Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = orographic precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3289 KiB  
Article
Significant Attribution of Urbanization to Triggering Extreme Rainfall in the Urban Core—A Case of Dallas–Fort Worth in North Texas
by Junaid Ahmad, Jessica A. Eisma and Muhammad Sajjad
Urban Sci. 2025, 9(8), 295; https://doi.org/10.3390/urbansci9080295 - 29 Jul 2025
Viewed by 325
Abstract
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, [...] Read more.
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, which has minimal orographic and coastal influences, to analyze the urban impact on rainfall. DFW was divided into 256 equal grids (10 km × 10 km) and grouped into four clusters using K-means clustering based on the urbanization ratio. Using Multi-Sensor Precipitation Estimator data (with a spatial resolution of 4 km), we examined rainfall exceeding the 95th percentile (i.e., extreme rainfall) on low synoptic days to highlight localized effects. The urban heat island (UHI) effect was estimated based on the average temperature difference between the urban core and the other three non-urban clusters. Multiple rainfall events were monitored on an hourly basis. Potential linkages between urbanization, the UHI, extreme rainfall, wind speed, wind direction, convective inhibition, and convective available potential energy were evaluated. An intense UHI within the DFW area triggered a tornado, resulting in maximum rainfall in the urban core area under high wind speeds and a dominant wind direction. Our findings further clarify the role of urbanization in generating extreme rainfall events, which is essential for developing better policies for urban planning in response to intensifying extreme events due to climate change. Full article
Show Figures

Figure 1

21 pages, 6329 KiB  
Article
Mesoscale Analysis and Numerical Simulation of an Extreme Precipitation Event on the Northern Slope of the Middle Kunlun Mountains in Xinjiang, China
by Chenxiang Ju, Man Li, Xia Yang, Yisilamu Wulayin, Ailiyaer Aihaiti, Qian Li, Weilin Shao, Junqiang Yao and Zonghui Liu
Remote Sens. 2025, 17(14), 2519; https://doi.org/10.3390/rs17142519 - 19 Jul 2025
Viewed by 289
Abstract
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of [...] Read more.
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of the driving mechanisms, we combine the European Centre for Medium-Range Weather Forecasts Reanalysis-5 (ERA5) reanalysis, regional observations, and high-resolution Weather Research and Forecasting model (WRF) simulations to dissect the 14–17 June 2021, extreme rainfall event. A deep Siberia–Central Asia trough and nascent Central Asian vortex established a coupled upper- and low-level jet configuration that amplified large-scale ascent. Embedded shortwaves funnelled abundant moisture into the orographic basin, where strong low-level moisture convergence and vigorous warm-sector updrafts triggered and sustained deep convection. WRF reasonably replicated observed wind shear and radar echoes, revealing the descent of a mid-level jet into an ultra-low-level jet that provided a mesoscale engine for storm intensification. Momentum–budget diagnostics underscore the role of meridional momentum transport along sloping terrain in reinforcing low-level convergence and shear. Together, these synoptic-to-mesoscale interactions and moisture dynamics led to this landmark extreme-precipitation event. Full article
Show Figures

