Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = oral raft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8259 KB  
Article
NMR/MRI Techniques to Characterize Alginate-Based Gel Rafts for the Treatment of Gastroesophageal Reflux Disease
by Ewelina Baran, Piotr Kulinowski, Marek Król and Przemysław Dorożyński
Gels 2025, 11(9), 749; https://doi.org/10.3390/gels11090749 - 17 Sep 2025
Cited by 1 | Viewed by 2603
Abstract
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral [...] Read more.
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral gel systems under simulated fed-state gastric conditions, using in vitro magnetic resonance relaxometry techniques. Magnetic resonance imaging (MRI) was performed in 0.01 M hydrochloric acid (HCl) to visualize gel raft formation, spatial structure, and spatial distribution of effective T2 relaxation time. Nuclear magnetic resonance (NMR) relaxometry in 0.01 M deuterium chloride (DCl) measured T1 and T2 relaxation times of the protons that were initially included in the preparation to assess its molecular mobility within the gel matrix. Two formulations formed floating, coherent gels, whereas the remaining one exhibited only polymer swelling without flotation. In one case, relaxometry data revealed a solid-like component that can be detected, indicating enhanced mechanical stability. The performance of each formulation was influenced by interactions among alginate, bicarbonates, and calcium ions, which determined gel consistency and flotation behavior. MRI and NMR relaxometry in vitro provide valuable non-invasive insights into the structural and functional behavior of alginate-based gel formulations. This approach supports the rational design of advanced gel-based therapies for GERD by linking molecular composition with in situ performance. Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Graphical abstract

21 pages, 7797 KB  
Article
Simultaneous Delivery of Curcumin and Resveratrol via In Situ Gelling, Raft-Forming, Gastroretentive Formulations
by Worrawee Siripruekpong, Rachanida Praparatana, Ousanee Issarachot and Ruedeekorn Wiwattanapatapee
Pharmaceutics 2024, 16(5), 641; https://doi.org/10.3390/pharmaceutics16050641 - 10 May 2024
Cited by 10 | Viewed by 3415
Abstract
Curcumin and resveratrol are polyphenolic compounds that have been shown to exhibit synergistic therapeutic properties including anti-inflammatory, anticancer, and antiulcer activities, which may be exploited for the treatment of gastric diseases. However, both compounds have poor aqueous solubility and rapid metabolism, resulting in [...] Read more.
Curcumin and resveratrol are polyphenolic compounds that have been shown to exhibit synergistic therapeutic properties including anti-inflammatory, anticancer, and antiulcer activities, which may be exploited for the treatment of gastric diseases. However, both compounds have poor aqueous solubility and rapid metabolism, resulting in a low oral bioavailability. In situ gelling, liquid formulations were developed to produce a gastroretentive, raft-forming delivery vehicle to improve bioavailability. Solid dispersions containing a mixture of curcumin and resveratrol with Eudragit® EPO (Cur/Res-SD) were first prepared using solvent evaporation, to improve the solubility and dissolution of the compounds. Solid dispersions of a weight ratio of 1:10 curcumin/resveratrol to Eudragit® EPO were subsequently incorporated into in situ gelling, liquid formulations based on the gelling polymers, sodium alginate (low viscosity and medium viscosity), pectin, and gellan gum, respectively. Calcium carbonate and sodium bicarbonate were included to produce carbon dioxide bubbles in the gel matrix, on exposure to gastric fluid, and to achieve flotation. Moreover, the calcium ions acted as a crosslinking agent for the hydrogels. Optimized formulations floated rapidly (<60 s) in simulated gastric fluid (pH = 1.2) and remained buoyant, resulting in the gradual release of more than 80% of the curcumin and resveratrol content within 8 h. The optimized formulation based on medium-viscosity sodium alginate exhibited enhanced cytotoxic activity toward human gastric adenocarcinoma cell lines (AGS), compared with unformulated curcumin and resveratrol compounds, and increased anti-inflammatory activity against RAW 264.7 macrophage cells compared with the NSAID, indomethacin. These findings demonstrate that in situ gelling, liquid formulations, loaded with a combination of curcumin and resveratrol in the form of solid dispersions, show potential as gastroretentive delivery systems for local and systemic effects. Full article
(This article belongs to the Special Issue Dosage Form Design for Oral Administration)
Show Figures

