Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = open absorption refrigerator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11177 KiB  
Article
Research on Energy-Saving Control Strategies for Single-Effect Absorption Refrigeration Systems
by Zhenchang Liu, Aiguo Wu and Haitang Wen
Energies 2024, 17(18), 4658; https://doi.org/10.3390/en17184658 - 18 Sep 2024
Cited by 1 | Viewed by 1108
Abstract
The automatic control device is a critical component of absorption refrigeration systems. Its functional enhancement can reduce operating costs, improve energy efficiency, and ensure long-term stable unit operation. Given that absorption refrigeration systems operate under various dynamic conditions, the rational design of control [...] Read more.
The automatic control device is a critical component of absorption refrigeration systems. Its functional enhancement can reduce operating costs, improve energy efficiency, and ensure long-term stable unit operation. Given that absorption refrigeration systems operate under various dynamic conditions, the rational design of control strategies is particularly important. This study analyzes the influence of changes in the cooling water and heat source water flow rates on the outlet temperature of chilled water in the unit based on the open-loop response characteristics of absorption refrigeration systems. It proposes a dual-loop energy-saving control strategy for single-effect hot water lithium bromide absorption refrigeration systems based on the setpoint comprehensive optimization algorithm. Considering the multiple variables, strong coupling, large inertia, long time delay, and nonlinear characteristics of absorption refrigeration systems, as well as the difficulties in modeling these systems, this study applies a model-free adaptive control algorithm to the system’s control. It derives both SISO and MIMO model-free control algorithms with time-delay components. Through simulations comparing MFAC, improved MFAC, and traditional PID control, the dual-loop energy-saving control strategy is demonstrated to effectively reduce system heat consumption by approximately 20%, decrease power consumption by about 10%, and enhance the system’s SCOP by approximately 19.3%. Full article
Show Figures

Figure 1

26 pages, 5748 KiB  
Article
Preparation and Effect of Methyl-Oleate-Based Polyol on the Properties of Rigid Polyurethane Foams as Potential Thermal Insulation Material
by Norsuhaili Kamairudin, Luqman Chuah Abdullah, Seng Soi Hoong, Dayang Radiah Awang Biak and Hidayah Ariffin
Polymers 2023, 15(14), 3028; https://doi.org/10.3390/polym15143028 - 13 Jul 2023
Cited by 7 | Viewed by 2565
Abstract
Recently, most of the commercial polyols used in the production of rigid polyurethane foams (RPUFs) have been derived from petrochemicals. Therefore, the introduction of modified palm oil derivatives-based polyol as a renewable material into the formulation of RPUFs is the focus of this [...] Read more.
Recently, most of the commercial polyols used in the production of rigid polyurethane foams (RPUFs) have been derived from petrochemicals. Therefore, the introduction of modified palm oil derivatives-based polyol as a renewable material into the formulation of RPUFs is the focus of this study. A palm oil derivative—namely, methyl oleate (MO)—was successfully modified through three steps of reactions: epoxidation reaction, ring-opened with glycerol, followed by amidation reaction to produce a bio-based polyol named alkanolamide polyol. Physicochemical properties of the alkanolamide polyol were analyzed. The hydroxyl value of alkanolamide polyol was 313 mg KOH/g, which is suitable for producing RPUFs. Therefore, RPUFs were produced by replacing petrochemical polyol with alkanolamide polyol. The effects of alkanolamide polyol on the physical, mechanical and thermal properties were evaluated. The results showed that the apparent density and compressive strength increased, and cell size decreased, upon introducing alkanolamide polyol. All the RPUFs exhibited low water absorption and excellent dimensional stability. The RPUFs made with increased amounts of alkanolamide polyol showed higher thermal conductivity. Nevertheless, the thermal conductivities of RPUFs made with alkanolamide polyol are still within the range for thermal insulating materials (<0.1 W/m.K). The thermal stability of RPUFs was improved with the addition of alkanolamide polyol into the system. Thus, the RPUFs made from alkanolamide polyol are potential candidates to be used as insulation for refrigerators or freezers. Full article
Show Figures

