Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = optical metro networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3116 KiB  
Article
Research on Key Technologies of Quantum-Safe Metro-Optimized Optical Transport Networks
by Wei Zhou, Bingli Guo, Boying Cao and Xiaohui Cheng
Appl. Sci. 2025, 15(5), 2809; https://doi.org/10.3390/app15052809 - 5 Mar 2025
Viewed by 741
Abstract
This research introduces a novel physical-layer encryption technique for metropolitan-optimized optical transport networks (M-OTNs) that integrates real-time optical signal time-domain scrambling/descrambling with decoy-state quantum key distribution (DS-QKD). The method processes real-time optical data from the optical service unit (OSU) using a series of [...] Read more.
This research introduces a novel physical-layer encryption technique for metropolitan-optimized optical transport networks (M-OTNs) that integrates real-time optical signal time-domain scrambling/descrambling with decoy-state quantum key distribution (DS-QKD). The method processes real-time optical data from the optical service unit (OSU) using a series of tunable Fabry–Perot cavities (FPCs), synchronized and updated with a running key. Experimental validation demonstrates secure communication within the optical network’s physical layer during standard OTU2 data transmission (10.709 Gbps), achieving an online transmission distance exceeding 100 km over typical single-mode fiber with a power loss of approximately 1.77 dB. The results indicate that this integrated approach significantly enhances the security of the optical physical layer in M-OTNs. Full article
(This article belongs to the Special Issue Novel Approaches for High Speed Optical Communication)
Show Figures

Figure 1

23 pages, 25753 KiB  
Article
A Lightweight Deep Learning Approach for Detecting External Intrusion Signals from Optical Fiber Sensing System Based on Temporal Efficient Residual Network
by Yizhao Wang, Ziye Guo, Haitao Luo, Jing Liu and Ruohua Zhou
Algorithms 2025, 18(2), 101; https://doi.org/10.3390/a18020101 - 11 Feb 2025
Viewed by 1016
Abstract
Deep neural networks have been widely applied to fiber optic sensor systems, where the detection of external intrusion in metro tunnels is a major challenge; thus, how to achieve the optimal balance between resource consumption and accuracy is a critical issue. To address [...] Read more.
Deep neural networks have been widely applied to fiber optic sensor systems, where the detection of external intrusion in metro tunnels is a major challenge; thus, how to achieve the optimal balance between resource consumption and accuracy is a critical issue. To address this issue, we propose a lightweight deep learning model, the Temporal Efficient Residual Network (TEResNet), for the detection of anomalous intrusion. In contrast to the majority of two-dimensional convolutional approaches, which require a deep architecture to encompass both low- and high-frequency domains, our methodology employs temporal convolutions and a compact residual network architecture. This allows the model to incorporate lower-level features into the higher-level feature formation in subsequent layers, leveraging informative features from the lower layers, and thus reducing the number of stacked layers for generating high-level features. As a result, the model achieves a superior performance with a relatively small number of layers. Moreover, the two-dimensional feature map is reduced in size to reduce the computational burden without adding parameters. This is crucial for enabling rapid intrusion detection. Experiments were conducted in the construction environment of the Guangzhou Metro, resulting in the creation of a dataset containing 6948 signal segments, which is publicly accessible. The results demonstrate that TEResNet outperforms the existing intrusion detection methods and advanced deep learning networks, achieving an accuracy of 97.12% and an F1 score of 96.15%. With only 48,009 learnable parameters, it provides an efficient and reliable solution for intrusion detection in metro tunnels, aligning with the growing demand for lightweight and robust information processing systems. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

10 pages, 1674 KiB  
Article
Real-Time Diagnostics on a QKD Link via QBER Time-Series Analysis
by Georgios Maragkopoulos, Aikaterini Mandilara, Thomas Nikas and Dimitris Syvridis
Entropy 2024, 26(11), 922; https://doi.org/10.3390/e26110922 - 30 Oct 2024
Cited by 1 | Viewed by 982
Abstract
The integration of QKD systems in metro optical networks raises challenges that cannot be fully resolved with current technological means. In this work, we devised a methodology for identifying different types of impairments for a QKD link embedded in a communication network. Identification [...] Read more.
The integration of QKD systems in metro optical networks raises challenges that cannot be fully resolved with current technological means. In this work, we devised a methodology for identifying different types of impairments for a QKD link embedded in a communication network. Identification occurs in real time using a supervised machine learning model designed for this purpose. The model takes only QBER and SKR time-series data as the input, making its applicability not restricted to any specific QKD protocol or system. The output of the model specifies the working conditions for the QKD link, which is information that can be valuable for users and key management systems. Full article
(This article belongs to the Special Issue Progress in Quantum Key Distribution)
Show Figures

