Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = organorhodium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2552 KiB  
Article
Interaction between [(η6-p-cym)M(H2O)3]2+ (MII = Ru, Os) or [(η5-Cp*)M(H2O)3]2+ (MIII = Rh, Ir) and Phosphonate Derivatives of Iminodiacetic Acid: A Solution Equilibrium and DFT Study
by Linda Bíró, Botond Tóth, Norbert Lihi, Etelka Farkas and Péter Buglyó
Molecules 2023, 28(3), 1477; https://doi.org/10.3390/molecules28031477 - 3 Feb 2023
Cited by 2 | Viewed by 1720
Abstract
The pH-dependent binding strengths and modes of the organometallic [(η6-p-cym)M(H2O)3]2+ (MII = Ru, Os; p-cym = 1-methyl-4-isopropylbenzene) or [(η5-Cp*)M(H2O)3]2+ (MIII = Rh, Ir; Cp* [...] Read more.
The pH-dependent binding strengths and modes of the organometallic [(η6-p-cym)M(H2O)3]2+ (MII = Ru, Os; p-cym = 1-methyl-4-isopropylbenzene) or [(η5-Cp*)M(H2O)3]2+ (MIII = Rh, Ir; Cp* = pentamethylcyclopentadienyl anion) cations towards iminodiacetic acid (H2Ida) and its biorelevant mono- and diphosphonate derivatives N-(phosphonomethyl)-glycine (H3IdaP) and iminodi(methylphosphonic acid) (H4Ida2P) was studied in an aqueous solution. The results showed that all three of the ligands form 1:1 complexes via the tridentate (O,N,O) donor set, for which the binding mode was further corroborated by the DFT method. Although with IdaP3− and Ida2P4− in mono- and bis-protonated species, where H+ might also be located at the non-coordinating N atom, the theoretical calculations revealed the protonation of the phosphonate group(s) and the tridentate coordination of the phosphonate ligands. The replacement of one carboxylate in Ida2− by a phosphonate group (IdaP3−) resulted in a significant increase in the stability of the metal complexes; however, this increase vanished with Ida2P4−, which was most likely due to some steric hindrance upon the coordination of the second large phosphonate group to form (5 + 5) joined chelates. In the phosphonate-containing systems, the neutral 1:1 complexes are the major species at pH 7.4 in the millimolar concentration range that is supported by both NMR and ESI-TOF-MS. Full article
Show Figures

Figure 1

23 pages, 8454 KiB  
Article
Donor Atom Preference of Organoruthenium and Organorhodium Cations on the Interaction with Novel Ambidentate (N,N) and (O,O) Chelating Ligands in Aqueous Solution
by Sándor Nagy, András Ozsváth, Attila Cs. Bényei, Etelka Farkas and Péter Buglyó
Molecules 2021, 26(12), 3586; https://doi.org/10.3390/molecules26123586 - 11 Jun 2021
Cited by 4 | Viewed by 3006
Abstract
Two novel, pyridinone-based chelating ligands containing separated (O,O) and (Namino,Nhet) chelating sets (Namino = secondary amine; Nhet = pyrrole N for H(L3) (1-(3-(((1H-pyrrole-2-yl)methyl)-amino)propyl)-3-hydroxy-2-methylpyridin-4(1H)-one) or pyridine N for H(L5) (3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one)) were synthesized via reduction of the appropriate imines. [...] Read more.
Two novel, pyridinone-based chelating ligands containing separated (O,O) and (Namino,Nhet) chelating sets (Namino = secondary amine; Nhet = pyrrole N for H(L3) (1-(3-(((1H-pyrrole-2-yl)methyl)-amino)propyl)-3-hydroxy-2-methylpyridin-4(1H)-one) or pyridine N for H(L5) (3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one)) were synthesized via reduction of the appropriate imines. Their proton dissociation processes were explored, and the molecular structures of two synthons were assessed by X-ray crystallography. These ambidentate chelating ligands are intended to develop Co(III)/PGM (PGM = platinum group metal) heterobimetallic multitargeted complexes with anticancer potential. To explore their metal ion binding ability, the interaction with Pd(II), [(η6-p-cym)Ru]2+ and [(η5-Cp*)Rh]2+ (p-cym = 1-methyl-4-isopropylbenzene, Cp* = pentamethyl-cyclopentadienyl anion) cations was studied in aqueous solution with the combined use of pH-potentiometry, NMR and HR ESI-MS. In general, organorhodium was found to form more labile complexes over ruthenium, while complexation of the (N,N) chelating set was slower than the processes of the pyridinone unit with (O,O) coordination. Formation of the organoruthenium complexes starts at lower pH (higher thermodynamic stabilities of the corresponding complexes) than for [(η5-Cp*)Rh]2+ but, due to the higher affinity of [η6-p-cym)Ru]2+ towards hydrolysis, the complexed ligands are capable of competing with hydroxide ion in a lesser extent than for the rhodium systems. As a result, under biologically relevant conditions, the rhodium binding effectivity of the ligands becomes comparable or even slightly higher than their effectivity towards ruthenium. Our results indicate that H(L3) is a less efficient (N,N) chelator for these metal ions than H(L5). Similarly, due to the relative effectivity of the (O,O) and (N,N) chelates at a 1:1 metal-ion-to-ligand ratio, H(L5) coordinates in a (N,N) manner to both cations in the whole pH range studied while, for H(L3), the complexation starts with (O,O) coordination. At a 2:1 metal-ion-to-ligand ratio, H(L3) cannot hinder the intensive hydrolysis of the second metal ion, although a small amount of 2:1 complex with [(η5-Cp*)Rh]2+ can also be detected. Full article
Show Figures