Figure 1

25 pages, 3241 KiB  
Article
Potential for Energy Utilization of Air Compression Section Using an Open Absorption Refrigeration System
by Bicui Ye, Shufei Sun and Zheng Wang
Appl. Sci. 2022, 12(13), 6373; https://doi.org/10.3390/app12136373 - 23 Jun 2022
Cited by 3 | Viewed by 1860
Abstract
In this paper, an open absorption refrigeration system is proposed to recover part of the waste compression heat while producing cooling capacity to further cool the compressed air itself. The self-utilization of the compression waste heat can significantly reduce the energy consumption of [...] Read more.
In this paper, an open absorption refrigeration system is proposed to recover part of the waste compression heat while producing cooling capacity to further cool the compressed air itself. The self-utilization of the compression waste heat can significantly reduce the energy consumption of air compression, and hence increase the energy efficiency of the cryogenic air separation unit. To illuminate the energy distribution and energy conversion principle of the open absorption refrigerator-assisted air compression section, a thermodynamic model is built and the simulation work conducted based on a practical triple-stage air compression section of a middle-scale cryogenic air separation unit. Our results indicate that the energy saving ratio is mainly constrained by the distribution of the cooling load of compressed air, which corresponds to the heat load of the generator and cooling capacity of the evaporator in the open absorption refrigerator. The energy saving ratio ranges from 0.52–8.05%, corresponding to the temperature range of 5–30 °C and humidity range of 0.002–0.010 kg/kg. It is also estimated, based on the economic analysis, that the payback period of the open absorption refrigeration system is less than one year, and the net project revenue during its life cycle reaches USD 5.7 M, thus showing an attractive economic potential. Full article
Show Figures

Figure 1

41 pages, 5490 KiB  
Review
Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications
by Alvaro A. S. Lima, Gustavo de N. P. Leite, Alvaro A. V. Ochoa, Carlos A. C. dos Santos, José A. P. da Costa, Paula S. A. Michima and Allysson M. A. Caldas
Energies 2021, 14(1), 48; https://doi.org/10.3390/en14010048 - 24 Dec 2020
Cited by 52 | Viewed by 10050
Abstract
The interest in employing absorption refrigeration systems is usually related to electricity’s precariousness since these systems generally use thermal rejects for their activation. The application of these systems is closely linked to the concept of energy polygeneration, in which the energy demand to [...] Read more.
The interest in employing absorption refrigeration systems is usually related to electricity’s precariousness since these systems generally use thermal rejects for their activation. The application of these systems is closely linked to the concept of energy polygeneration, in which the energy demand to operate them is reduced, which represents their main advantage over the conventional vapor compression system. Currently, the solution pairs used in commercial absorption chillers are lithium bromide/water and ammonia/water. The latter pair has been used in air conditioning and industrial processes due to the ammonia operation’s low temperature. Few review papers on absorption chillers have been published, discussing the use of solar energy as the input source of the systems, the evolution of the absorption refrigeration cycles over the last decades, and promising alternatives to increase the performance of absorption refrigeration systems. There is a lack of consistent studies about designing requirements for absorption chillers, so an updated review covering recent advances and suggested solutions to improve the use and operation of those absorption refrigeration systems using different working fluids is relevant. Hence, this presents a review of the state-of-the-art of ammonia/absorbent based absorption refrigeration systems, considering the most relevant studies, describing the development of this equipment over the years. The most relevant studies in the open literature were collected to describe this equipment’s development over the years, including thermodynamic properties, commercial manufacturers, experimental and numerical studies, and the prototypes designed and tested in this area. The manuscript focuses on reviewing studies in absorption refrigeration systems that use ammonia and absorbents, such as water, lithium nitrate, and lithium nitrate plus water. As a horizon to the future, the uses of absorption systems should be rising due to the increasing values of the electricity, and the environmental impact of the synthetic refrigerant fluids used in mechanical refrigeration equipment. In this context, the idea for a new configuration absorption chiller is to be more efficient, pollutant free to the environment, activated by a heat substantiable source, such as solar, with low cost and compactness structure to attend the thermal needs (comfort thermal) for residences, private and public buildings, and even the industrial and health building sector (thermal processes). To conclude, future recommendations are presented to deal with the improvement of the refrigeration absorption chiller by using solar energy, alternative fluids, multiple-effects, and advanced and hybrid configurations to reach the best absorption chiller to attend to the thermal needs of the residential and industrial sector around the world. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

