Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = organic trace mineral (OTM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7221 KiB  
Article
Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows
by Manqian Cha, Xingjun Ma, Yunlong Liu, Shengyang Xu, Qiyu Diao and Yan Tu
Animals 2025, 15(2), 271; https://doi.org/10.3390/ani15020271 - 19 Jan 2025
Viewed by 1153
Abstract
(Objectives) The objectives of this study were to evaluate the effect of half-replacement of the supplementary sulfate sources of Cu, Mn, and Zn with methionine-hydroxy-analog-chelated (MHAC) mineral or amino-acid-complexed (AAC) mineral forms in diets on the mineral status, blood immune biomarkers, and lameness [...] Read more.
(Objectives) The objectives of this study were to evaluate the effect of half-replacement of the supplementary sulfate sources of Cu, Mn, and Zn with methionine-hydroxy-analog-chelated (MHAC) mineral or amino-acid-complexed (AAC) mineral forms in diets on the mineral status, blood immune biomarkers, and lameness of lactating cows. (Methods) Sixty multiparous Holstein cows (158 ± 26 days in milk; body weight: 665 ± 52 kg; milk yield: 32 ± 7 kg/day) were randomly assigned into one of three dietary treatments (n = 20 per group): (1) MHAC: 50% replacement of sulfate minerals with MHAC forms. (2) AAC: 50% replacement of sulfate minerals with AAC forms. (3) S: 100% sulfate minerals (control). Their Cu, Mn, and Zn concentrations, blood immune biomarkers, and lameness were measured monthly. Repeated-measure mixed models were used to evaluate the effects on trace mineral status over time. As the responses with the MHAC and AAC forms were similar, the treatments were also analyzed as organic trace minerals (OTMs, combining the MHAC and AAC groups, n = 40) versus inorganic trace minerals (ITMs, the S group, n = 20). (Results) Cows supplemented with OTMs had higher concentrations of Cu and Mn in their serum (p ≤ 0.05), a higher hoof hardness (p ≤ 0.05), and a lower incidence of lameness compared to those with ITMs on d 90. There were no statistical differences (p > 0.10) in the concentrations of IgA, IgG, or ceruloplasmin, but there were significant differences (p = 0.03) in the concentrations of IgM in the serum as fixed effects of the diet treatments during the whole trial. On d 30 and 90, the serum IgA concentrations of the cows supplemented with OTMs tended to be higher (0.05 < p ≤ 0.10) than those in the cows supplemented with ITMs. (Conclusions) The half-replacement strategy showed that the MHAC and AAC sources of Cu, Mn, and Zn additives had similar effects on the production performance, blood immune biomarkers, and lameness of the lactating cows. The long-term replacement strategy with OTMs led to the enhancement of the trace mineral concentrations in their body fluids, blood immune biomarkers, and hoof health. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

19 pages, 1978 KiB  
Article
Effects of Trace Mineral Source on Growth Performance, Antioxidant Activity, and Meat Quality of Pigs Fed an Oxidized Soy Oil Supplemented Diet
by Ge Zhang, Jingyi Huang, Zhiqiang Sun, Yuhan Guo, Gang Lin, Zeyu Zhang and Jinbiao Zhao
Antioxidants 2024, 13(10), 1227; https://doi.org/10.3390/antiox13101227 - 12 Oct 2024
Cited by 1 | Viewed by 1762
Abstract
This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing–finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five [...] Read more.
This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing–finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five dietary treatments based on body weight (BW) and sex in a 30 d trial. Pigs were fed five diets: (i) fresh soy oil + inorganic trace minerals (ITMs) + inorganic selenium (FISI), (ii) oxidized soy oil + ITMs + inorganic selenium (OISI), (iii) fresh soy oil + ITMs + selenium yeast (FISY), (iv) oxidized soy oil + ITMs + selenium yeast (OISY), and (v) oxidized soy oil + organic trace minerals (OTMs) + selenium yeast (OOSY). Each dietary treatment included six replicates and six pigs per replicate (three barrows and three gilts). Feeding OISI resulted in lower average daily gain (ADG) and dressing percentage (p < 0.05). The OOSY group had a higher dressing percentage and activities of serum CAT and GSH-Px in growing–finishing pigs (p < 0.05). In addition, the relative abundance of Campylobacterota in the colonic digesta varied with the quality of soy oil and source of trace minerals (p < 0.05), but no significant differences in short-chain fatty acid concentrations were observed among all dietary groups. In conclusion, adding oxidized soy oil to the diet negatively impacted the ADG and dressing percentage of growing–finishing pigs, and replacing ITMs with OTMs and SY alleviated these negative impacts. A combination of OTMs and SY can support antioxidant capacity to mitigate the negative impacts of oxidized oil on the growth performance and dressing percentage of growing–finishing pigs. Full article
(This article belongs to the Special Issue Redox Homeostasis in Poultry/Animal Production)
Show Figures

