitory effects on the proliferation of osteosarcoma cell line U20S. However, the inhibitory effect of the latter is 13-fold higher than that of Curcin. The mechanism responsible for the difference has not been studied. This work aimed to understand and verify whether there are differences in entry efficiency and pathway between them using specific endocytosis inhibitors, gene silencing, and labeling techniques such as fluorescein isothiocyanate (FITC) labeling. The study found that the internalization efficiency of Curcin C was twice that of Curcin for U2OS cells. More than one entering pathway was adopted by both of them. Curcin C can enter U2OS cells through clathrin-dependent endocytosis and macropinocytosis, but clathrin-dependent endocytosis was not an option for Curcin. The low-density lipoprotein receptor-related protein 1 (LRP1) was found to mediate clathrin-dependent endocytosis of Curcin C. After LRP1 silencing, there was no significant difference in the 50% inhibitory concentration (IC50) and endocytosis efficiency between Curcin and Curcin C on U2OS cells. These results indicate that LRP1-mediated endocytosis is specific to Curcin C, thus leading to higher U2OS endocytosis efficiency and cytotoxicity than Curcin. Full article
(This article belongs to the Special Issue Biological Activities of Ribosome-Inactivating Proteins)
Show Figures

Figure 1

18 pages, 5040 KiB  
Article
Naked and Decorated Nanoparticles Containing H2S-Releasing Doxorubicin: Preparation, Characterization and Assessment of Their Antitumoral Efficiency on Various Resistant Tumor Cells
by Elena Peira, Daniela Chirio, Simona Sapino, Konstantin Chegaev, Giulia Chindamo, Iris Chiara Salaroglio, Chiara Riganti and Marina Gallarate
Int. J. Mol. Sci. 2022, 23(19), 11555; https://doi.org/10.3390/ijms231911555 - 30 Sep 2022
Cited by 6 | Viewed by 2275
Abstract
Several semisynthetic, low-cardiotoxicity doxorubicin (DOXO) conjugated have been extensively described, considering the risk of cytotoxicity loss against resistant tumor cells, which mainly present drug efflux capacity. Doxorubicin 14-[4-(4-phenyl-5-thioxo-5H-[1,2]dithiol-3-yl)]-benzoate (H2S-DOXO) was synthetized and tested for its ability to overcome drug resistance with [...] Read more.
Several semisynthetic, low-cardiotoxicity doxorubicin (DOXO) conjugated have been extensively described, considering the risk of cytotoxicity loss against resistant tumor cells, which mainly present drug efflux capacity. Doxorubicin 14-[4-(4-phenyl-5-thioxo-5H-[1,2]dithiol-3-yl)]-benzoate (H2S-DOXO) was synthetized and tested for its ability to overcome drug resistance with good intracellular accumulation. In this paper, we present a formulation study aimed to develop naked and decorated H2S-DOXO-loaded lipid nanoparticles (NPs). NPs prepared by the “cold dilution of microemulsion” method were decorated with hyaluronic acid (HA) to obtain active targeting and characterized for their physicochemical properties, drug entrapment efficiency, long-term stability, and in vitro drug release. Best formulations were tested in vitro on human-sensitive (MCF7) and human/mouse DOXO-resistant (MDA-MDB -231 and JC) breast cancer cells, on human (U-2OS) osteosarcoma cells and DOXO-resistant human/mouse osteosarcoma cells (U-2OS/DX580/K7M2). HA-decoration by HA-cetyltrimethyl ammonium bromide electrostatic interaction on NPs surface was confirmed by Zeta potential and elemental analysis at TEM. NPs had mean diameters lower than 300 nm, 70% H2S-DOXO entrapment efficiency, and were stable for almost 28 days. HA-decorated NPs accumulated H2S-DOXO in Pgp-expressing cells reducing cell viability. HA-decorated NPs result in the best formulation to increase the inter-cellular H2S-DOXO delivery and kill resistant cells, and therefore, as a future perspective, they will be taken into account for further in vivo experiments on tumor animal model. Full article
(This article belongs to the Special Issue Nanotechnology in Targeted Drug Delivery)
Show Figures