Figure 1

18 pages, 6589 KB  
Article
Cholesterol Is a Regulator of CAV1 Localization and Cell Migration in Oral Squamous Cell Carcinoma
by Nyein Nyein Chan, Manabu Yamazaki, Satoshi Maruyama, Tatsuya Abé, Kenta Haga, Masami Kawaharada, Kenji Izumi, Tadaharu Kobayashi and Jun-ichi Tanuma
Int. J. Mol. Sci. 2023, 24(7), 6035; https://doi.org/10.3390/ijms24076035 - 23 Mar 2023
Cited by 20 | Viewed by 4301
Abstract
Cholesterol plays an important role in cancer progression, as it is utilized in membrane biogenesis and cell signaling. Cholesterol-lowering drugs have exhibited tumor-suppressive effects in oral squamous cell carcinoma (OSCC), suggesting that cholesterol is also essential in OSCC pathogenesis. However, the direct effects [...] Read more.
Cholesterol plays an important role in cancer progression, as it is utilized in membrane biogenesis and cell signaling. Cholesterol-lowering drugs have exhibited tumor-suppressive effects in oral squamous cell carcinoma (OSCC), suggesting that cholesterol is also essential in OSCC pathogenesis. However, the direct effects of cholesterol on OSCC cells remain unclear. Here, we investigated the role of cholesterol in OSCC with respect to caveolin-1 (CAV1), a cholesterol-binding protein involved in intracellular cholesterol transport. Cholesterol levels in OSCC cell lines were depleted using methyl-β-cyclodextrin and increased using the methyl-β-cyclodextrin-cholesterol complex. Functional analysis was performed using timelapse imaging, and CAV1 expression in cholesterol-manipulated cells was investigated using immunofluorescence and immunoblotting assays. CAV1 immunohistochemistry was performed on surgical OSCC samples. We observed that cholesterol addition induced polarized cell morphology, along with CAV1 localization at the trailing edge, and promoted cell migration. Moreover, CAV1 was upregulated in the lipid rafts and formed aggregates in the plasma membrane in cholesterol-added cells. High membranous CAV1 expression in tissue specimens was associated with OSCC recurrence. Therefore, cholesterol promotes the migration of OSCC cells by regulating cell polarity and CAV1 localization to the lipid raft. Furthermore, membranous CAV1 expression is a potential prognostic marker for OSCC patients. Full article
(This article belongs to the Special Issue Pathogenesis and Therapy of Oral Carcinogenesis)
Show Figures

