Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = oral mucosal equivalents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4347 KiB  
Article
Diatomaceous Earth Supplementation as a Bioavailable Silicon Source Modulates Postprandial Lipid Metabolism in Healthy Female Rats
by Rocío Redondo-Castillejo, Marina Hernández-Martín, Jousef Ángel Issa-García, Aránzazu Bocanegra, Alba Garcimartín, Adrián Macho-González, Sara Bastida, Francisco J. Sánchez-Muniz, Juana Benedí and M. Elvira López-Oliva
Nutrients 2025, 17(15), 2452; https://doi.org/10.3390/nu17152452 - 28 Jul 2025
Viewed by 347
Abstract
Background/Objectives: Diatomaceous earth (DE), a natural substance rich in amorphous silica and recognized as a food additive, is gaining attention as a dietary silicon supplement. However, its bioavailability and impact on lipid digestion and absorption remain poorly characterized. This study aimed to investigate [...] Read more.
Background/Objectives: Diatomaceous earth (DE), a natural substance rich in amorphous silica and recognized as a food additive, is gaining attention as a dietary silicon supplement. However, its bioavailability and impact on lipid digestion and absorption remain poorly characterized. This study aimed to investigate silicon bioavailability after short-term DE supplementation and its effects on postprandial glycemia and triglyceridemia, the expression of lipid metabolism-related proteins, and the modulation of the intestinal mucosal barrier. Methods: Female Wistar rats received daily oral supplementation of DE (equivalent to 2 or 4 mg silicon/kg body weight) for one week. Silicon digestibility, excretion, and hepatic accumulation were quantified. Postprandial glycemia and triglyceridemia were monitored. Lipid profile was analyzed by HPSEC in gastric and intestinal contents. Jejunal morphology and mucin-secreting cells were assessed histologically. Lipid metabolism markers were evaluated by immunohistochemistry and Western blot in both intestinal and hepatic tissues. Results: DE supplementation enhanced silicon absorption and increased hepatic levels. Fecal output and moisture content were also elevated, especially at the higher dose. DE significantly reduced postprandial triglyceridemia and consequently increased luminal triglyceride retention. These changes were associated with decreased jejunal levels of IFABP, ACAT2, and MTP, as well as reduced hepatic levels of MTP and LDLr, alongside increased levels of ABCG5/G8 and LXRα/β, indicating a partial blockage of lipid absorption and enhanced cholesterol efflux. The effects on the intestinal barrier were evidenced by villi shortening and an increase in mucin-producing cells. Conclusion: Food-grade DE is a bioavailable source of silicon with hypolipidemic potential, mainly by reducing intestinal lipid absorption. This is supported by lower postprandial triglycerides, increased luminal lipid retention, and decreased expression of lipid transport proteins. The study in healthy female rats underscores the importance of sex-specific responses and supports DE as a dietary strategy to improve lipid metabolism. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

14 pages, 1489 KiB  
Article
Orally Dissolving Film-Based Influenza Vaccines Confer Superior Protection Compared to the Oral Administration of Inactivated Influenza Virus
by Keon-Woong Yoon, Jie Mao, Gi-Deok Eom, Su In Heo, Ki Back Chu, Mi Suk Lee and Fu-Shi Quan
Vaccines 2025, 13(6), 600; https://doi.org/10.3390/vaccines13060600 - 31 May 2025
Viewed by 643
Abstract
Background: Self-administered orally dissolving films (ODFs) encapsulating inactivated influenza vaccines represent an effective strategy for stimulating mucosal immunity. While this vaccination method offers several advantages over conventional influenza vaccines, a comparative efficacy study remains lacking. Methods: Female BALB/c mice were immunized [...] Read more.
Background: Self-administered orally dissolving films (ODFs) encapsulating inactivated influenza vaccines represent an effective strategy for stimulating mucosal immunity. While this vaccination method offers several advantages over conventional influenza vaccines, a comparative efficacy study remains lacking. Methods: Female BALB/c mice were immunized with inactivated A/PR/8/34 (H1N1) either via orogastric inoculation or through the oral mucosal delivery using pullulan and trehalose-based ODF vaccines. Each group received equivalent antigen doses across three immunizations. Humoral responses and antibody functionality were assessed using sera collected post-immunization. After lethal viral challenge, other immunological and virological parameters were determined in corresponding tissues. Body weight and survival were monitored over a 14-day period after challenge. Results: ODF vaccination elicited significantly higher virus-specific IgA levels, HAI titers, and neutralizing antibody activity than oral gavage. After the viral challenge, ODF-immunized mice exhibited stronger IgG and IgA responses in respiratory tissues, increased antibody-secreting cells in lungs and spleen, and elevated germinal center B cells and CD8+ T cell responses. Both vaccination methods reduced lung pro-inflammatory cytokines and provided full protection against lethal challenge; however, the ODF group showed lower cytokine levels, better weight maintenance, and reduced viral loads. Conclusions: ODF vaccination elicits more robust systemic and mucosal immune responses than oral vaccination and may serve as a promising alternative method of influenza vaccine delivery. Full article
(This article belongs to the Special Issue Virus Pandemics and Vaccinations)
Show Figures