Figure 1

15 pages, 2686 KiB  
Article
Synthesis of thia-Michael-Type Adducts between Naphthoquinones and N-Acetyl-L-Cysteine and Their Biological Activity
by Gabriele Micheletti, Carla Boga, Chiara Zalambani, Giovanna Farruggia, Erika Esposito, Jessica Fiori, Nicola Rizzardi, Paola Taddei, Michele Di Foggia and Natalia Calonghi
Molecules 2022, 27(17), 5645; https://doi.org/10.3390/molecules27175645 - 1 Sep 2022
Cited by 8 | Viewed by 3243
Abstract
A series of naphthoquinones, namely, 1,4-naphthoquinone, menadione, plumbagin, juglone, naphthazarin, and lawsone, were reacted with N-acetyl-L-cysteine, and except for lawsone, which did not react, the related adducts were obtained. After the tuning of the solvent and reaction conditions, the reaction [...] Read more.
A series of naphthoquinones, namely, 1,4-naphthoquinone, menadione, plumbagin, juglone, naphthazarin, and lawsone, were reacted with N-acetyl-L-cysteine, and except for lawsone, which did not react, the related adducts were obtained. After the tuning of the solvent and reaction conditions, the reaction products were isolated as almost pure from the complex reaction mixture via simple filtration and were fully characterized. Therefore, the aim of this work was to evaluate whether the antitumor activity of new compounds of 1,4-naphthoquinone derivatives leads to an increase in ROS in tumor cell lines of cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), and osteosarcoma (SaOS2, U2OS) and in normal dermal fibroblast (HDFa). The MTT assay was used to assay cell viability, the DCF-DA fluorescent probe to evaluate ROS induction, and cell-cycle analysis to measure the antiproliferative effect. Compounds 8, 9, and 12 showed a certain degree of cytotoxicity towards all the malignant cell lines tested, while compound 11 showed biological activity at higher IC50 values. Compounds 8 and 11 induced increases in ROS generation after 1 h of exposure, while after 48 h of treatment, only 8 induced an increase in ROS formation in HeLa cells. Cell-cycle analysis showed that compound 8 caused an increase in the number of G0/G1-phase cells in the HeLa experiment, while for the U2OS and SH-SY5Y cell lines, it led to an accumulation of S-phase cells. Therefore, these novel 1,4-naphthoquinone derivatives may be useful as antitumoral agents in the treatment of different cancers. Full article
(This article belongs to the Special Issue Design and Synthesis of Organic Molecules as Antineoplastic Agents II)
Show Figures

Graphical abstract

14 pages, 2992 KiB  
Article
HO-3867 Induces Apoptosis via the JNK Signaling Pathway in Human Osteosarcoma Cells
by Peace Wun-Ang Lu, Chia-Hsuan Chou, Jia-Sin Yang, Yi-Hsien Hsieh, Meng-Ying Tsai, Ko-Hsiu Lu and Shun-Fa Yang
Pharmaceutics 2022, 14(6), 1257; https://doi.org/10.3390/pharmaceutics14061257 - 13 Jun 2022
Cited by 17 | Viewed by 2732
Abstract
Metastatic osteosarcoma often results in poor prognosis despite the application of surgical en bloc excision along with chemotherapy. HO-3867 is a curcumin analog that induces cell apoptosis in several cancers, but the apoptotic effect and its mechanisms on osteosarcoma cells are still unknown. [...] Read more.
Metastatic osteosarcoma often results in poor prognosis despite the application of surgical en bloc excision along with chemotherapy. HO-3867 is a curcumin analog that induces cell apoptosis in several cancers, but the apoptotic effect and its mechanisms on osteosarcoma cells are still unknown. After observing the decrease in cellular viability of three human osteosarcoma U2OS, HOS, and MG-63 cell lines, and the induction of cellular apoptosis and arrest in sub-G1 phase in U2OS and HOS cells by HO-3867, the human apoptosis array showed that heme oxygenase (HO)-1 and cleaved caspase-3 expressions had significant increases after HO-3867 treatment in U2OS cells and vice versa for cellular inhibitors of apoptosis (cIAP)1 and X-chromosome-linked IAP (XIAP). Western blot analysis verified the results and showed that HO-3867 activated the initiators of both extrinsic caspase 8 and intrinsic caspase 9, and significantly increased cleaved PARP expression in U2OS and HOS cells. Moreover, with the addition of HO-3867, ERK1/2, and JNK1/2 phosphorylation were increased in U2OS and HOS cells. Using the inhibitor of JNK (JNK in 8), HO-3867’s increases in cleaved caspases 3, 8, and 9 could be expectedly suppressed, indicating that JNK signaling is responsible for both apoptotic pathways, including extrinsic and intrinsic, in U2OS and HOS cells caused by HO-3867. Through JNK signaling, HO-3867 has proven to be effective in causing both extrinsic and intrinsic apoptotic pathways of human osteosarcoma cells. Full article
(This article belongs to the Special Issue Novel Strategies for Cancer Targeted Delivery)
Show Figures

Figure 1

Back to TopTop