Figure 1

19 pages, 1719 KB  
Article
Development and Characterization of Oral Raft Forming In Situ Gelling System of Neratinib Anticancer Drug Using 32 Factorial Design
by Umme Hani, Mohamed Rahamathulla, Riyaz Ali M. Osmani, M.Yasmin Begum, Shadma Wahab, Mohammed Ghazwani, Adel Al Fatease, Ali H. Alamri, Devegowda V. Gowda and Ali Alqahtani
Polymers 2022, 14(13), 2520; https://doi.org/10.3390/polym14132520 - 21 Jun 2022
Cited by 16 | Viewed by 3892
Abstract
Neratinib (NTB) is an irreversible inhibitor of pan-human epidermal growth factor receptor (HER-2) tyrosine kinase and is used in the treatment of breast cancer. It is a poorly aqueous soluble drug and exhibits extremely low oral bioavailability at higher pH, leading to a [...] Read more.
Neratinib (NTB) is an irreversible inhibitor of pan-human epidermal growth factor receptor (HER-2) tyrosine kinase and is used in the treatment of breast cancer. It is a poorly aqueous soluble drug and exhibits extremely low oral bioavailability at higher pH, leading to a diminishing of the therapeutic effects in the GIT. The main objective of the research was to formulate an oral raft-forming in situ gelling system of NTB to improve gastric retention and drug release in a controlled manner and remain floating in the stomach for a prolonged time. In this study, NTB solubility was enhanced by polyethylene glycol (PEG)-based solid dispersions (SDs), and an in situ gelling system was developed and optimized by a two-factor at three-level (32) factorial design. It was analyzed to study the impact of two independent variables viz sodium alginate [A] and HPMC K4M [B] on the responses, such as floating lag time, percentage (%) water uptake at 2 h, and % drug release at 6 h and 12 h. Among various SDs prepared using PEG 6000, formulation 1:3 showed the highest drug solubility. FT-IR spectra revealed no interactions between the drug and the polymer. The percentage of drug content in NTB SDs ranged from 96.22 ± 1.67% to 97.70 ± 1.89%. The developed in situ gel formulations exhibited a pH value of approximately 7. An in vitro gelation study of the in situ gel formulation showed immediate gelation and was retained for a longer period. From the obtained results of 32 factorial designs, it was observed that all the selected factors had a significant effect on the chosen response, supporting the precision of design employed for optimization. Thus, the developed oral raft-forming in situ gelling system of NTB can be a promising and alternate approach to enhance retention in the stomach and to attain sustained release of drug by floating, thereby augmenting the therapeutic efficacy of NTB. Full article
(This article belongs to the Special Issue Advances in Bio-Based Polymeric Materials)
Show Figures

Figure 1

17 pages, 2618 KB  
Article
Optimization of Tilmicosin-Loaded Nanostructured Lipid Carriers Using Orthogonal Design for Overcoming Oral Administration Obstacle
by Jia Wen, Xiuge Gao, Qian Zhang, Benazir Sahito, Hongbin Si, Gonghe Li, Qi Ding, Wenda Wu, Eugenie Nepovimova, Shanxiang Jiang, Liping Wang, Kamil Kuca and Dawei Guo
Pharmaceutics 2021, 13(3), 303; https://doi.org/10.3390/pharmaceutics13030303 - 25 Feb 2021
Cited by 10 | Viewed by 3086
Abstract
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic [...] Read more.
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic drugs for oral administration. In this study, an orthogonal experimental design was applied for optimizing TMS-loaded NLCs (TMS-NLCs). The ratios of emulsifier to mixed lipids, stearic acid to oleic acid, drugs to mixed lipids, and cold water to hot emulsion were selected as the independent variables, while the hydrodynamic diameter (HD), drug loading (DL), and entrapment efficiency (EE) were the chosen responses. The optimized TMS-NLCs had a small HD, high DL, and EE of 276.85 ± 2.62 nm, 9.14 ± 0.04%, and 92.92 ± 0.42%, respectively. In addition, a low polydispersity index (0.231 ± 0.001) and high negative zeta potential (−31.10 ± 0.00 mV) indicated the excellent stability, which was further demonstrated by uniformly dispersed spherical nanoparticles under transmission electron microscopy. TMS-NLCs exhibited a slow and sustained release behavior in both simulated gastric juice and intestinal fluid. Furthermore, MDCK-chAbcg2/Abcb1 cell monolayers were successfully established to evaluate their absorption efficiency and potential mechanism. The results of biodirectional transport showed that TMS-NLCs could enhance the cellular uptake and inhibit the efflux function of drug transporters against TMS in MDCK-chAbcg2/Abcb1 cells. Moreover, the data revealed that TMS-NLCs could enter the cells mainly via the caveolae/lipid raft-mediated endocytosis and partially via macropinocytosis. Furthermore, TMS-NLCs showed the same antibacterial activity as free TMS. Taken together, the optimized NLCs were the promising oral delivery carrier for overcoming oral administration obstacle of TMS. Full article
(This article belongs to the Special Issue Liposomal Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 3817 KB  
Article
HIV-1 Protease Inhibitors Slow HPV16-Driven Cell Proliferation through Targeted Depletion of Viral E6 and E7 Oncoproteins
by Soyeong Park, Andrew Auyeung, Denis L. Lee, Paul F. Lambert, Evie H. Carchman and Nathan M. Sherer
Cancers 2021, 13(5), 949; https://doi.org/10.3390/cancers13050949 - 24 Feb 2021
Cited by 27 | Viewed by 4463
Abstract
High-risk human papillomavirus strain 16 (HPV16) causes oral and anogenital cancers through the activities of two viral oncoproteins, E6 and E7, that dysregulate the host p53 and pRb tumor suppressor pathways, respectively. The maintenance of HPV16-positive cancers requires constitutive expression of E6 and [...] Read more.
High-risk human papillomavirus strain 16 (HPV16) causes oral and anogenital cancers through the activities of two viral oncoproteins, E6 and E7, that dysregulate the host p53 and pRb tumor suppressor pathways, respectively. The maintenance of HPV16-positive cancers requires constitutive expression of E6 and E7. Therefore, inactivating these proteins could provide the basis for an anticancer therapy. Herein we demonstrate that a subset of aspartyl protease inhibitor drugs currently used to treat HIV/AIDS cause marked reductions in HPV16 E6 and E7 protein levels using two independent cell culture models: HPV16-transformed CaSki cervical cancer cells and NIKS16 organotypic raft cultures (a 3-D HPV16-positive model of epithelial pre-cancer). Treatment of CaSki cells with some (lopinavir, ritonavir, nelfinavir, and saquinavir) but not other (indinavir and atazanavir) protease inhibitors reduced E6 and E7 protein levels, correlating with increased p53 protein levels and decreased cell viability. Long-term (>7 day) treatment of HPV16-positive NIKS16 raft cultures with saquinavir caused epithelial atrophy with no discernible effects on HPV-negative rafts, demonstrating selectivity. Saquinavir also reduced HPV16′s effects on markers of the cellular autophagy pathway in NIKS16 rafts, a hallmark of HPV-driven pre-cancers. Taken together, these data suggest HIV-1 protease inhibitors be studied further in the context of treating or preventing HPV16-positive cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

