Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = on-site antenna measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2973 KiB  
Article
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
by Oluwole John Famoriji and Thokozani Shongwe
Appl. Sci. 2025, 15(13), 7302; https://doi.org/10.3390/app15137302 - 28 Jun 2025
Viewed by 268
Abstract
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G [...] Read more.
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G services are able to meet serious demands for bandwidth. To evaluate the ground-plane radiation level of electromagnetics close to 5G base stations, we propose a unique machine-learning-based approach. Because a machine learning algorithm is trained by utilizing data obtained from numerous 5G base stations, it exhibits the capability to estimate the strength of the electric field effectively at every point of arbitrary radiation, while the base station generates a network and serves various numbers of 5G terminals running in different modes of service. The model requires different numbers of inputs, including the antenna’s transmit power, antenna gain, terminal service modes, number of 5G terminals, distance between the 5G terminals and 5G base station, and environmental complexity. Based on experimental data, the estimation method is both feasible and effective; the machine learning model’s mean absolute percentage error is about 5.89%. The degree of correctness shows how dependable the developed technique is. In addition, the developed approach is less expensive when compared to measurements taken on-site. The results of the estimates can be used to save test costs and offer useful guidelines for choosing the best location, which will make 5G base station electromagnetic radiation management or radio wave coverage optimization easier. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

19 pages, 4530 KiB  
Article
Optimization of Natural Ventilation via Computational Fluid Dynamics Simulation and Hybrid Beetle Antennae Search and Particle Swarm Optimization Algorithm for Yungang Grottoes, China
by Xinrui Xu, Hongbin Yan, Jizhong Huang and Tingzhang Liu
Buildings 2025, 15(6), 937; https://doi.org/10.3390/buildings15060937 - 16 Mar 2025
Viewed by 492
Abstract
The Yungang Grottoes are undergoing degradation by weather and environmental erosion. Here, we propose a natural ventilation strategy to optimize the environments in Cave 9 and Cave 10 of the Yungang Grottoes. The novelty of this work is to use an effective computational [...] Read more.
The Yungang Grottoes are undergoing degradation by weather and environmental erosion. Here, we propose a natural ventilation strategy to optimize the environments in Cave 9 and Cave 10 of the Yungang Grottoes. The novelty of this work is to use an effective computational fluid dynamics (CFD) simulation and a hybrid of the beetle antennae search and particle swarm optimization algorithms (BAS–PSO) to determine which natural ventilation scenario yields the maximum total heat transfer rate (Qmax). A CFD hygrothermal model is first developed and shows high precision in predicting temperature and humidity conditions based on real-time measured data. The natural ventilation efficiency is enhanced by different configurations of doors and windows with four ventilation rates. Combined with eXtreme Gradient Boosting (XGBoost) fitting, the hybrid BAS–PSO algorithm yields the largest Qmax (5746.74 W), which is further confirmed by CFD simulations with the outcome of a comparable Qmax (5730.67 W). It indicates that the hybrid algorithm exhibits a good performance in the identification of optimal configurations. The effectiveness of the proposed natural ventilation strategy is verified by on-site measured data. Our findings provide an effective natural ventilation strategy that is beneficial to the energy-efficient preservation of the Yungang Grottoes. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 6300 KiB  
Communication
Real-Time Water Level Monitoring Based on GNSS Dual-Antenna Attitude Measurement
by Pengjie Zhang, Zhiguo Pang, Jingxuan Lu, Wei Jiang and Minghan Sun
Remote Sens. 2023, 15(12), 3119; https://doi.org/10.3390/rs15123119 - 14 Jun 2023
Cited by 3 | Viewed by 3353
Abstract
Real-time and high-precision water level monitoring is crucial for the fields of hydrology, hydraulic engineering, and disaster prevention and control. The most prevalent method for measuring water level is through the use of water level gauges, which can be costly and have limited [...] Read more.
Real-time and high-precision water level monitoring is crucial for the fields of hydrology, hydraulic engineering, and disaster prevention and control. The most prevalent method for measuring water level is through the use of water level gauges, which can be costly and have limited coverage. In recent years, Global Navigation Satellite System Reflectometry (GNSS-R) technology has emerged as a promising approach for water level monitoring due to its low cost and high coverage. However, a limitation of current GNSS-R technology is the extended time required to record signals, which hinders its potential for real-time application. This paper introduces a novel real-time water level monitoring method based on GNSS dual-antenna attitude measurement and develops a model to invert water level based on baseline vector. This method uses double-difference observations to eliminate errors caused by various factors, such as satellite and receiver clock, and ionospheric and tropospheric delay. To avoid the impact of detecting and correcting cycle slips during real-time operations, a single-epoch calculation method is introduced. In order to verify the stability and reliability of our method, field tests were carried out at Dongshahe Station in Beijing. We obtained water level data with a time resolution of 1 Hz through field experiments. Experimental data collected from 12 May to 8 June 2022 and from 4 July to 8 August 2022 showed good agreement with on-site water gauge measurements, with root mean square errors of 2.77 cm and 2.54 cm, respectively. Experimental results demonstrate that this method can achieve high-precision, high-temporal-resolution water level monitoring. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation III)
Show Figures