Graphical abstract

26 pages, 10223 KiB  
Article
Evaluation of the Accuracy and Applicability of Reanalysis Precipitation Products in the Lower Yarlung Zangbo Basin
by Anqi Tan, Ming Li, Heng Liu, Liangang Chen, Tao Wang, Binghui Yang, Min Wan and Yong Shi
Remote Sens. 2025, 17(14), 2396; https://doi.org/10.3390/rs17142396 - 11 Jul 2025
Viewed by 491
Abstract
The lower Yarlung Zangbo River Basin’s Great Bend region, characterized by extreme topography and intense orographic precipitation processes, presents significant challenges for accurate precipitation estimation using reanalysis products. Therefore, this study evaluates four widely used products (ERA5-Land, MSWEP, CMA, and TPMFD) against station [...] Read more.
The lower Yarlung Zangbo River Basin’s Great Bend region, characterized by extreme topography and intense orographic precipitation processes, presents significant challenges for accurate precipitation estimation using reanalysis products. Therefore, this study evaluates four widely used products (ERA5-Land, MSWEP, CMA, and TPMFD) against station observations (2014–2022) in this critical area. Performance was rigorously assessed using correlation analysis, error metrics (RMSE, MAE, RBIAS), and spatial regression. The region exhibits strong seasonality, with 62.1% of annual rainfall occurring during the monsoon (June-October). Results indicate TPMFD performed best overall, capturing spatiotemporal patterns effectively (correlation coefficients 0.6–0.8, low RBIAS). Conversely, ERA5-Land significantly overestimated precipitation, particularly in rugged northeast areas, suggesting poor representation of orographic effects. MSWEP and CMA underestimated rainfall with variable temporal consistency. Topographic analysis confirmed slope, aspect, and longitude strongly control precipitation distribution, aligning with classical orographic mechanisms (e.g., windward enhancement, lee-side rain shadows) and monsoonal moisture transport. Spatial regression revealed terrain features explain 15.4% of flood-season variation. TPMFD most accurately captured these terrain-precipitation relationships. Consequently, findings underscore the necessity for terrain-sensitive calibration and data fusion strategies in mountainous regions to improve precipitation products and hydrological modeling under orographic influence. Full article
Show Figures

Figure 1

18 pages, 4964 KiB  
Article
Multi-Model Simulations of a Mediterranean Extreme Event: The Impact of Mineral Dust on the VAIA Storm
by Tony Christian Landi, Paolo Tuccella, Umberto Rizza and Mauro Morichetti
Atmosphere 2025, 16(6), 745; https://doi.org/10.3390/atmos16060745 - 18 Jun 2025
Viewed by 338
Abstract
This study investigates the impact of desert dust on precipitation patterns using multi-model simulations. Dust-based processes of formation/removal of ice nuclei (IN) and cloud condensation nuclei (CCN) are investigated by using both the online access model WRF-CHIMERE and the online integrated model WRF-Chem. [...] Read more.
This study investigates the impact of desert dust on precipitation patterns using multi-model simulations. Dust-based processes of formation/removal of ice nuclei (IN) and cloud condensation nuclei (CCN) are investigated by using both the online access model WRF-CHIMERE and the online integrated model WRF-Chem. Comparisons of model predictions with rainfall measurements (GRISO: Spatial Interpolation Generator from Rainfall Observations) over the Italian peninsula show the models’ ability to reproduce heavy orographic precipitation in alpine regions. To quantify the impact of the mineral dust transport concomitant to the atmospheric river (AR) on cloud formation, a sensitivity study is performed by using the WRF-CHIMERE model (i) by setting dust concentrations to zero and (ii) by modifying the settings of the Thompson Aerosol-Aware microphysics scheme. Statistical comparisons revealed that WRF-CHIMERE outperformed WRF-Chem. It achieved a correlation coefficient of up to 0.77, mean bias (MB) between +3.56 and +5.01 mm/day, and lower RMSE and MAE values (~32 mm and ~22 mm, respectively). Conversely, WRF-Chem displayed a substantial underestimation, with an MB of −25.22 mm/day and higher RMSE and MAE values. Our findings show that, despite general agreement in spatial precipitation patterns, both models significantly underestimated the peak daily rainfall in pre-alpine regions (e.g., 216 mm observed at Malga Valine vs. 130–140 mm simulated, corresponding to a 35–40% underestimation). Although important instantaneous changes in precipitation and temperature were modeled at a local scale, no significant total changes in precipitation or air temperature averaged over the entire domain were observed. These results underline the complexity of aerosol–cloud interactions and the need for improved parameterizations in coupled meteorological models. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