Figure 1

18 pages, 10847 KiB  
Article
Organic Trace Minerals Enhance the Gut Health of British Shorthair Cats by Regulating the Structure of Intestinal Microbiota
by Yingyue Cui, Mingrui Zhang, Haotian Wang, Tong Yu, Anxuan Zhang, Gang Lin, Yuhan Guo and Yi Wu
Metabolites 2024, 14(9), 494; https://doi.org/10.3390/metabo14090494 - 11 Sep 2024
Cited by 2 | Viewed by 2009
Abstract
Trace minerals are essential for biological processes, including enzyme function, immune response, and hormone synthesis. The study assessed the effects of different dietary trace minerals on the gut health, microbiota composition, and immune function of cats. Eighteen adult British Shorthair cats were divided [...] Read more.
Trace minerals are essential for biological processes, including enzyme function, immune response, and hormone synthesis. The study assessed the effects of different dietary trace minerals on the gut health, microbiota composition, and immune function of cats. Eighteen adult British Shorthair cats were divided into three groups receiving inorganic trace minerals (ITM), a 50/50 mix of inorganic and organic trace minerals (ITM + OTM), or organic trace minerals (OTM) for 28 days. The OTM showed enhanced immune capacities, reduced intestinal barrier function, and lower inflammation condition. The OTM altered gut microbiota diversity, with a lower Simpson index and higher Shannon index (p < 0.05). Specifically, the abundance of Bacteroidota, Lachnospiraceae, and Prevotella in the OTM group were higher than the ITM group (p < 0.05). Metabolomic analysis identified 504 differential metabolites between the OTM and ITM groups (p < 0.05, VIP-pred-OPLS-DA > 1), affecting pathways related to steroid hormone biosynthesis and glycerophospholipid metabolism (p < 0.05, VIP-pred-OPLS-DA > 2). Additionally, there was a significant correlation between intestinal microbiota and differential metabolites. To conclude, dietary OTM can modulate the gut metabolite and microbiota composition, enhance immune and intestinal barrier function, and mitigate inflammation in cats, highlighting the benefit of using OTM in feline diet to promote the intestinal and overall health. Full article
(This article belongs to the Topic Research on Companion Animal Nutrition)
Show Figures

Figure 1

16 pages, 744 KiB  
Review
Rumen Solubility of Copper, Manganese and Zinc and the Potential Link between the Source and Rumen Function: A Systematic Review
by Antal Vigh, Adriana Dalila Criste, Nicolae Corcionivoschi and Christine Gerard
Agriculture 2023, 13(12), 2198; https://doi.org/10.3390/agriculture13122198 - 25 Nov 2023
Cited by 5 | Viewed by 2861
Abstract
The dietary inclusion of trace minerals (TMs), such as copper (Cu), manganese (Mn) and zinc (Zn), is of importance to cover the ever-evolving requirements for growth, production and reproduction in ruminants. Various sources of TMs are commercially available, such as inorganic (ITM), organic [...] Read more.
The dietary inclusion of trace minerals (TMs), such as copper (Cu), manganese (Mn) and zinc (Zn), is of importance to cover the ever-evolving requirements for growth, production and reproduction in ruminants. Various sources of TMs are commercially available, such as inorganic (ITM), organic (OTM) or hydroxy (HTM) forms; however, their bioavailability and efficiency to improve ruminant zootechnical parameters may be highly influenced by ruminal solubility and effects on the rumen environment. The objective of this review was to compile the most up-to-date information on the ruminal solubility of ITMs, OTMs and HTMs and their effects on fermentation parameters and rumen microbiota, aiming to support specialists from the animal feed industry when choosing TM products for ruminant supplementation. Some commonly used ITM sources, like sulfates, have a high ruminal solubility, while oxides are less soluble. The ruminal solubility of OTMs is mostly found to be high; however, data on these TM forms are still lacking. Regarding HTMs, ruminal solubility is reported to be low; nevertheless, results are inconsistent. Considering rumen fermentation, ITMs show a negative effect, OTMs might improve, while HTMs do not affect parameters like dry matter degradability, volatile fatty acid production, pH or microbial protein synthesis. As for rumen microbiota, ITMs do not affect microbial populations; OTMs could decrease the abundance of some specific bacteria, like fibrolytic microorganisms, while studies with HTMs are missing or inconclusive. Further research is necessary to better understand the ruminal solubility kinetics of TM sources and the different interactions with fermentation parameters and rumen microbiota to successfully apply the precision TM supplementation of ruminants, tackling deficiency occurrences. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