Graphical abstract

21 pages, 7810 KiB  
Review
Frequency Range of UHF PD Measurements in Power Transformers
by Stefan Tenbohlen, Chandra Prakash Beura, Wojciech Sikorski, Ricardo Albarracín Sánchez, Bruno Albuquerque de Castro, Michael Beltle, Pascal Fehlmann, Martin Judd, Falk Werner and Martin Siegel
Energies 2023, 16(3), 1395; https://doi.org/10.3390/en16031395 - 30 Jan 2023
Cited by 27 | Viewed by 5450
Abstract
Although partial discharge (PD) measurement is a well-accepted technology to assess the quality of the insulation system of power transformers, there are still uncertainties about which frequency range PDs radiate and which frequency range should be evaluated in a measurement. This paper discusses [...] Read more.
Although partial discharge (PD) measurement is a well-accepted technology to assess the quality of the insulation system of power transformers, there are still uncertainties about which frequency range PDs radiate and which frequency range should be evaluated in a measurement. This paper discusses both a UHF PD frequency range obtained from studies investigating laboratory experiments and a frequency range from numerous practical use cases with online and on-site measurements. The literature review reveals a frequency spectrum of ultrahigh-frequency (UHF) PD measurements in the range of 200 MHz to 1 GHz for most publications. Newer publications extend this range from 3 to 6 GHz. The use cases present UHF PD measurements at transformers with power ratings up to 1000 MVA to determine frequency ranges which are considered effective for practical applications. The “common” frequency range, where measurements from all use cases provide signal power, is from approximately 400 MHz to 900 MHz, but it is noted that the individual frequency range, as well as the peak UHF signal power, strongly varies from case to case. We conclude from the discussed laboratory experiments and practical observations that UHF PD measurements in power transformers using either valve or window antennas, according to Cigré, are feasible methods to detect PD. Full article
(This article belongs to the Special Issue Design and Optimization of Power Transformer Diagnostics)
Show Figures