19 pages, 5635 KiB  
Article
Catastrophic Precipitation in the City of Bielsko-Biała (Polish Carpathian Mountains) and Their Synoptic Circumstances (1951–2024)
by Robert Twardosz, Izabela Guzik and Marta Cebulska
Water 2025, 17(11), 1611; https://doi.org/10.3390/w17111611 - 26 May 2025
Viewed by 830
Abstract
Catastrophic precipitation is an inherent feature of temperate climates. Its occurrence is a manifestation of climate change, but also of the variability of atmospheric circulation. Mountainous areas may be particularly vulnerable as they receive more precipitation and are also areas where relief plays [...] Read more.
Catastrophic precipitation is an inherent feature of temperate climates. Its occurrence is a manifestation of climate change, but also of the variability of atmospheric circulation. Mountainous areas may be particularly vulnerable as they receive more precipitation and are also areas where relief plays an important role in modifying the distribution of precipitation. One such area is the Polish Western Carpathian Mountains, especially the area around the city of Bielsko-Biała, located at their foot and directly exposed to rain-bearing winds. In 2024, two episodes of unusually heavy precipitation in quick succession occurred in this area, resulting in severe damage to infrastructure. This painful experience inspired a study focusing on the frequency of such catastrophic precipitation events and their synoptic circumstances spanning the period from the mid-20th century to the present day. Daily precipitation totals covering the study period of 74 years were used to identify a category of catastrophic precipitation (here set at above 100 mm). The six events identified to match the criteria appeared from May to September, always accompanied by cyclonic circulation types with advection from the northern sector and with a cyclonic trough situation over southern Poland. The study showed that the leading role in their formation was played by deep convection, especially a Genoa low moving along the Vb Van Bebber track. The damage and destruction suffered as a result were a consequence of the cumulative impact of high-intensity rainfall, itself caused by a combination of specific synoptic thermodynamic and orographic conditions. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

19 pages, 6521 KiB  
Article
Hydrological Characteristics of Columnar Basalt Aquifers: Measuring and Modeling Skaftafellsheiði, Iceland
by Roel Dijksma, Victor Bense, Eline Zweers, Lisette Avis and Martine van der Ploeg
Geosciences 2025, 15(5), 160; https://doi.org/10.3390/geosciences15050160 - 25 Apr 2025
Viewed by 645
Abstract
Basalt with columnar jointing can act as a good groundwater conductor. In areas with limited water resources in sedimentary rock, such as the Deccan Traps in India and the Columbia River basalt formations in Washington State (USA), large quantities of groundwater are abstracted [...] Read more.
Basalt with columnar jointing can act as a good groundwater conductor. In areas with limited water resources in sedimentary rock, such as the Deccan Traps in India and the Columbia River basalt formations in Washington State (USA), large quantities of groundwater are abstracted from such basalt formations for drinking water supply and irrigation. The hydraulic properties of basaltic formations are difficult to quantify. To obtain a better understanding of their hydraulic properties, intensive field campaigns in Iceland were combined with a conceptual groundwater model in MODFLOW. The field experiments enabled us to derive the upper boundary conditions, like precipitation surplus, and obtain reliable ranges for the kh (0.01–0.3 m d−1) and kv (0.01–10 m d−1) of the basalt formations. The main objective was to test the concept of representative elementary volumes (REVs) for such basaltic regions. Precipitation excess for the Vestragil and Eystragil catchments was calculated by taking into account the orographic effect of precipitation. It was found that at higher elevations (600 m + msl) the precipitation was twice the amount compared to the base camp rain gauge at 100 m + msl. Calculated evapotranspiration (1–2 mm d−1) is in line with the literature. In the MODFLOW model, best results were obtained when the top layer (organic soil, peat, and regolith) was considered to be most conductive (up to 10 m d−1), with a gradual reduction in hydraulic conductivity with depth in the basaltic aquifers. This study shows that, when larger elementary volumes are used, a good model representation of basaltic regions can be created. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 26505 KiB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Viewed by 610
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