Figure 1

16 pages, 5608 KiB  
Article
Amelioration of Dextran Sodium Sulfate-Induced Colitis in Mice through Oral Administration of Palmitoylethanolamide
by Purvi Trivedi, Tanya Myers, Bithika Ray, Matthew Allain, Juan Zhou, Melanie Kelly and Christian Lehmann
Biomedicines 2024, 12(5), 1000; https://doi.org/10.3390/biomedicines12051000 - 2 May 2024
Cited by 1 | Viewed by 1645
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders characterized by pain, ulceration, and the inflammation of the gastrointestinal tract (GIT) and categorized into two major subtypes: ulcerative colitis (UC) and Crohn’s disease. The inflammation in UC is typically restricted to the [...] Read more.
Inflammatory bowel disease (IBD) is a group of chronic disorders characterized by pain, ulceration, and the inflammation of the gastrointestinal tract (GIT) and categorized into two major subtypes: ulcerative colitis (UC) and Crohn’s disease. The inflammation in UC is typically restricted to the mucosal surface, beginning in the rectum and extending through the entire colon. UC patients typically show increased levels of pro-inflammatory cytokines, leading to intestinal epithelial apoptosis and mucosal inflammation, which impair barrier integrity. Chronic inflammation is associated with the rapid recruitment and inappropriate retention of leukocytes at the site of inflammation, further amplifying the inflammation. While UC can be managed using a number of treatments, these drugs are expensive and cause unwanted side effects. Therefore, a safe and effective treatment for UC patients is needed. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide and an analog of the endocannabinoid anandamine. PEA administration has been found to normalize intestinal GIT motility and reduce injury in rodents and humans. In the current study, we examined the efficacy of PEA encapsulated in phytosomes following oral administration in experimental ulcerative colitis. Here, we showed that PEA at a human-equivalent dose of 123 mg/kg (OD or BID) attenuated DSS-induced experimental colitis as represented by the reduction in clinical signs of colitis, reduction in gross mucosal injury, and suppression of leukocyte recruitment at inflamed venules. These findings add to the growing body of data demonstrating the beneficial effects of PEA to control the acute phase of intestinal inflammation occurring during UC. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

13 pages, 3372 KiB  
Article
A Thermally Stable Recombinant Human Fibronectin Peptide-Fused Protein (rhFN3C) for Faster Aphthous Ulcer (AU) Healing
by Xiang Cai, Jiawen Zhu, Xin Luo, Guoguo Jin, Yadong Huang and Lihua Li
Bioengineering 2024, 11(1), 38; https://doi.org/10.3390/bioengineering11010038 - 29 Dec 2023
Cited by 1 | Viewed by 2336
Abstract
Approximately 59.4–100% of head and neck cancer patients receiving radiotherapy or radio chemotherapy suffer from aphthous ulcers (AUs), which seriously affect the subsequent treatment. At the same time, AUs are a common oral mucosal disease with a high incidence rate among the population, [...] Read more.
Approximately 59.4–100% of head and neck cancer patients receiving radiotherapy or radio chemotherapy suffer from aphthous ulcers (AUs), which seriously affect the subsequent treatment. At the same time, AUs are a common oral mucosal disease with a high incidence rate among the population, often accompanied by severe pain, and affect both physical and mental health. Strategies to increase the ulcer healing rate and relieve pain symptoms quickly is a long-term clinical objective. Oral mucosal discontinuity is the main histological hallmark of AUs. So, covering the inner mucosal defect with an in vitro engineered oral mucosal equivalent shows good prospects for AU alleviation. Fibronectin (FN) is a glycopeptide in the extracellular matrix and exhibits opsonic properties, aiding the phagocytosis and clearance of foreign pathogens through all stages of ulcer healing. But native FN comes from animal blood, which has potential health risks. rhFN3C was designed with multi-domains of native FN, whose core functions are the recruitment of cells and growth factors to accelerate AU healing. rhFN3C is a peptide-fused recombinant protein. The peptides are derived from the positions of 1444–1545 (FNIII10) and 1632–1901 (FNIII12–14) in human native FN. We optimized the fermentation conditions of rhFN3C in E. coli BL21 to enable high expression levels. rhFN3C is thermally stable and nontoxic for L929, strongly promotes the migration and adhesion of HaCaT, decreases the incidence of wound infection, and shortens the mean healing time by about 2 days compared to others (p < 0.01). rhFN3C may have great potential for use in the treatment of AUs. The specific methods and mechanisms of rhFN3C are yet to be investigated. Full article
(This article belongs to the Special Issue Biologically Active Recombinant Proteins)
Show Figures