Figure 1

8 pages, 1378 KiB  
Communication
A Smartphone Integrated Platform for Ratiometric Fluorescent Sensitive and Selective Determination of Dipicolinic Acid
by Xiang Li, Junsong Wu, Huaguang Hu, Fangfang Liu and Jialian Wang
Biosensors 2022, 12(8), 668; https://doi.org/10.3390/bios12080668 - 22 Aug 2022
Cited by 4 | Viewed by 2468
Abstract
A desirable lanthanide-based ratiometric fluorescence probe was designed as a multifunctional nanoplatform for the determination of dipicolinic acid (DPA), a unique bacterial endospore biomarker, with high selectivity and sensitivity. The carbon dots (CDs) with blue emission wavelengths at 470 nm are developed with [...] Read more.
A desirable lanthanide-based ratiometric fluorescence probe was designed as a multifunctional nanoplatform for the determination of dipicolinic acid (DPA), a unique bacterial endospore biomarker, with high selectivity and sensitivity. The carbon dots (CDs) with blue emission wavelengths at 470 nm are developed with europium ion (Eu3+) to form Eu3+/CDs fluorescent probes. DPA can specifically combine with Eu3+ and then transfer energy from DPA to Eu3+ sequentially through the antenna effect, resulting in a distinct increase in the red fluorescence emission peak at 615 nm. The fluorescence intensity ratio of Eu3+/CDs (fluorescence intensity at 615 nm/fluorescence intensity at 470 nm) showed good linearity and low detection limit. The developed ratiometric nanoplatform possesses great potential for application in complex matrices owing to its specificity for DPA. In addition, the integration of a smartphone with the Color Picker APP installed enabled point-of-care testing (POCT) with quantitative measurement capabilities, confirming the great potential of the as-prepared measurement platform for on-site testing. Full article
Show Figures

Figure 1

13 pages, 2479 KiB  
Article
Smartphone-Based NFC Potentiostat for Wireless Electrochemical Sensing
by Karnpimon Krorakai, Supannika Klangphukhiew, Sirinan Kulchat and Rina Patramanon
Appl. Sci. 2021, 11(1), 392; https://doi.org/10.3390/app11010392 - 3 Jan 2021
Cited by 58 | Viewed by 7471
Abstract
Most electrochemical sensing requires affordable, portable and easy-to-use electrochemical devices for use in point-of-care testing and resource-limited settings. This work presents the design and evaluates the analytical performance of a near-field communication (NFC) potentiostat, a flat card-sized electrochemical device containing a microchip for [...] Read more.
Most electrochemical sensing requires affordable, portable and easy-to-use electrochemical devices for use in point-of-care testing and resource-limited settings. This work presents the design and evaluates the analytical performance of a near-field communication (NFC) potentiostat, a flat card-sized electrochemical device containing a microchip for electrical analysis and an NFC antenna for smartphone connection. The NFC interface is a wireless connection between the microchip and smartphone to simplify measuring units and make the potentiostat into a passive operated device, running without a battery. The proposed potentiostat can perform the common electrochemical techniques including cyclic voltammetry and chronoamperometry with a current range and voltage range of ±20 µA and ±0.8 V. The performance of the NFC potentiostat is compared to a commercial benchtop potentiostat using ferricyanide as a standard solution. The results show that the NFC potentiostat is comparable to a commercial benchtop potentiostat for both cyclic voltammetry and chronoamperometry measurements. The application of the proposed potentiostat is demonstrated by measuring ascorbic acid concentration. As described, the NFC potentiostat, which is compatible with a smartphone, is low-cost, small in size and user-friendly. Thus, the device can be developed for on-site measurement to apply in various fields. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

18 pages, 7445 KiB  
Article
Dual-Probe Near-Field Phaseless Antenna Measurement System on Board a UAV
by María García Fernández, Yuri Álvarez López and Fernando Las-Heras
Sensors 2019, 19(21), 4663; https://doi.org/10.3390/s19214663 - 27 Oct 2019
Cited by 16 | Viewed by 5479
Abstract
On-site antenna measurement has been recently attracting an increasing interest in order to assess the antenna performance in real operational environments. The complexity and cost of these kind of measurements have been significantly cut down due to recent developments in unmanned aerial vehicles’ [...] Read more.
On-site antenna measurement has been recently attracting an increasing interest in order to assess the antenna performance in real operational environments. The complexity and cost of these kind of measurements have been significantly cut down due to recent developments in unmanned aerial vehicles’ (UAVs) hardware and antenna measurement post-processing techniques. In particular, the introduction of positioning and geo-referring subsystems capable of providing centimeter-level accuracy together with the use of phase retrieval techniques and near-field to far-field transformation algorithms, have enabled near field measurements using UAVs. This contribution presents an improved UAV-based on-site antenna measurement system. On the one hand, the simultaneous acquisition on two measurement surfaces has been introduced and calibrated properly, thus reducing geo-referring uncertainties and flight time. On the other hand, the positioning and geo-referring subsystem has been enhanced by means of a dual-band real time kinematics (RTK) unit. The system capabilities were validated by measuring an offset reflector antenna, and the results were compared with the measurements at the spherical range in the anechoic chamber and with the measurements collected with a previous version of the implemented system. Full article
Show Figures

Graphical abstract

22 pages, 10560 KiB  
Article
Research on the Algorithm Model for Measuring Ocean Waves Based on Satellite GPS Signals in China
by Zhanhui Qi, Shaowu Li, Mingbing Li, Chaoqun Dang, Dongbo Sun, Dongliang Zhang, Ning Liu and Suoping Zhang
Sensors 2019, 19(3), 541; https://doi.org/10.3390/s19030541 - 28 Jan 2019
Cited by 5 | Viewed by 5434
Abstract
In recent years, the GPS wave buoy has been developed for in situ wave monitoring based on satellite GPS signals. Many research works have been completed on the GPS-based wave measurement technology and great progress has been achieved. The basic principle of the [...] Read more.
In recent years, the GPS wave buoy has been developed for in situ wave monitoring based on satellite GPS signals. Many research works have been completed on the GPS-based wave measurement technology and great progress has been achieved. The basic principle of the GPS wave buoy is to calculate the movement velocity of the buoy using the Doppler frequency shift of satellite GPS signals, and then to calculate the wave parameters from the movement velocity according to ocean wave theory. The shortage of the GPS wave buoy is the occasional occurrence of some unusual values in the movement velocity. This is mainly due to the fact that the GPS antenna is occasionally covered by sea water and cannot normally receive high-quality satellite GPS signals. The traditional solution is to remove these unusual movement velocity values from the records, which requires furthering extend the acquisition time of satellite GPS signals to ensure there is a large enough quantity of effective movement velocity values. Based on the traditional GPS wave measurement technology, this paper presents the algorithmic flow and proposes two improvement measures. On the one hand, the neural network algorithm is used to correct the unusual movement velocity data so that extending the acquisition time of satellite GPS signals is not necessary and battery power is saved. On the other hand, the Gaussian low-pass filter is used to correct the raw directional wave spectrum, which can further eliminate the influence of noise spectrum energy and improve the measurement accuracy. The on-site sea test of the SBF7-1A GPS wave buoy, developed by the National Ocean Technology Center in China, and the gravity-acceleration-type DWR-MKIII Waverider buoy are highlighted in this article. The wave data acquired by the two buoys are analyzed and processed. It can be seen from the processed results that the ocean wave parameters from the two kinds of wave buoys, such as wave height, wave period, wave direction, wave frequency spectrum, and directional wave spectrum, are in good consistency, indicating that the SBF7-1A GPS wave buoy is comparable to the traditional gravity-acceleration-type wave buoy in terms of its accuracy. Therefore, the feasibility and validity of the two improvement measures proposed in this paper are confirmed. Full article
(This article belongs to the Special Issue High-Precision GNSS in Remote Sensing Applications)
Show Figures

Figure 1

14 pages, 7777 KiB  
Article
Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag
by Yongsheng Liu, Fangming Deng, Yigang He, Bing Li, Zhen Liang and Shuangxi Zhou
Sensors 2017, 17(7), 1463; https://doi.org/10.3390/s17071463 - 22 Jun 2017
Cited by 30 | Viewed by 7941
Abstract
This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a [...] Read more.
This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple. Full article
(This article belongs to the Special Issue Low Power Embedded Sensing: Hardware-Software Design and Applications)
Show Figures

Figure 1

10 pages, 1713 KiB  
Article
Impact of Indoor Environment on Path Loss in Body Area Networks
by Sławomir Hausman and Łukasz Januszkiewicz
Sensors 2014, 14(10), 19551-19560; https://doi.org/10.3390/s141019551 - 20 Oct 2014
Cited by 12 | Viewed by 6873
Abstract
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both [...] Read more.
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment—room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest–back and chest–arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation. Full article
Show Figures

Back to TopTop