16 pages, 5810 KiB  
Article
Deep Learning Downscaling of Precipitation Projection over Central Asia
by Yichang Jiang, Jianing Guo, Lei Fan, Hui Sun and Xiaoning Xie
Water 2025, 17(7), 1089; https://doi.org/10.3390/w17071089 - 5 Apr 2025
Viewed by 586
Abstract
Central Asia, as a chronically water-stressed region marked by extreme aridity, faces significant environmental challenges from intensifying desertification and deteriorating ecological stability. The region’s vulnerability to shifting precipitation regimes and extreme hydrometeorological events has been magnified under anthropogenic climate forcing. Although global climate [...] Read more.
Central Asia, as a chronically water-stressed region marked by extreme aridity, faces significant environmental challenges from intensifying desertification and deteriorating ecological stability. The region’s vulnerability to shifting precipitation regimes and extreme hydrometeorological events has been magnified under anthropogenic climate forcing. Although global climate models (GCMs) remain essential tools for climate projections, their utility in Central Asia’s complex terrain is constrained by inherent limitations: coarse spatial resolution (~100–250 km) and imperfect parameterization of orographic precipitation mechanisms. This investigation advances precipitation modeling through deep learning-enhanced statistical downscaling, employing convolutional neural networks (CNNs) to generate high-resolution precipitation data at approximately 10 km resolution. Our results show that the deep learning models successfully simulate the high center of precipitation and extreme precipitation near the Tianshan Mountains, exhibiting high spatial applicability. Under intermediate (SSP-245) and high-emission (SSP-585) future scenarios, the increase in extreme precipitation over the next century is significantly more pronounced compared to mean precipitation. By the end of the 21st century, the interannual variability of mean precipitation and extreme precipitation will become even larger under SSP-585, indicating an increased risk of extreme droughts/floods in Central Asia under high greenhouse gas emissions. Our findings provide technical support for climate change impact assessments in the region and highlight the potential of CNN-based downscaling for future climate change studies. Full article
Show Figures

Figure 1

17 pages, 4259 KiB  
Article
Analyzing an Extreme Rainfall Event in Himachal Pradesh, India, to Contribute to Sustainable Development
by Nitin Lohan, Sushil Kumar, Vivek Singh, Raj Pritam Gupta and Gaurav Tiwari
Sustainability 2025, 17(5), 2115; https://doi.org/10.3390/su17052115 - 28 Feb 2025
Cited by 1 | Viewed by 2128
Abstract
In the Himalayan regions of complex terrains, such as Himachal Pradesh, the occurrence of extreme rainfall events (EREs) has been increasing, triggering landslides and flash floods. Investigating the dynamics and precipitation characteristics and improving the prediction of such events are crucial and could [...] Read more.
In the Himalayan regions of complex terrains, such as Himachal Pradesh, the occurrence of extreme rainfall events (EREs) has been increasing, triggering landslides and flash floods. Investigating the dynamics and precipitation characteristics and improving the prediction of such events are crucial and could play a vital role in contributing to sustainable development in the region. This study employs a high-resolution numerical weather prediction framework, the weather research and forecasting (WRF) model, to deeply investigate an ERE which occurred between 8 July and 13 July 2023. This ERE caused catastrophic floods in the Mandi and Kullu districts of Himachal Pradesh. The WRF model was configured with nested domains of 12 km and 4 km horizontal grid resolutions, and the results were compared with global high-resolution precipitation products and the fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis dataset. The selected case study was amplified by the synoptic scale features associated with the position and intensity of the monsoon trough, including mesoscale processes like orographic lifting. The presence of a western disturbance and the heavy moisture transported from the Arabian Sea and the Bay of Bengal both intensified this event. The model has effectively captured the spatial distribution and large-scale dynamics of the phenomenon, demonstrating the importance of high-resolution numerical modeling in accurately simulating localized EREs. Statistical evaluation revealed that the WRF model overestimated extreme rainfall intensity, with the root mean square error reaching 17.33 mm, particularly during the convective peak phase. The findings shed light on the value of high-resolution modeling in capturing localized EREs and offer suggestions for enhancing disaster management and flood forecasting. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