Graphical abstract

18 pages, 3422 KiB  
Article
Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies
by Azra Riaz, Sanna Gidvall, Zdenka Prgomet, Aura Rocio Hernandez, Tautgirdas Ruzgas, Emelie J. Nilsson, Julia Davies and Sabrina Valetti
Pharmaceutics 2023, 15(5), 1513; https://doi.org/10.3390/pharmaceutics15051513 - 17 May 2023
Cited by 11 | Viewed by 2966
Abstract
Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the [...] Read more.
Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the correct cell differentiation and tissue architecture, simulating the in vivo conditions better than monolayer cultures or animal tissues. The aim of this work was to develop OME to be used as a membrane for drug permeation studies. We developed both full-thickness (i.e., connective plus epithelial tissue) and split-thickness (i.e., only epithelial tissue) OME using non-tumor-derived human keratinocytes OKF6 TERT-2 obtained from the floor of the mouth. All the OME developed here presented similar transepithelial electrical resistance (TEER) values, comparable to the commercial EpiOral™. Using eletriptan hydrobromide as a model drug, we found that the full-thickness OME had similar drug flux to EpiOral™ (28.8 vs. 29.6 µg/cm2/h), suggesting that the model had the same permeation barrier properties. Furthermore, full-thickness OME showed an increase in ceramide content together with a decrease in phospholipids in comparison to the monolayer culture, indicating that lipid differentiation occurred due to the tissue-engineering protocols. The split-thickness mucosal model resulted in 4–5 cell layers with basal cells still undergoing mitosis. The optimum period at the air–liquid interface for this model was twenty-one days; after longer times, signs of apoptosis appeared. Following the 3R principles, we found that the addition of Ca2+, retinoic acid, linoleic acid, epidermal growth factor and bovine pituitary extract was important but not sufficient to fully replace the fetal bovine serum. Finally, the OME models presented here offer a longer shelf-life than the pre-existing models, which paves the way for the further investigation of broader pharmaceutical applications (i.e., long-term drug exposure, effect on the keratinocytes’ differentiation and inflammatory conditions, etc.). Full article
Show Figures

Graphical abstract

10 pages, 292 KiB  
Review
The Local Neuropeptide System of Keratinocytes
by Nicola Cirillo
Biomedicines 2021, 9(12), 1854; https://doi.org/10.3390/biomedicines9121854 - 7 Dec 2021
Cited by 12 | Viewed by 3250
Abstract
Neuropeptides have been known for over 50 years as chemical signals in the brain. However, it is now well established that the synthesis of this class of peptides is not restricted to neurons. For example, human skin not only expresses several functional receptors [...] Read more.
Neuropeptides have been known for over 50 years as chemical signals in the brain. However, it is now well established that the synthesis of this class of peptides is not restricted to neurons. For example, human skin not only expresses several functional receptors for neuropeptides but, also, can serve as a local source of neuroactive molecules such as corticotropin-releasing hormone, melanocortins, and β-endorphin. In contrast, an equivalent of the hypothalamic-pituitary axis in the oral mucosa has not been well characterized to date. In view of the differences in the morphology and function of oral mucosal and skin cells, in this review I surveyed the existing evidence for a local synthesis of hypothalamic-pituitary, opiate, neurohypophyseal, and neuroendocrine neuropeptides in both epidermal and oral keratinocytes. Full article
(This article belongs to the Special Issue Neuropeptides in Biomedicines)
19 pages, 2103 KiB  
Article
Gastroprotective Effects of Spirulina platensis, Golden Kiwifruit Flesh, and Golden Kiwifruit Peel Extracts Individually or in Combination against Indomethacin-Induced Gastric Ulcer in Rats
by Ibrahim S. Aleid, Hani A. Alfheeaid, Thamer Aljutaily, Raghad M. Alhomaid, Hend F. Alharbi, Sami A. Althwab, Hassan A. Abdel-Rahman, Metab A. AlGeffari and Hassan Barakat
Nutrients 2021, 13(10), 3499; https://doi.org/10.3390/nu13103499 - 3 Oct 2021
Cited by 13 | Viewed by 5234
Abstract
This study was conducted to investigate the therapeutic effect of hydro-alcoholic extract of Spirulina platensis (SP), golden kiwifruit (Actinidia chinensis) flesh (KF), and golden kiwifruit peel (KP) individually or in combination (SFP) on indomethacin-induced gastric ulcer in rats. Negative control rats [...] Read more.
This study was conducted to investigate the therapeutic effect of hydro-alcoholic extract of Spirulina platensis (SP), golden kiwifruit (Actinidia chinensis) flesh (KF), and golden kiwifruit peel (KP) individually or in combination (SFP) on indomethacin-induced gastric ulcer in rats. Negative control rats (GI) were orally administered distilled water in parallel with other treatments. The positive control rat group (GII) was administered 30 mg kg−1 indomethacin to induce gastric ulcers. The KF and KF extracts were used individually or together with SP in treating indomethacin-induced gastric ulcerated rat groups. Gastric ulcerated rat’s groups GIII, GIV, GV, GVI, and GVII were orally administered at 30 mg kg−1 rat body weight as total phenolic content (TPC) equivalent from SP, KF, KP, SPF extracts, and Lansoprazole (30 mg kg−1, as reference drug) daily up to 14 days, respectively. The relevant biochemical parameters, antioxidant biomarkers, and histopathological examination were examined. Remarkably, treating rats with SP, KF, KP, and SFP extracts markedly reduced gastric juice and stomach volume expansion induced by indomethacin. The SP significantly retrieved the pH of gastric juice to a regular rate compared to GI. The ulcer index (UI) was significantly attenuated by SP, KF, KP, and SFP administration. The protection index percentage (PI %) was 80.79, 54.51, 66.08, 75.74, and 74.86% in GIII, GIV, GV, GVI, and GVII, respectively. The gastric mucin content was significantly better attenuated by 95.7 in GIII compared to its content in GI. Lansoprazole increased mucin content by 80.3%, which was considerably lower than SP and SFP. SP, KF, KP, SFP, and Lansoprazole improved the reform of gastric mucosal-increased secreted mucus by 95.6, 61.3, 64.8, 103.1, and 80.2% in GIII, GIV, GV, GVI, and GVII, respectively. Interestingly, SFP efficiently increased vit. B12 level by 46.0% compared to other treatments. While Lansoprazole administrating did not significantly attenuate vit. B12 level. The SP and SFP improved iron and Hemoglobin (HB) levels depending on treatment. SP, KF, KP, and SFP significantly decreased the malondialdehyde (MDA) and increased reduced glutathione (GSH) as well as superoxide dismutase (SOD) levels in blood and stomach tissues. The most potent effect was observed with SP, and SFP was even better than Lansoprazole. Histopathologically, treating rats with SP extract showed a marked reduction of gastric damage and severity changes induced by indomethacin. KP was much better than KF in lessening gastric histopathological damages caused by indomethacin. SFP significantly alleviates gastric histopathological alterations. The lansoprazole-treated group (GVII) greatly relieved the gastric histopathological changes and recorded mild focal necrosis and desquamation of the mucosa in addition to mild oedema in the serosal layer. In conclusion, the presented results proved the antiulcer potential of SP and A. chinensis extracts against an indomethacin-induced gastric ulcer in rats, which may be due to their antioxidant and anti-inflammation efficiency. Thus, these data suggested that SP, KF, KP, and SFP extracts as natural and safe alternatives have a gastroprotective potential against indomethacin-induced gastric ulceration. The antioxidative and anti-inflammatory properties are probable mechanisms. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

16 pages, 2357 KiB  
Article
Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions
by Carmen Parisio, Elena Lucarini, Laura Micheli, Alessandra Toti, Mohamad Khatib, Nadia Mulinacci, Laura Calosi, Daniele Bani, Lorenzo Di Cesare Mannelli and Carla Ghelardini
Int. J. Mol. Sci. 2020, 21(12), 4304; https://doi.org/10.3390/ijms21124304 - 17 Jun 2020
Cited by 26 | Viewed by 4432
Abstract
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and [...] Read more.
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg−1), polysaccharides (300 mg kg−1), and ellagitannins (45 mg kg−1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief. Full article
(This article belongs to the Special Issue Role of Nutraceuticals in Metabolic and Gastrointestinal Disorders)
Show Figures

Graphical abstract

8 pages, 606 KiB  
Article
The Plasma Bioavailability of Coenzyme Q10 Absorbed from the Gut and the Oral Mucosa
by Luis Vitetta, Andrea Leong, Joyce Zhou, Serena Dal Forno, Sean Hall and David Rutolo
J. Funct. Biomater. 2018, 9(4), 73; https://doi.org/10.3390/jfb9040073 - 15 Dec 2018
Cited by 16 | Viewed by 11674
Abstract
Coenzyme Q10 (CoQ10) has a central role in the generation of cellular bioenergy and its regulation. The hydrophobicity exhibited by the CoQ10 molecule leads to reports of poor absorption profiles, therefore, the optimization of formulations and modes of delivery [...] Read more.
Coenzyme Q10 (CoQ10) has a central role in the generation of cellular bioenergy and its regulation. The hydrophobicity exhibited by the CoQ10 molecule leads to reports of poor absorption profiles, therefore, the optimization of formulations and modes of delivery is an ever-evolving therapeutic goal. The aim of this study was to investigate different CoQ10 formulations. The article summarizes the findings from an Australian comparative study involving adults administered CoQ10 through different oral delivery platforms. A total of 11 participants (six males and five females) voluntarily participated in a comparative clinical study of three different CoQ10 formulations across a six-week period, completing 198 person-hours of cumulative contribution equivalent to n = 33 participation. All of the eligible participants (n = 11) administered the three formulations blinded from who the commercial supplier of the formulation was and from what the chemical form of the CoQ10 was that was being administered. The dosing between the CoQ10 preparations were dispensed sequentially and were administered following three-week washouts. Three commercial preparations were tested, which included the following: formulations with capsules each containing ubiquinol and ubiquinone (150 mg/capsule), and a liposome ubiquinone formulation (40 mg/mL at 2 actuations of the pump). A significant inter-subject variation in the plasma level of CoQ10 at baseline that was observed to increase with an increase in age. This trend persisted in the post administration of the different formulations. Furthermore, it was observed that the intestinal absorption and bioavailability of CoQ10 varied significantly in the plasma between subjects, irrespective of whether the ubiquinol or ubiquinone forms were administered. The administration of CoQ10 as a liposome for preparation showed the poorest response in bioavailability. Although the ubiquinol capsule form of CoQ10 was observed to have increased in the plasma versus the ubiquinone capsules and the ubiquinol liposome at the two-hour interval, the inter-subject variation was such that the difference was not significant (p > 0.05). All of the CoQ10 formulations showed no further increases in their plasma levels over the remaining study period (i.e., four hours). This study further concluded that the intestinal absorption of CoQ10 is highly variable and is independent of the molecular form administered. Furthermore, it also concludes that liposomes are not an effective vehicle for the oral administration of CoQ10, and as such, did not improve the oral mucosal/sublingual absorption and bioavailability of the molecule. Of interest was the observation that with the increasing subject age, there was an observed increase in the baseline plasma CoQ10 levels in the participants prior to dosing. It was posited that the increase in the baseline plasma levels of CoQ10 with an increase in age could be due to the loss of skeletal muscle mass, a result that still needs to be verified. Full article
Show Figures

Figure 1

Back to TopTop