19 pages, 1952 KiB  
Article
The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis
by Laurann Byrne, Stephen Ross, Jules Taylor-Pickard and Richard Murphy
Animals 2023, 13(19), 3132; https://doi.org/10.3390/ani13193132 - 7 Oct 2023
Cited by 1 | Viewed by 4587
Abstract
The effect of supplementing organic trace minerals (OTM), in the form of mineral proteinates (Bioplex® Cu, Fe, Mn, and Zn, Alltech Inc., Nicholasville, KY, USA), in the diets of laying hens was examined using Comprehensive Meta-Analysis (CMA) statistical software. The impact on [...] Read more.
The effect of supplementing organic trace minerals (OTM), in the form of mineral proteinates (Bioplex® Cu, Fe, Mn, and Zn, Alltech Inc., Nicholasville, KY, USA), in the diets of laying hens was examined using Comprehensive Meta-Analysis (CMA) statistical software. The impact on production performance, egg quality traits, and sustainability parameters related to the carbon footprint of egg production was assessed. Data were obtained from 32 global studies, comprising 107 dietary assessments of 30,992 laying hens. Overall pooled effect size (raw mean difference) of production performance when dietary organic trace minerals were supplemented either in basal diets, partial replacement of inorganic trace minerals (ITM), or total replacement of ITM, indicated that use of Bioplex minerals resulted in 2.07% higher hen-day production (HDP), whilst feed conversion ratio (FCR) was lower by 51.28 g feed/kg egg and 22.82 g feed/dozen eggs, respectively. For egg quality traits, daily egg mass was 0.50 g/hen/day higher and egg weight was 0.48 g per egg greater when Bioplex minerals were incorporated in the diet. The mean difference in egg loss was −0.62%. Eggshell thickness was greater by 0.01 mm, and a higher eggshell strength of 0.14 kgf was observed. Eggshell weight was heavier by 0.20 g, eggshell percentage was higher by 0.15%, and Haugh unit was 1 point higher (0.89). We also carried out a meta-regression of the effects of the study factors (location, year of study, hen breed/strain, age of hens, number of hens, and study duration) on the overall pooled effect size of the production performance and egg quality traits in response to supplementary OTM inclusion, and it indicated that certain factors had a significant (p < 0.05) impact on the results. Finally, a life cycle assessment (LCA) model was selected to evaluate the impact of feeding organic trace mineral proteinates on the carbon footprint (feed and total emission intensities) of the egg production using the data generated from the meta-analysis. Results showed that the inclusion of OTM proteinates resulted in an average drop in feed and total emission intensities per kg eggs of 2.40% and 2.50%, respectively, for a low-global-warming-potential (GWP) diet and a drop of 2.40% and 2.48% for feed and total emissions, respectively, based on high-GWP diet. Based on the overall results, the inclusion of organic trace mineral proteinates in layer diets can benefit production performance and egg quality traits while contributing to a lower carbon footprint. Full article
(This article belongs to the Special Issue The Role of Trace Minerals in Livestock and Poultry Production)
Show Figures

Figure 1

46 pages, 2261 KiB  
Review
Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review
by Laurann Byrne and Richard A. Murphy
Animals 2022, 12(15), 1981; https://doi.org/10.3390/ani12151981 - 4 Aug 2022
Cited by 72 | Viewed by 11970
Abstract
The importance of dietary supplementation of animal feeds with trace minerals is irrefutable, with various forms of both organic and inorganic products commercially available. With advances in research techniques, and data obtained from both in-vitro and in-vivo studies in recent years, differences between [...] Read more.
The importance of dietary supplementation of animal feeds with trace minerals is irrefutable, with various forms of both organic and inorganic products commercially available. With advances in research techniques, and data obtained from both in-vitro and in-vivo studies in recent years, differences between inorganic and organic trace minerals have become more apparent. Furthermore, differences between specific organic mineral types can now be identified. Adhering to PRISMA guidelines for systematic reviews, we carried out an extensive literature search on previously published studies detailing performance responses to trace minerals, in addition to their corresponding relative bioavailability values. This review covers four of the main trace minerals included in feed: copper, iron, manganese and zinc, and encompasses the different types of organic and inorganic products commercially available. Their impact from environmental, economic, and nutritional perspectives are discussed, along with the biological availability of various mineral forms in production animals. Species-specific sections cover ruminants, poultry, and swine. Extensive relative bioavailability tables cover values for all trace mineral products commercially available, including those not previously reviewed in earlier studies, thereby providing a comprehensive industry reference guide. Additionally, we examine reasons for variance in reported relative bioavailability values, with an emphasis on accounting for data misinterpretation. Full article
(This article belongs to the Special Issue Minerals in Animal Production)
Show Figures