Figure 1

24 pages, 1400 KiB  
Review
Anticancer Half-Sandwich Rhodium(III) Complexes
by Klaudia Máliková, Lukáš Masaryk and Pavel Štarha
Inorganics 2021, 9(4), 26; https://doi.org/10.3390/inorganics9040026 - 8 Apr 2021
Cited by 43 | Viewed by 6274
Abstract
Platinum-based anticancer drugs are most likely the most successful group of bioinorganic compounds. Their apparent disadvantages have led to the development of anticancer compounds of other noble metals, resulting in several ruthenium-based drugs which have entered clinical trials on oncological patients. Besides ruthenium, [...] Read more.
Platinum-based anticancer drugs are most likely the most successful group of bioinorganic compounds. Their apparent disadvantages have led to the development of anticancer compounds of other noble metals, resulting in several ruthenium-based drugs which have entered clinical trials on oncological patients. Besides ruthenium, numerous rhodium complexes have been recently reported as highly potent antiproliferative agents against various human cancer cells, making them potential alternatives to Pt- and Ru-based metallodrugs. In this review, half-sandwich Rh(III) complexes are overviewed. Many representatives show higher in vitro potency than and different mechanisms of action (MoA) from the conventional anticancer metallodrugs (cisplatin in most cases) or clinically studied Ru drug candidates. Furthermore, some of the reviewed Rh(III) arenyl complexes are also anticancer in vivo. Pioneer anticancer organorhodium compounds as well as the recent advances in the field are discussed properly, and adequate attention is paid to their anticancer activity, solution behaviour and various processes connected with their MoA. In summary, this work summarizes the types of compounds and the most important biological results obtained in the field of anticancer half-sandwich Rh complexes. Full article
(This article belongs to the Special Issue Metal Arene Complexes)
Show Figures

Figure 1

14 pages, 3661 KiB  
Article
Temperature-Triggered Switchable Helix-Helix Inversion of Poly(phenylacetylene) Bearing l-Valine Ethyl Ester Pendants and Its Chiral Recognition Ability
by Yanli Zhou, Chunhong Zhang, Yuan Qiu, Lijia Liu, Taotao Yang, Hongxing Dong, Toshifumi Satoh and Yoshio Okamoto
Molecules 2016, 21(11), 1583; https://doi.org/10.3390/molecules21111583 - 21 Nov 2016
Cited by 22 | Viewed by 6368
Abstract
A phenylacetylene containing the l-valine ethyl ester pendant (PAA-Val) was synthesized and polymerized by an organorhodium catalyst (Rh(nbd)BPh4) to produce the corresponding one-handed helical cis-poly(phenylacetylene) (PPAA-Val). PPAA-Val showed a unique temperature-triggered switchable helix-sense in chloroform, while it was not [...] Read more.
A phenylacetylene containing the l-valine ethyl ester pendant (PAA-Val) was synthesized and polymerized by an organorhodium catalyst (Rh(nbd)BPh4) to produce the corresponding one-handed helical cis-poly(phenylacetylene) (PPAA-Val). PPAA-Val showed a unique temperature-triggered switchable helix-sense in chloroform, while it was not observed in highly polar solvents, such as N,N′-dimethylformamide (DMF). By heating the solution of PPAA-Val in chloroform, the sign of the CD absorption became reversed, but recovered after cooling the solution to room temperature. Even after six cycles of the heating-cooling treatment, the helix sense of the PPAA-Val’s backbone was still switchable without loss of the CD intensity. The PPAA-Val was then coated on silica gel particles to produce novel chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). These novel PPAA-Val based CSPs showed a high chiral recognition ability for racemic mandelonitrile (α = 2.18) and racemic trans-N,N′-diphenylcyclohexane-1,2-dicarboxamide (α = 2.60). Additionally, the one-handed helical cis-polyene backbone of PPAA-Val was irreversibly destroyed to afford PPAA-Val-H by heating in dimethyl sulfoxide (DMSO) accompanied by the complete disappearance of the Cotton effect. Although PPAA-Val-H had the same l-valine ethyl ester pendants as its cis-isomer PPAA-Val, it showed no chiral recognition. It was concluded that the one-handed helical cis-polyene backbone of PPAA-Val plays an important role in the chiral recognition ability. Full article
Show Figures

Figure 1

Back to TopTop