17 pages, 1967 KB  
Review
Three-Dimensional Cell Culture Models to Investigate Oral Carcinogenesis: A Scoping Review
by Ravi Teja Chitturi Suryaprakash, Omar Kujan, Kate Shearston and Camile S. Farah
Int. J. Mol. Sci. 2020, 21(24), 9520; https://doi.org/10.3390/ijms21249520 - 14 Dec 2020
Cited by 35 | Viewed by 6032
Abstract
Three-dimensional (3-D) cell culture models, such as spheroids, organoids, and organotypic cultures, are more physiologically representative of the human tumor microenvironment (TME) than traditional two-dimensional (2-D) cell culture models. They have been used as in vitro models to investigate various aspects of oral [...] Read more.
Three-dimensional (3-D) cell culture models, such as spheroids, organoids, and organotypic cultures, are more physiologically representative of the human tumor microenvironment (TME) than traditional two-dimensional (2-D) cell culture models. They have been used as in vitro models to investigate various aspects of oral cancer but, to date, have not be widely used in investigations of the process of oral carcinogenesis. The aim of this scoping review was to evaluate the use of 3-D cell cultures in oral squamous cell carcinoma (OSCC) research, with a particular emphasis on oral carcinogenesis studies. Databases (PubMed, Scopus, and Web of Science) were systematically searched to identify research applying 3-D cell culture techniques to cells from normal, dysplastic, and malignant oral mucosae. A total of 119 studies were included for qualitative analysis including 53 studies utilizing spheroids, 62 utilizing organotypic cultures, and 4 using organoids. We found that 3-D oral carcinogenesis studies had been limited to just two organotypic culture models and that to date, spheroids and organoids had not been utilized for this purpose. Spheroid culture was most frequently used as a tumorosphere forming assay and the organoids cultured from human OSCCs most often used in drug sensitivity testing. These results indicate that there are significant opportunities to utilize 3-D cell culture to explore the development of oral cancer, particularly as the physiological relevance of these models continues to improve. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 1580 KB  
Review
Human Papillomavirus and the Stroma: Bidirectional Crosstalk during the Virus Life Cycle and Carcinogenesis
by Megan E. Spurgeon and Paul F. Lambert
Viruses 2017, 9(8), 219; https://doi.org/10.3390/v9080219 - 9 Aug 2017
Cited by 55 | Viewed by 19381
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses that are causally associated with human cancers of the anogenital tract, skin, and oral cavity. Despite the availability of prophylactic vaccines, HPVs remain a major global health issue due to inadequate vaccine availability and [...] Read more.
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses that are causally associated with human cancers of the anogenital tract, skin, and oral cavity. Despite the availability of prophylactic vaccines, HPVs remain a major global health issue due to inadequate vaccine availability and vaccination coverage. The HPV life cycle is established and completed in the terminally differentiating stratified epithelia, and decades of research using in vitro organotypic raft cultures and in vivo genetically engineered mouse models have contributed to our understanding of the interactions between HPVs and the epithelium. More recently, important and emerging roles for the underlying stroma, or microenvironment, during the HPV life cycle and HPV-induced disease have become clear. This review discusses the current understanding of the bidirectional communication and relationship between HPV-infected epithelia and the surrounding microenvironment. As is the case with other human cancers, evidence suggests that the stroma functions as a significant partner in tumorigenesis and helps facilitate the oncogenic potential of HPVs in the stratified epithelium. Full article
(This article belongs to the Special Issue Expert Views on HPV Infection)
Show Figures

Figure 1

13 pages, 1419 KB  
Review
Oral Delivery of Protein Drugs: Driver for Personalized Medicine?
by Günter Müller
Curr. Issues Mol. Biol. 2011, 13(1), 13-24; https://doi.org/10.21775/cimb.013.013 - 30 Jul 2010
Viewed by 702
Abstract
The pathogenesis of common diseases, such as metabolic diseases, is caused by the complex and individual interplay of many susceptibility genes, which necessitates both personalized diagnosis and therapy. Small-molecule drugs which adequately address the multiple tissue-specific target proteins affected probably will not become [...] Read more.
The pathogenesis of common diseases, such as metabolic diseases, is caused by the complex and individual interplay of many susceptibility genes, which necessitates both personalized diagnosis and therapy. Small-molecule drugs which adequately address the multiple tissue-specific target proteins affected probably will not become available in near future. In contrast, therapeutic proteins, such as growth factors and antibodies, specifically replacing or inactivating the corresponding susceptibility gene products, are currently being identified with increasing efficacy. However, the failure to be administered by the oral route and to reach the cytoplasm of the diseased cells typically prevents their therapeutic use. Recent developments suggest that these limitations may be overcome by encapsulation of therapeutic proteins into nanoparticles or their covalent modification with glycolipid (glycosylphosphatidylinositol, GPI) structures. These act as membrane anchors for so-called GPI-anchored proteins and direct certain attached passenger proteins from lipid raft areas of the plasma membrane via cytoplasmic lipid droplets into small vesicles. These leave the donor cells and transfer the GPI-anchored proteins into the cytoplasm of acceptor cells. This pathway may enable the transport of therapeutic proteins across the intestinal barrier into the circulation and eventually across the plasma membrane of the diseased target cells. For therapy, a number of challenges remains to be tackled, in particular, control of release from the GPI anchor which determines the pharmacokinetic and pharmacodynamic profiles. Together these findings nourish the hope that oral path finding to drug targets by encapsulation and covalent modification of therapeutic proteins may enable personalized therapy of common diseases. Full article
Back to TopTop