23 pages, 13840 KiB  
Article
A Convection-Permitting Regional Climate Simulation of Changes in Precipitation and Snowpack in a Warmer Climate over the Interior Western United States
by Yonggang Wang, Bart Geerts, Changhai Liu and Xiaoqin Jing
Climate 2025, 13(3), 46; https://doi.org/10.3390/cli13030046 - 24 Feb 2025
Cited by 2 | Viewed by 759
Abstract
This study investigates the impacts of climate change on precipitation and snowpack in the interior western United States (IWUS) using two sets of convection-permitting Weather Research and Forecasting model simulations. One simulation represents the ~1990 climate, and another represents an ~2050 climate using [...] Read more.
This study investigates the impacts of climate change on precipitation and snowpack in the interior western United States (IWUS) using two sets of convection-permitting Weather Research and Forecasting model simulations. One simulation represents the ~1990 climate, and another represents an ~2050 climate using a pseudo-global warming approach. Climate perturbations for the future climate are given by the CMIP5 ensemble-mean global climate models under the high-end emission scenario. The study analyzes the projected changes in spatial patterns of seasonal precipitation and snowpack, with particular emphasis on the effects of elevation on orographic precipitation and snowpack changes in four key mountain ranges: the Montana Rockies, Greater Yellowstone area, Wasatch Range, and Colorado Rockies. The IWUS simulations reveal an increase in annual precipitation across the majority of the IWUS in this warmer climate, driven by more frequent heavy to extreme precipitation events. Winter precipitation is projected to increase across the domain, while summer precipitation is expected to decrease, particularly in the High Plains. Snow-to-precipitation ratios and snow water equivalent are expected to decrease, especially at lower elevations, while snowpack melt is projected to occur earlier by up to 26 days in the ~2050 climate, highlighting significant impacts on regional water resources and hydrological management. Full article
Show Figures

Figure 1

34 pages, 10549 KiB  
Review
Multi-Sensor Precipitation Estimation from Space: Data Sources, Methods and Validation
by Ruifang Guo, Xingwang Fan, Han Zhou and Yuanbo Liu
Remote Sens. 2024, 16(24), 4753; https://doi.org/10.3390/rs16244753 - 20 Dec 2024
Cited by 2 | Viewed by 1533
Abstract
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation [...] Read more.
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation data generation by integrating infrared and microwave observations. Among others, Global Precipitation Measurement (GPM) plays a crucial role in providing invaluable data sources for MPE by utilizing passive microwave sensors and geostationary infrared sensors. MPE represents the current state-of-the-art approach for generating high-quality, high-resolution global satellite precipitation products (SPPs), employing various methods such as cloud motion analysis, probability matching, adjustment ratios, regression techniques, neural networks, and weighted averaging. International collaborations, such as the International Precipitation Working Group and the Precipitation Virtual Constellation, have significantly contributed to enhancing our understanding of the uncertainties associated with MPEs and their corresponding SPPs. It has been observed that SPPs exhibit higher reliability over tropical oceans compared to mid- and high-latitudes, particularly during cold seasons or in regions with complex terrains. To further advance MPE research, future efforts should focus on improving accuracy for extremely low- and high-precipitation events, solid precipitation measurements, as well as orographic precipitation estimation. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Figure 1