29 pages, 3402 KiB  
Article
Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as Carriers for the Oral Delivery of Azithromycin: Optimization, In Vitro Characterization and Stability Assessment
by Reem Abou Assi, Ibrahim M. Abdulbaqi, Toh Seok Ming, Chan Siok Yee, Habibah A. Wahab, Shaik Mohammed Asif and Yusrida Darwis
Pharmaceutics 2020, 12(11), 1052; https://doi.org/10.3390/pharmaceutics12111052 - 4 Nov 2020
Cited by 44 | Viewed by 6389
Abstract
Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To [...] Read more.
Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions. Full article
Show Figures

Figure 1

18 pages, 3119 KiB  
Article
A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles
by Youcai Liang, Zhibin Yu and Wenguang Li
Appl. Sci. 2019, 9(20), 4242; https://doi.org/10.3390/app9204242 - 11 Oct 2019
Cited by 20 | Viewed by 6325
Abstract
In this paper, a heat driven cooling system that essentially integrated an organic Rankine cycle power plant with a vapour compression cycle refrigerator was investigated, aiming to provide an alternative to absorption refrigeration systems. The organic Rankine cycle (ORC) subsystem recovered energy from [...] Read more.
In this paper, a heat driven cooling system that essentially integrated an organic Rankine cycle power plant with a vapour compression cycle refrigerator was investigated, aiming to provide an alternative to absorption refrigeration systems. The organic Rankine cycle (ORC) subsystem recovered energy from the exhaust gases of internal combustion engines to produce mechanical power. Through a transmission unit, the produced mechanical power was directly used to drive the compressor of the vapour compression cycle system to produce a refrigeration effect. Unlike the bulky vapour absorption cooling system, both the ORC power plant and vapour compression refrigerator could be scaled down to a few kilowatts, opening the possibility for developing a small-scale waste heat-driven cooling system that can be widely applied for waste heat recovery from large internal combustion engines of refrigerated ships, lorries, and trains. In this paper, a model was firstly established to simulate the proposed concept, on the basis of which it was optimized to identify the optimum operation condition. The results showed that the proposed concept is very promising for the development of heat-driven cooling systems for recovering waste heat from internal combustion engines’ exhaust gas. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

22 pages, 5505 KiB  
Article
Energetic and Exergetic Investigations of Hybrid Configurations in an Absorption Refrigeration Chiller by Aspen Plus
by Xiao Zhang, Liang Cai and Tao Chen
Processes 2019, 7(9), 609; https://doi.org/10.3390/pr7090609 - 10 Sep 2019
Cited by 14 | Viewed by 4883
Abstract
In the present study, a steady-state simulation model was built and validated by Aspen Plus to assess the performance of an absorption refrigeration chiller according to the open literature. Given the complex heat transfer happening in the absorbers and the generator, several assumptions [...] Read more.
In the present study, a steady-state simulation model was built and validated by Aspen Plus to assess the performance of an absorption refrigeration chiller according to the open literature. Given the complex heat transfer happening in the absorbers and the generator, several assumptions were proposed to simplify the model, for which a new parameter ε l i q was introduced to describe the ratio of possible heat that could be recovered from the absorption and heat-transferring process in the solution cooling absorber. The energetic and the exergetic investigations of a basic cycle and hybrid cycles were conducted, in which the following parameters were analyzed: coefficient of performance (COP), exergetic efficiency, exergy destruction, and irreversibility. According to the results, the basic cycle exhibited major irreversibility in the absorbers and the generator. Subsequently, two proposed novel configurations were adopted to enhance its performance; the first (configuration 1) involved a compressor between a solution heat exchanger and a solution cooling absorber, and the second (configuration 2) involved a compressor between a rectifier and a condenser. The peak COP and the overall exergetic efficiency (η) of configuration 1 were found to be better, increasing by 15% and 5.5%, respectively, and those of configuration 2 were also upregulated by 5% and 4%, respectively. The rise in intermediate compressor ratio not only reduced the driving generator temperature of both configurations but also expanded the operating range of the system under configuration 1, thus proving their feasibility in waste heat sources and the superiority of configuration 1. Detailed information about the optimal state for hybrid cycles is also presented. Full article
Show Figures

Figure 1

Back to TopTop