Figure 1

10 pages, 7960 KiB  
Article
Metro-Passive Optical Network Convergence: 400 Gbps Fully Coherent Transmission Using Pre-Commercial Transceivers
by Mariacristina Casasco, Giuseppe Rizzelli, Annachiara Pagano, Emilio Riccardi, Valter Ferrero and Roberto Gaudino
Electronics 2024, 13(13), 2543; https://doi.org/10.3390/electronics13132543 - 28 Jun 2024
Viewed by 1397
Abstract
The capacity of passive optical networks (PONs) is continuously increasing, and it has been standardized up to 50 Gbit/s. The two main standardization organizations, IEEE and ITU-T, are actively working on the next-generation PON, which appears to be a 100G-PON still based on [...] Read more.
The capacity of passive optical networks (PONs) is continuously increasing, and it has been standardized up to 50 Gbit/s. The two main standardization organizations, IEEE and ITU-T, are actively working on the next-generation PON, which appears to be a 100G-PON still based on intensity modulation. Even though direct detection would be preferred for its cost and simplicity, the choice of coherent detection seems inevitable when the bit rate reaches 200–400 Gbit/s, specifically to guarantee the optical power budget requirement of an access network. The introduction of coherent systems in the PON scenario, allowing high-power-budget performances, should encouragetelecom operators to merge the metro and access networks into a single domain. This paper analyzes the mentioned metro + PON convergence scenario with experimental results focusing on a 400 Gbit/s fully coherent transmission (50 GBaud PM-16QAM). We characterize three different transceivers, two of which are pre-commercials. We perform experimental demonstrations, with real urban fiber and laboratory set ups, of the metro–access convergence network in terms of the minimum OSNR value of the metro path, producing an acceptable optical power budget within the access network. Our work demonstrates feasibility of merging the metro–access network by using currently coherent optical transceivers for PON applications. Full article
(This article belongs to the Special Issue High-Speed Optical Communication and Information Processing)
Show Figures

Figure 1

21 pages, 6435 KiB  
Article
ADF-Net: An Attention-Guided Dual-Branch Fusion Network for Building Change Detection near the Shanghai Metro Line Using Sequences of TerraSAR-X Images
by Peng Chen, Jinxin Lin, Qing Zhao, Lei Zhou, Tianliang Yang, Xinlei Huang and Jianzhong Wu
Remote Sens. 2024, 16(6), 1070; https://doi.org/10.3390/rs16061070 - 18 Mar 2024
Cited by 4 | Viewed by 1984
Abstract
Building change detection (BCD) plays a vital role in city planning and development, ensuring the timely detection of urban changes near metro lines. Synthetic Aperture Radar (SAR) has the advantage of providing continuous image time series with all-weather and all-time capabilities for earth [...] Read more.
Building change detection (BCD) plays a vital role in city planning and development, ensuring the timely detection of urban changes near metro lines. Synthetic Aperture Radar (SAR) has the advantage of providing continuous image time series with all-weather and all-time capabilities for earth observation compared with optical remote sensors. Deep learning algorithms have extensively been applied for BCD to realize the automatic detection of building changes. However, existing deep learning-based BCD methods with SAR images suffer limited accuracy due to the speckle noise effect and insufficient feature extraction. In this paper, an attention-guided dual-branch fusion network (ADF-Net) is proposed for urban BCD to address this limitation. Specifically, high-resolution SAR images collected by TerraSAR-X have been utilized to detect building changes near metro line 8 in Shanghai with the ADF-Net model. In particular, a dual-branch structure is employed in ADF-Net to extract heterogeneous features from radiometrically calibrated TerraSAR-X images and log ratio images (i.e., difference images (DIs) in dB scale). In addition, the attention-guided cross-layer addition (ACLA) blocks are used to precisely locate the features of changed areas with the transformer-based attention mechanism, and the global attention mechanism with the residual unit (GAM-RU) blocks is introduced to enhance the representation learning capabilities and solve the problems of gradient fading. The effectiveness of ADF-Net is verified using evaluation metrics. The results demonstrate that ADF-Net generates better building change maps than other methods, including U-Net, FC-EF, SNUNet-CD, A2Net, DMINet, USFFCNet, EATDer, and DRPNet. As a result, some building area changes near metro line 8 in Shanghai have been accurately detected by ADF-Net. Furthermore, the prediction results are consistent with the changes derived from high-resolution optical remote sensing images. Full article
(This article belongs to the Special Issue New Approaches in High-Resolution SAR Imaging)
Show Figures