24 pages, 16815 KiB  
Article
Impact of Weather Types on Weather Research and Forecasting Model Skill for Temperature and Precipitation Forecasting in Northwest Greece
by Dimitrios C. Chaskos, Christos J. Lolis, Vassiliki Kotroni, Nikolaos Hatzianastassiou and Aristides Bartzokas
Atmosphere 2024, 15(12), 1516; https://doi.org/10.3390/atmos15121516 - 18 Dec 2024
Viewed by 763
Abstract
The accuracy of the Weather Research and Forecasting (WRF) model’s predictions for air temperature and precipitation in northwestern Greece varies under different weather conditions. However, there is a lack of understanding regarding how well the model performs for specific Weather Types (WTs), especially [...] Read more.
The accuracy of the Weather Research and Forecasting (WRF) model’s predictions for air temperature and precipitation in northwestern Greece varies under different weather conditions. However, there is a lack of understanding regarding how well the model performs for specific Weather Types (WTs), especially in regions with a complex topography like NW Greece. This study evaluates the WRF model’s ability to predict 2 m air temperature and precipitation for 10 objectively defined WTs. Forecasts are validated against observations from the station network of the National Observatory of Athens, focusing on biases and skill variation across WTs. The results indicate that anticyclonic WTs lead to a significant overestimation of early morning air temperatures, especially for inland stations. The precipitation forecast skill varies depending on the threshold and characteristics of each WT, showing optimal results for WTs where precipitation is associated with a combination of depression activity, and orographic effects. These findings indicate the need for adjustments based on WT in operational forecasting systems for regions with similar topographical complexities. Full article
Show Figures

Figure 1

18 pages, 14492 KiB  
Article
Partitioning of Heavy Rainfall in the Taihang Mountains and Its Response to Atmospheric Circulation Factors
by Qianyu Tang, Zhiyuan Fu, Yike Ma, Mengran Hu, Wei Zhang, Jiaxin Xu and Yuanhang Li
Water 2024, 16(21), 3134; https://doi.org/10.3390/w16213134 - 1 Nov 2024
Cited by 1 | Viewed by 1362
Abstract
The spatial and temporal distribution of heavy rainfall across the Taihang Mountains exhibits significant variation. Due to the region’s unstable geological conditions, frequent heavy rainfall events can lead to secondary disasters such as landslides, debris flows, and floods, thus intensifying both the frequency [...] Read more.
The spatial and temporal distribution of heavy rainfall across the Taihang Mountains exhibits significant variation. Due to the region’s unstable geological conditions, frequent heavy rainfall events can lead to secondary disasters such as landslides, debris flows, and floods, thus intensifying both the frequency and severity of extreme events. Understanding the spatiotemporal evolution of heavy rainfall and its response to atmospheric circulation patterns is crucial for effective disaster prevention and mitigation. This study utilized daily precipitation data from 13 meteorological stations in the Taihang Mountains spanning from 1973 to 2022, employing Rotated Empirical Orthogonal Function (REOF), the Mann–Kendall Trend Test, and Continuous Wavelet Transform (CWT) to examine the spatiotemporal characteristics of heavy rainfall and its relationship with large-scale atmospheric circulation patterns. The results reveal that: (1) Heavy rainfall in the Taihang Mountains can be categorized into six distinct regions, each demonstrating significant spatial heterogeneity. Region I, situated in the transition zone between the plains and mountains, experiences increased rainfall due to orographic lifting, while Region IV, located in the southeast, receives the highest rainfall, driven primarily by monsoon lifting. Conversely, Regions III and VI receive comparatively less precipitation, with Region VI, located in the northern hilly area, experiencing the lowest rainfall. (2) Over the past 50 years, all regions have experienced an upward trend in heavy rainfall, with Region II showing a notable increase at a rate of 14.4 mm per decade, a trend closely linked to the intensification of the hydrological cycle driven by global warming. (3) The CWT results reveal significant 2–3-year periodic fluctuations in rainfall across all regions, aligning with the quasi-biennial oscillation (QBO) characteristic of the East Asian summer monsoon, offering valuable insights for future climate predictions. (4) Correlation and wavelet coherence analyses indicate that rainfall in Regions II, III, and IV is positively correlated with the Southern Oscillation Index (SOI) and the Pacific Warm Pool (PWP), while showing a negative correlation with the Pacific Decadal Oscillation (PDO). Rainfall in Region I is negatively correlated with the Indian Ocean Dipole (IOD). These climatic factors exhibit a lag effect on rainfall patterns. Incorporating these climatic factors into future rainfall prediction models is expected to enhance forecast accuracy. This study integrates REOF analysis with large-scale circulation patterns to uncover the complex spatiotemporal relationships between heavy rainfall and climatic drivers, offering new insights into improving heavy rainfall event forecasting in the Taihang Mountains. The complex topography of the Taihang Mountains, combined with unstable geological conditions, leads to uneven spatial distribution of heavy rainfall, which can easily trigger secondary disasters such as landslides, debris flows, and floods. This, in turn, further increases the frequency and severity of extreme events. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