Figure 1

8 pages, 464 KiB  
Article
The Impact of Different Sources of Zinc, Manganese, and Copper on Broiler Performance and Excreta Output
by Steven Bryan Franklin, Marion Belinda Young and Mariana Ciacciariello
Animals 2022, 12(9), 1067; https://doi.org/10.3390/ani12091067 - 20 Apr 2022
Cited by 9 | Viewed by 2913
Abstract
Commercial premixes provide trace minerals (TM) such as zinc (Zn), manganese (Mn), and copper (Cu) in excess of the requirements to maximize broiler performance. High inclusion levels of TM in broiler feed and their low absorption in the gastrointestinal tract leads to increased [...] Read more.
Commercial premixes provide trace minerals (TM) such as zinc (Zn), manganese (Mn), and copper (Cu) in excess of the requirements to maximize broiler performance. High inclusion levels of TM in broiler feed and their low absorption in the gastrointestinal tract leads to increased levels of TM in the excreta, resulting in the contamination of the environment. A 35-day broiler trial was conducted with 2880 one-day-old Cobb broiler males to test the effect of the supplementation of different sources of TM on growth performance, while evaluating levels in the excreta. Inorganic (ITM), organic (OTM), and hydroxy (HTM) sources of TM were tested against a positive control of current recommended levels of ITM. At 35 d, birds fed HTM were 55 g (p < 0.05) heavier than those fed ITM at the same inclusion level. In contrast, birds fed the control, OTM, and HTM showed no significant difference in body weight. Providing broilers with HTM significantly (p < 0.05) reduced Zn and Cu excretion at 35 d of when compared to those who were fed diets containing ITM or PC. Supplementing different sources of TM to broiler diets at levels below the recommendations showed no negative effect on broiler performance. The use of HTM significantly reduced TM excretion in broilers. The use of HTM in broiler diets can maintain broiler performance and reduce the negative impact on the environment. Full article
(This article belongs to the Collection Poultry Nutrition and Metabolism)
Show Figures

Figure 1

13 pages, 3256 KiB  
Article
Influence of the Chelation Process on the Stability of Organic Trace Mineral Supplements Used in Animal Nutrition
by Laurann Byrne, Michael J. Hynes, Cathal D. Connolly and Richard A. Murphy
Animals 2021, 11(6), 1730; https://doi.org/10.3390/ani11061730 - 10 Jun 2021
Cited by 18 | Viewed by 6636
Abstract
The effect of the chelation process on the pH-dependent stability of organic trace minerals (OTMs) used as mineral supplements in animal nutrition was assessed using analytical techniques such as potentiometry, Fourier Transform Infrared Spectroscopy (FTIRS) and amino acid profiling. The aim was to [...] Read more.
The effect of the chelation process on the pH-dependent stability of organic trace minerals (OTMs) used as mineral supplements in animal nutrition was assessed using analytical techniques such as potentiometry, Fourier Transform Infrared Spectroscopy (FTIRS) and amino acid profiling. The aim was to understand the influence and relative importance of the manufacturing conditions on mineral chelation and the subsequent pH stability of OTMs. A selection of OTMs were assessed over a wide pH range to account for the typical environmental changes encountered in the gastrointestinal (GI) tract. In the case of proteinate type products, the potentiometric assessment of free mineral concentration indicated that the hydrolysis procedure used to generate the chelating peptides was the major influencer of the pH stability of the products. Many products are available under the umbrella term “OTMs”, including amino acid complexes, amino acid chelates, polysaccharide complexes and proteinates. Significant differences in the pH-dependent stability of a range of commercially available OTMs were observed. Full article
(This article belongs to the Special Issue Trace Minerals in Livestock Production)
Show Figures

Figure 1

Back to TopTop