Figure 1

25 pages, 4961 KiB  
Article
Context-Based e2e Autonomous Operation in B5G Networks
by Shaoxuan Wang, Marc Ruiz and Luis Velasco
Sensors 2024, 24(5), 1625; https://doi.org/10.3390/s24051625 - 1 Mar 2024
Cited by 1 | Viewed by 1458
Abstract
The research and innovation related to fifth-generation (5G) networks that has been carried out in recent years has decided on the fundamentals of the smart slice in radio access networks (RANs), as well as the autonomous fixed network operation. One of the most [...] Read more.
The research and innovation related to fifth-generation (5G) networks that has been carried out in recent years has decided on the fundamentals of the smart slice in radio access networks (RANs), as well as the autonomous fixed network operation. One of the most challenging objectives of beyond 5G (B5G) and sixth-generation (6G) networks is the deployment of mechanisms that enable smart end-to-end (e2e) network operation, which is required for the achievement of the stringent service requirements of the envisioned use cases to be supported in the short term. Therefore, smart actions, such as dynamic capacity allocation, flexible functional split, and dynamic slice management need to be performed in tight coordination with the autonomous capacity management of the fixed transport network infrastructure. Otherwise, the benefits of smart slice operation (i.e., cost and energy savings while ensuring per-slice service requirements) might be cancelled due to uncoordinated autonomous fixed network operation. Notably, the transport network in charge of supporting slices from the user equipment (UE) to the core expands across access and metro fixed networks. The required coordination needs to be performed while keeping the privacy of the radio and fixed network domains, which is important in multi-tenant scenarios where both network segments are managed by different operators. In this paper, we propose a novel approach that explores the concept of context-aware network operation, where the slice control anticipates the aggregated and anonymized information of the expected slice operation that is sent to the fixed network orchestrator in an asynchronous way. The context is then used as the input for the artificial intelligence (AI)-based models used by the fixed network control for the predictive capacity management of optical connections in support of RAN slices. This context-aware network operation aims at enabling accurate and reliable autonomous fixed network operation under extremely dynamic traffic originated by smart RAN operation. The exhaustive numerical results show that slice context availability improves the benchmarking fixed network predictive methods (90% reduction in prediction maximum error) remarkably in the foreseen B5G scenarios, for both access and metro segments and in heterogeneous service demand scenarios. Moreover, context-aware network operation enables robust and efficient operation of optical networks in support of dense RAN cells (>32 base stations per cell), while the benchmarking methods fail to guarantee different operational objectives. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

14 pages, 3074 KiB  
Article
A High-Capacity Optical Metro Access Network: Efficiently Recovering Fiber Failures with Robust Switching and Centralized Optical Line Terminal
by Rahat Ullah, Sibghat Ullah, Ahmad Almadhor, Hathal Salamah Alwageed, Abdullah A. Al-Atawi, Jianxin Ren and Shuaidong Chen
Sensors 2024, 24(4), 1074; https://doi.org/10.3390/s24041074 - 7 Feb 2024
Cited by 9 | Viewed by 1846
Abstract
This study proposes and presents a new central office (CO) for the optical metro access network (OMAN) with an affordable and distinctive switching system. The CO’s foundation is built upon a novel optical multicarrier (OMC) generation technique. This technique provides numerous frequency carriers [...] Read more.
This study proposes and presents a new central office (CO) for the optical metro access network (OMAN) with an affordable and distinctive switching system. The CO’s foundation is built upon a novel optical multicarrier (OMC) generation technique. This technique provides numerous frequency carriers that are characterized by a high tone-to-noise ratio (TNR) of 40 dB and minimal amplitude excursions. The purpose is to accommodate multiple users at the optical network unit side in the optical metropolitan area network (OMAN). The OMC generation is achieved through a cascaded configuration involving a single phase and two Mach Zehnder modulators without incorporating optical or electrical amplifiers or filters. The proposed OMC is installed in the CO of the OMAN to support the 1.2 Tbps downlink and 600 Gbps uplink transmission, with practical bit error rate (BER) ranges from 10−3 to 10−13 for the downlink and 10−6 to 10−14 for the uplink transmission. Furthermore, in the OMAN’s context, optical fiber failure is a main issue. Therefore, we have proposed a possible solution for ensuring uninterrupted communication without any disturbance in various scenarios of main optical fiber failures. This demonstrates how this novel CO can rapidly recover transmission failures through robust switching a and centralized OLT. The proposed system is intended to provide users with a reliable and affordable service while maintaining high-quality transmission rates. Full article
Show Figures

Figure 1

13 pages, 7900 KiB  
Communication
Suppression of Nonlinear Optical Effects in DWDM-PON by Frequency Modulation Non-Coherent Detection
by Lei Xin, Xiao Xu, Liuge Du, Chonglei Sun, Feng Gao and Jia Zhao
Photonics 2023, 10(3), 323; https://doi.org/10.3390/photonics10030323 - 17 Mar 2023
Cited by 4 | Viewed by 2415
Abstract
We propose a simple and cost-effective method, using a direct frequency modulation (FM) and noncoherent detection (NCD) scheme, to suppress the nonlinear optical effects in dense wavelength division multiplexed (DWDM) optical communication. The FM transmitter comprises a directly modulated distributed feedback laser and [...] Read more.
We propose a simple and cost-effective method, using a direct frequency modulation (FM) and noncoherent detection (NCD) scheme, to suppress the nonlinear optical effects in dense wavelength division multiplexed (DWDM) optical communication. The FM transmitter comprises a directly modulated distributed feedback laser and a saturable semiconductor optical amplifier. In the NCD receiver, an optical slope filter as the FM to intensity modulation (IM) signal convertor is placed before a conventional photodetector. Because the FM signal has more evenly distributed optical power, bit-pattern-dependent nonlinear effects are consequently suppressed. After analyzing the nonlinear effects in the FM-NCD system and traditional IM direct detection (IM-DD) system, we found that the minimum achievable BER of the proposed FM-NCD scheme is 40 dB smaller. Moreover, a 2 Tbps (10 Gb/s × 200 channels) capacity was achieved by the FM-NCD system in 100 km DWDM passive optical networks (PONs), which is twice the capacity of the IM-DD system (10 Gb/s × 100 channels) under the same condition. These results indicate that WDM-PONs with the cost-effective FM-NCD scheme are strong candidates for future broad access networks and show great potential for the combination of optical access and metro networks for future generations of PONs. Full article
(This article belongs to the Special Issue Optical Fiber Transmission Systems)
Show Figures

Figure 1

16 pages, 3345 KiB  
Article
Supporting Heterogenous Traffic on Top of Point-to-Multipoint Light-Trees
by Masab Iqbal, Luis Velasco, Marc Ruiz, Nelson Costa, Antonio Napoli, Joao Pedro and Jaume Comellas
Sensors 2023, 23(5), 2500; https://doi.org/10.3390/s23052500 - 23 Feb 2023
Cited by 8 | Viewed by 1963
Abstract
New 5 G and beyond services demand innovative solutions in optical transport to increase efficiency and flexibility and reduce capital (CAPEX) and operational (OPEX) expenditures to support heterogeneous and dynamic traffic. In this context, optical point-to-multipoint (P2MP) connectivity is seen as an alternative [...] Read more.
New 5 G and beyond services demand innovative solutions in optical transport to increase efficiency and flexibility and reduce capital (CAPEX) and operational (OPEX) expenditures to support heterogeneous and dynamic traffic. In this context, optical point-to-multipoint (P2MP) connectivity is seen as an alternative to provide connectivity to multiple sites from a single source, thus potentially both reducing CAPEX and OPEX. Digital subcarrier multiplexing (DSCM) has been shown as a feasible candidate for optical P2MP in view of its ability to generate multiple subcarriers (SC) in the frequency domain that can be used to serve several destinations. This paper proposes a different technology, named optical constellation slicing (OCS), that enables a source to communicate with multiple destinations by focusing on the time domain. OCS is described in detail and compared to DSCM by simulation, where the results show that both OCS and DSCM provide a good performance in terms of the bit error rate (BER) for access/metro applications. An exhaustive quantitative study is afterwards carried out to compare OCS and DSCM considering its support to dynamic packet layer P2P traffic only and mixed P2P and P2MP traffic; throughput, efficiency, and cost are used here as the metrics. As a baseline for comparison, the traditional optical P2P solution is also considered in this study. Numerical results show that OCS and DSCM provide a better efficiency and cost savings than traditional optical P2P connectivity. For P2P only traffic, OCS and DSCM are utmost 14.6% more efficient than the traditional lightpath solution, whereas for heterogeneous P2P + P2MP traffic, a 25% efficiency improvement is achieved, making OCS 12% more efficient than DSCM. Interestingly, the results show that for P2P only traffic, DSCM provides more savings of up to 12% than OCS, whereas for heterogeneous traffic, OCS can save up to 24.6% more than DSCM. Full article
(This article belongs to the Special Issue Secure and Reliable Autonomous Optical Communications and Networks)
Show Figures

Figure 1

19 pages, 3250 KiB  
Article
A Routing Optimization Method for Software-Defined Optical Transport Networks Based on Ensembles and Reinforcement Learning
by Junyan Chen, Wei Xiao, Xinmei Li, Yang Zheng, Xuefeng Huang, Danli Huang and Min Wang
Sensors 2022, 22(21), 8139; https://doi.org/10.3390/s22218139 - 24 Oct 2022
Cited by 17 | Viewed by 4690
Abstract
Optical transport networks (OTNs) are widely used in backbone- and metro-area transmission networks to increase network transmission capacity. In the OTN, it is particularly crucial to rationally allocate routes and maximize network capacities. By employing deep reinforcement learning (DRL)- and software-defined networking (SDN)-based [...] Read more.
Optical transport networks (OTNs) are widely used in backbone- and metro-area transmission networks to increase network transmission capacity. In the OTN, it is particularly crucial to rationally allocate routes and maximize network capacities. By employing deep reinforcement learning (DRL)- and software-defined networking (SDN)-based solutions, the capacity of optical networks can be effectively increased. However, because most DRL-based routing optimization methods have low sample usage and difficulty in coping with sudden network connectivity changes, converging in software-defined OTN scenarios is challenging. Additionally, the generalization ability of these methods is weak. This paper proposes an ensembles- and message-passing neural-network-based Deep Q-Network (EMDQN) method for optical network routing optimization to address this problem. To effectively explore the environment and improve agent performance, the multiple EMDQN agents select actions based on the highest upper-confidence bounds. Furthermore, the EMDQN agent captures the network’s spatial feature information using a message passing neural network (MPNN)-based DRL policy network, which enables the DRL agent to have generalization capability. The experimental results show that the EMDQN algorithm proposed in this paper performs better in terms of convergence. EMDQN effectively improves the throughput rate and link utilization of optical networks and has better generalization capabilities. Full article
(This article belongs to the Special Issue Smart Mobile and Sensing Applications)
Show Figures

Figure 1

26 pages, 1973 KiB  
Article
Results and Achievements of the ALLIANCE Project: New Network Solutions for 5G and Beyond
by Davide Careglio, Salvatore Spadaro, Albert Cabellos, Jose Antonio Lazaro, Pere Barlet-Ros, Joan Manel Gené, Jordi Perelló, Fernando Agraz Bujan, José Suárez-Varela, Albert Pàges, Jordi Paillissé, Paul Almasan, Jordi Domingo-Pascual and Josep Solé-Pareta
Appl. Sci. 2021, 11(19), 9130; https://doi.org/10.3390/app11199130 - 30 Sep 2021
Cited by 3 | Viewed by 3928
Abstract
Leaving the current 4th generation of mobile communications behind, 5G will represent a disruptive paradigm shift integrating 5G Radio Access Networks (RANs), ultra-high-capacity access/metro/core optical networks, and intra-datacentre (DC) network and computational resources into a single converged 5G network infrastructure. The present paper [...] Read more.
Leaving the current 4th generation of mobile communications behind, 5G will represent a disruptive paradigm shift integrating 5G Radio Access Networks (RANs), ultra-high-capacity access/metro/core optical networks, and intra-datacentre (DC) network and computational resources into a single converged 5G network infrastructure. The present paper overviews the main achievements obtained in the ALLIANCE project. This project ambitiously aims at architecting a converged 5G-enabled network infrastructure satisfying those needs to effectively realise the envisioned upcoming Digital Society. In particular, we present two networking solutions for 5G and beyond 5G (B5G), such as Software Defined Networking/Network Function Virtualisation (SDN/NFV) on top of an ultra-high-capacity spatially and spectrally flexible all-optical network infrastructure, and the clean-slate Recursive Inter-Network Architecture (RINA) over packet networks, including access, metro, core and DC segments. The common umbrella of all these solutions is the Knowledge-Defined Networking (KDN)-based orchestration layer which, by implementing Artificial Intelligence (AI) techniques, enables an optimal end-to-end service provisioning. Finally, the cross-layer manager of the ALLIANCE architecture includes two novel elements, namely the monitoring element providing network and user data in real time to the KDN, and the blockchain-based trust element in charge of exchanging reliable and confident information with external domains. Full article
(This article belongs to the Special Issue Novel Algorithms and Protocols for Networks, Volume II)
Show Figures

Figure 1

33 pages, 1792 KiB  
Article
Performance Analysis of Packet Aggregation Mechanisms and Their Applications in Access (e.g., IoT, 4G/5G), Core, and Data Centre Networks
by Godlove Suila Kuaban, Tülin Atmaca, Amira Kamli, Tadeusz Czachórski and Piotr Czekalski
Sensors 2021, 21(11), 3898; https://doi.org/10.3390/s21113898 - 4 Jun 2021
Cited by 8 | Viewed by 4236
Abstract
The transmission of massive amounts of small packets generated by access networks through high-speed Internet core networks to other access networks or cloud computing data centres has introduced several challenges such as poor throughput, underutilisation of network resources, and higher energy consumption. Therefore, [...] Read more.
The transmission of massive amounts of small packets generated by access networks through high-speed Internet core networks to other access networks or cloud computing data centres has introduced several challenges such as poor throughput, underutilisation of network resources, and higher energy consumption. Therefore, it is essential to develop strategies to deal with these challenges. One of them is to aggregate smaller packets into a larger payload packet, and these groups of aggregated packets will share the same header, hence increasing throughput, improved resource utilisation, and reduction in energy consumption. This paper presents a review of packet aggregation applications in access networks (e.g., IoT and 4G/5G mobile networks), optical core networks, and cloud computing data centre networks. Then we propose new analytical models based on diffusion approximation for the evaluation of the performance of packet aggregation mechanisms. We demonstrate the use of measured traffic from real networks to evaluate the performance of packet aggregation mechanisms analytically. The use of diffusion approximation allows us to consider time-dependent queueing models with general interarrival and service time distributions. Therefore these models are more general than others presented till now. Full article
(This article belongs to the Special Issue Selected Papers from MASCOTS 2020 and Workshop)
Show Figures

Figure 1

16 pages, 2082 KiB  
Article
ARMONIA: A Unified Access and Metro Network Architecture
by Aristotelis Kretsis, Ippokratis Sartzetakis, Polyzois Soumplis, Katerina Mitropoulou, Panagiotis Kokkinos, Petros Nicopolitidis, Georgios Papadimitriou and Emmanouel Varvarigos
Appl. Sci. 2020, 10(23), 8318; https://doi.org/10.3390/app10238318 - 24 Nov 2020
Cited by 3 | Viewed by 2650
Abstract
We present a self-configured and unified access and metro network architecture, named ARMONIA. The ARMONIA network monitors its status, and dynamically (re-)optimizes its configuration. ARMONIA leverages software defined networking (SDN) and network functions virtualization (NFV) technologies. These technologies enable the access and metro [...] Read more.
We present a self-configured and unified access and metro network architecture, named ARMONIA. The ARMONIA network monitors its status, and dynamically (re-)optimizes its configuration. ARMONIA leverages software defined networking (SDN) and network functions virtualization (NFV) technologies. These technologies enable the access and metro convergence and the joint and efficient control of the optical and the IP equipment used in these different network segments. Network monitoring information is collected and analyzed utilizing machine learning and big data analytics methods. Dynamic algorithms then decide how to adapt and dynamically optimize the unified network. The ARMONIA network enables unprecedented resource efficiency and provides advanced virtualization services, reducing the capital expenditures (CAPEX) and operating expenses (OPEX) and lowering the barriers for the introduction of new services. We demonstrate the benefits of the ARMONIA network in the context of dynamic resource provisioning of network slices. We observe significant spectrum and equipment savings when compared to static overprovisioning. Full article
(This article belongs to the Special Issue Exploiting Big Data in Communication Networks)
Show Figures

Figure 1

13 pages, 3804 KiB  
Article
Adaptive Compensation of Bandwidth Narrowing Effect for Coherent In-Phase Quadrature Transponder through Finite Impulse Response Filter
by Qiang Wang, Yang Yue, Jian Yao and Jon Anderson
Appl. Sci. 2019, 9(9), 1950; https://doi.org/10.3390/app9091950 - 13 May 2019
Cited by 4 | Viewed by 4059
Abstract
Coherent in-phase quadrature (IQ) transponders are ubiquitous in the long-haul and the metro optical networks. During the transmission, the coherent signal experiences a bandwidth narrowing effect after passing through multiple reconfigurable optical add-drop multiplexers (ROADMs). The coherent signal also experiences a bandwidth narrowing [...] Read more.
Coherent in-phase quadrature (IQ) transponders are ubiquitous in the long-haul and the metro optical networks. During the transmission, the coherent signal experiences a bandwidth narrowing effect after passing through multiple reconfigurable optical add-drop multiplexers (ROADMs). The coherent signal also experiences a bandwidth narrowing effect when electrical or optical components of the coherent IQ transponder experience aging. A dynamic method to compensate the bandwidth narrowing effect is thus required. In the coherent optical receiver, signal bandwidth is estimated from the raw analog-to-digital converter (ADC) outputs. By adaptively adjusting the tap coefficients of the finite impulse response (FIR) filter, simple post-ADC FIR filters can increase the resiliency of the coherent signal to the bandwidth narrowing effect. The influence of chromatic dispersion, polarization mode dispersion, and polarization dependent loss are studied comprehensively. Furthermore, the bandwidth information of the transmitted analog signal is fed back to the coherent optical transmitter for signal optimization, and the transmitter-side FIR filter thus changes accordingly. Full article
Show Figures

Figure 1

16 pages, 4499 KiB  
Article
Attack Detection for Healthcare Monitoring Systems Using Mechanical Learning in Virtual Private Networks over Optical Transport Layer Architecture
by Vasiliki Liagkou, Vasileios Kavvadas, Spyridon K. Chronopoulos, Dionysios Tafiadis, Vasilis Christofilakis and Kostas P. Peppas
Computation 2019, 7(2), 24; https://doi.org/10.3390/computation7020024 - 5 May 2019
Cited by 21 | Viewed by 5543
Abstract
Data security plays a crucial role in healthcare monitoring systems, since critical patient information is transacted over the Internet, especially through wireless devices, wireless routes such as optical wireless channels, or optical transport networks related to optical fibers. Many hospitals are acquiring their [...] Read more.
Data security plays a crucial role in healthcare monitoring systems, since critical patient information is transacted over the Internet, especially through wireless devices, wireless routes such as optical wireless channels, or optical transport networks related to optical fibers. Many hospitals are acquiring their own metro dark fiber networks for collaborating with other institutes as a way to maximize their capacity to meet patient needs, as sharing scarce and expensive assets, such as scanners, allows them to optimize their efficiency. The primary goal of this article is to develop of an attack detection model suitable for healthcare monitoring systems that uses internet protocol (IP) virtual private networks (VPNs) over optical transport networks. To this end, this article presents the vulnerabilities in healthcare monitoring system networks, which employ VPNs over optical transport layer architecture. Furthermore, a multilayer network architecture for closer integration of the IP and optical layers is proposed, and an application for detecting DoS attacks is introduced. The proposed application is a lightweight implementation that could be applied and installed into various remote healthcare control devices with limited processing and memory resources. Finally, an analytical and focused approach correlated to attack detection is proposed, which can also serve as a tutorial oriented towards even nonprofessionals for practical and learning purposes. Full article
(This article belongs to the Special Issue Optical Wireless Communication Systems)
Show Figures

Figure 1

Back to TopTop