30 pages, 7742 KiB  
Article
Rainfall Enhancement Downwind of Hills Due to Stationary Waves on the Melting Level and the Extreme Rainfall of December 2015 in the Lake District of Northwest England
by Edward Carroll
Atmosphere 2024, 15(10), 1252; https://doi.org/10.3390/atmos15101252 - 19 Oct 2024
Viewed by 1143
Abstract
This paper investigates how stationary gravity waves generated by flow over orography enhance rainfall, with particular attention to the role of induced waves in the melting level. The findings reveal a new mechanism by which gravity wave flow focuses precipitation, amplifying rainfall intensity [...] Read more.
This paper investigates how stationary gravity waves generated by flow over orography enhance rainfall, with particular attention to the role of induced waves in the melting level. The findings reveal a new mechanism by which gravity wave flow focuses precipitation, amplifying rainfall intensity downwind of hills. This mechanism, which depends on the differential velocities of rain and snow, offers fresh insights into how orographic effects can intensify rainfall. A two-dimensional diagnostic model based on linear gravity wave theory is used to investigate the record-breaking rainfall of December 2015 in the Lake District of northwest England. The pattern of ascent is shown to have a qualitatively good fit to that of the Met Office’s operational high-resolution UKV model averaged over 24 h, suggesting that orographically excited stationary waves were the principal cause of the rain. Precipitation trajectories imply that a persistent downstream elevated wave caused by the Isle of Man supported a spray of seeding ice particles directed towards the Lake District, and that these grew whilst suspended in strong upslope flow before being focused by the undulating melting-level into intense shafts of rain. Full article
(This article belongs to the Special Issue Precipitation Observations and Prediction (2nd Edition))
Show Figures

Figure 1

31 pages, 20433 KiB  
Article
The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm
by Xingbao Wang, Qun Xu, Xiajun Deng, Hongjie Zhang, Qianhong Tang, Tingting Zhou, Fengcai Qi and Wenwu Peng
Atmosphere 2024, 15(8), 959; https://doi.org/10.3390/atmos15080959 - 12 Aug 2024
Cited by 1 | Viewed by 887
Abstract
To improve the forecast accuracy of heavy precipitation, re-forecasts are conducted for the Henan 21.7 rainstorm. The Intermediate Complexity Atmospheric Research Model (ICAR) and the Weather Research and Forecasting Model (WRF) with a 1 km horizontal grid spacing are used for the re-forecasts. [...] Read more.
To improve the forecast accuracy of heavy precipitation, re-forecasts are conducted for the Henan 21.7 rainstorm. The Intermediate Complexity Atmospheric Research Model (ICAR) and the Weather Research and Forecasting Model (WRF) with a 1 km horizontal grid spacing are used for the re-forecasts. The results indicate that heavy precipitation forecasted by ICAR primarily accumulates on the windward slopes of the mountains. In contrast, some severe precipitation forecasted by WRF is beyond the mountains. The main difference between ICAR and WRF is that ICAR excludes the “impacts of physical processes on winds and the nonlinear interactions between the small resolvable-scale disturbances” (briefed as the “physical–dynamical interactions”). Thus, heavy precipitation beyond the mountains is attributed to the “physical–dynamical interactions”. Furthermore, severe precipitation on the windward slopes of the mountains typically aligns with the observations, whereas heavy rainfall beyond the mountains seldom matches the observations. Therefore, severe precipitation on the windward slopes of (beyond) the mountains is more (less) predictable. Based on these findings and theoretical thinking about the predictability of severe precipitation, a scheme of using the ICAR’s prediction to adjust the WRF’s prediction is proposed, thereby improving the forecast accuracy of heavy rainfall. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop