Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = odorant binding proteins (OBPs) gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6112 KiB  
Article
The Olfactory System of Dolichogenidea gelechiidivoris (Marsh) (Hymenoptera: Braconidae), a Natural Enemy of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
by Shu-Yan Yan, He-Sen Yang, Cong Huang, Gui-Fen Zhang, Judit Arnó, Jana Collatz, Chuan-Ren Li, Fang-Hao Wan, Wan-Xue Liu and Yi-Bo Zhang
Int. J. Mol. Sci. 2025, 26(15), 7312; https://doi.org/10.3390/ijms26157312 - 29 Jul 2025
Viewed by 237
Abstract
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer [...] Read more.
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer antennae (2880.8 ± 20.36 μm) than females (2137.23 ± 43.47 μm), demonstrating pronounced sexual dimorphism. Scanning electron microscopy identified similar sensilla types on both sexes, but differences existed in the length and diameter of specific sensilla. Transcriptomic analysis of adult antennae uncovered molecular differentiation, identifying 11 odorant-binding proteins (OBPs) and 20 odorant receptors (ORs), with 27 chemosensory genes upregulated in females and 4 enriched in males. Integrating morphological and molecular evidence demonstrates complementary sexual specialization in the olfactory apparatus of D. gelechiidivoris. Linking these findings to the potential functions of different sensilla types, as discussed in the context of prior research, provides crucial insights into the sex-specific use of volatile cues. These findings provide critical insights into the use of volatile signals in this highly relevant species for biological control targeting T. absoluta. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 6031 KiB  
Article
Identification and Expression Profiles of Chemosensory Genes in the Antennal Transcriptome of Protaetia brevitarsis (Coleoptera: Scarabaeidae)
by Shi-Hang Zhao, Yang Yue, Qi Gao, Rui-Tao Yu, Zhao-Hui Yang, Nan Zhou and Guo-Liang Xu
Insects 2025, 16(6), 607; https://doi.org/10.3390/insects16060607 - 9 Jun 2025
Viewed by 1438
Abstract
Chemosensory systems play a pivotal role in insect survival and reproduction by mediating the detection of volatile organic compounds in the environment. Protaetia brevitarsis (Coleoptera: Scarabaeidae), a phytophagous pest widely distributed across East Asia, poses a significant threat to agro-horticultural systems through crop [...] Read more.
Chemosensory systems play a pivotal role in insect survival and reproduction by mediating the detection of volatile organic compounds in the environment. Protaetia brevitarsis (Coleoptera: Scarabaeidae), a phytophagous pest widely distributed across East Asia, poses a significant threat to agro-horticultural systems through crop damage. We conducted antennal transcriptome sequencing of adult beetles and identified 117 chemosensory-related genes, including 66 odorant receptors (ORs), 20 ionotropic receptors, 10 gustatory receptors, 13 odorant-binding proteins (OBPs), four chemosensory proteins, and four sensory neuron membrane proteins. Tissue-specific expression profiling revealed the antennal enrichment of five PbreOBP genes and twenty-three ORs. Notably, sexual dimorphism was observed in OR expression patterns. PbreOR1/6/17/18/21/22/30/32 exhibited male-biased antennal expression, whereas PbreOR25/26/29/38/41/44/61 demonstrated female-biased antennal expression, indicating their potential involvement in sex-specific behaviors, such as pheromone detection and oviposition site selection. A comprehensive description of the antenna chemosensory-related genes of P. brevitarsis has deepened our understanding of the olfactory mechanisms in coleopteran insects. This study also provides a basis for understanding the molecular mechanisms underlying olfaction in P. brevitarsis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 3685 KiB  
Article
Mechanisms of Impact of Alnus ferdinandi-coburgii Odor Substances on Host Location of Tomicus yunnanensis
by Jingyi Bo, Wen Li, Xiangyi Li, Zongbo Li, Xiangzhong Mao, Bin Yang and Ning Zhao
Insects 2025, 16(6), 553; https://doi.org/10.3390/insects16060553 - 23 May 2025
Cited by 1 | Viewed by 534
Abstract
In the chemosensory system of insects, odorant-binding proteins (OBPs) and odorant-degrading enzymes (ODEs) play a role in the host location process. This study identified and analyzed chemosensory-related genes from the transcriptomes of different tissues of male and female adults of Tomicus yunnanensis. [...] Read more.
In the chemosensory system of insects, odorant-binding proteins (OBPs) and odorant-degrading enzymes (ODEs) play a role in the host location process. This study identified and analyzed chemosensory-related genes from the transcriptomes of different tissues of male and female adults of Tomicus yunnanensis. Subsequently, host odorants from Pinus yunnanensis and non-host odorants from Alnus ferdinandi-coburgii were used to treat the adults of T. yunnanensis to clarify the gene expression changes in the insects and, combined with molecular docking, to explore the mechanism of the non-host odor interfering with the host localisation of T. yunnanensis. A total of 137 chemosensory-related genes were obtained, among which TyunOBP6 was specifically highly expressed in the antennae of T. yunnanensis; TyunCYP4G2 and TyunCYP6DF1 were highly expressed in the remnants of T. yunnanensis, selected as key genes for further research. The odor interference experiment results show that both host and non-host odorants caused up-regulation of TyunOBP6 in antennal expression, and significant changes in the expression of TyunCYP4G2 and TyunCYP6DF1 in the remnants were also observed. The molecular docking results indicate that non-host compounds could compete with host compounds for protein binding sites. The non-host odor of A. ferdinandi-coburgii can interfere with TyunOBPs and TyunCYPs in T. yunnanensis and affect their host localization. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

23 pages, 14601 KiB  
Article
Deciphering the Olfactory Mechanisms of Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae): Insights from Transcriptome Analysis and Molecular Docking
by Hui Li, Sheng Qiao, Xiwen Hong and Yangyang Wei
Insects 2025, 16(5), 461; https://doi.org/10.3390/insects16050461 - 27 Apr 2025
Cited by 1 | Viewed by 879
Abstract
Olfaction is crucial for insect activities such as host seeking, foraging, oviposition, and predator avoidance. While olfactory proteins have been identified across several insect species, their specific functions are largely enigmatic. In this study, we investigated the olfactory proteins of the Angoumois grain [...] Read more.
Olfaction is crucial for insect activities such as host seeking, foraging, oviposition, and predator avoidance. While olfactory proteins have been identified across several insect species, their specific functions are largely enigmatic. In this study, we investigated the olfactory proteins of the Angoumois grain moth, Sitotroga cerealella Olivier. A total of 165 presumptive olfactory genes were identified in the antennal transcriptome of S. cerealella, encompassing 33 odorant-binding proteins (OBPs), 10 chemosensory proteins (CSPs), 58 odorant receptors (ORs), 41 ionotropic receptors (IRs), 21 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). BLASTX and a phylogenetic analysis showed a high similarity of these genes to the orthologs in other model insects. A qRT-PCR analysis demonstrated that ScerOBP15 and ScerOBP23 are specifically and highly expressed in antennae, exhibiting male-biased expression patterns. Moreover, molecular docking revealed their strong binding affinity to the wheat volatiles n-heptadecane and geranyl acetone. Also, the potential active sites within ScerOBP15 and ScerOBP23 that engage with these volatiles have been identified, implying a possible role in host localization. Our findings shed light on the mechanisms underlying the behavioral responses of S. cerealella to wheat odors, enhance our comprehension of their olfactory processes, and pave the way for the development of highly specific and sustainable pest management strategies. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

17 pages, 5275 KiB  
Article
Genome-Wide Identification and Expression Profiling of Odorant-Binding Protein Genes in the Bean Flower Thrips Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae)
by Gen Xia, Lang Yang, Boliao Li, Qinli Wang, Lifei Huang, Xiaoli Tian and Guohui Zhang
Insects 2025, 16(2), 212; https://doi.org/10.3390/insects16020212 - 14 Feb 2025
Cited by 2 | Viewed by 886
Abstract
Megalurothrips usitatus is an economically important vegetable pest. Because of the growing demand for reducing pesticide use on vegetables, new environmentally friendly strategies for controlling M. usitatus are urgently needed. Insect odorant-binding proteins are prospective targets for screening environmentally friendly odorant attractants for pest [...] Read more.
Megalurothrips usitatus is an economically important vegetable pest. Because of the growing demand for reducing pesticide use on vegetables, new environmentally friendly strategies for controlling M. usitatus are urgently needed. Insect odorant-binding proteins are prospective targets for screening environmentally friendly odorant attractants for pest control. However, very little is known about OBP genes in M. usitatus. Here, we identified 14 OBPs in the M. usitatus genome using HMMER and BLAST. The chromosomal location showed that these OBPs were widely distributed across eight chromosomes. The analysis of the gene and protein structure characteristics of OBPs in M. usitatus revealed substantial diversity within the OBP gene family. The spatiotemporal expression profiles showed that ten out of 14 MusiOBPs displayed male biased expression, which were highly expressed in antennae, suggesting that they may play a crucial role in the recognition of host plant volatiles and thrips aggregation pheromones. Notably, only MusiOBP8 was significantly higher expressed in female adults, indicating a potential involvement in reproduction. Moreover, MusiOBP7 and MusiOBP13 were highly expressed in the pupae, indicating their possible role in immune responses. These results provide an important foundation for further exploration of the functions of the OBPs in M. usitatus. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

15 pages, 12775 KiB  
Article
Transcriptome Profiling of Euproctis pseudoconspersa Reveals Candidate Olfactory Genes for Type III Sex Pheromone Detection
by Xiangzhi Zhang, Shunsi Li, Zongxiu Luo, Xiaoming Cai, Lei Bian, Chunli Xiu, Nanxia Fu, Naiyong Liu, Zhengqun Zhang and Zhaoqun Li
Int. J. Mol. Sci. 2025, 26(4), 1405; https://doi.org/10.3390/ijms26041405 - 7 Feb 2025
Cited by 1 | Viewed by 813
Abstract
The tea tussock moth (Euproctis pseudoconspersa) is a common tea plantation pest with Type III sex pheromone components (SPCs). However, the olfactory genes involved in the perception of Type III SPCs remain unknown. To identify the olfactory genes involved in E [...] Read more.
The tea tussock moth (Euproctis pseudoconspersa) is a common tea plantation pest with Type III sex pheromone components (SPCs). However, the olfactory genes involved in the perception of Type III SPCs remain unknown. To identify the olfactory genes involved in E. pseudoconspersa olfactory perception, we sequenced the transcriptomes of different tissues from male and female moths. We identified 27 chemosensory proteins, 39 odorant-binding proteins (OBPs), 28 ionotropic receptors (IRs), and 67 odorant receptors (ORs). Phylogenetic and antennal abundance analyses showed that EpseOR12, EpseOR13, EpseOR15, EpseOR16, and EpseOR18 belonged to the pheromone receptor clades of Type II moths, with predominant expression in male antennae. Besides these EpseORs, EpseOR14 and EpseOR32 were two of the most abundant EpseORs in male antennae, where they were predominantly expressed. Four pheromone-binding proteins (PBPs) were identified, with higher expression in male antennae. EpseORs and EpsePBPs may be involved in Type III SPC detection. Additionally, a few EpseOBPs, EpseIRs, and EpseORs were predominantly expressed in either male or female antennae. These genes may play important roles in olfaction and may be involved in detecting host plant volatiles and pheromones. These results provide a foundation for further exploration of the molecular mechanisms of E. pseudoconspersa olfaction. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 9936 KiB  
Article
Identification of Candidate Olfactory Genes in the Antennal Transcriptome of Loxostege sticticalis Trapped by Three Different Sex Pheromone Blends
by Mengke Zhang, Sumei Zhao, Zhiping Xue, Jiaying Sun, Jiangning Hao, Fengzhi Deng, Junxia Huang, Caroline Du and Yongjun Du
Insects 2025, 16(2), 152; https://doi.org/10.3390/insects16020152 - 3 Feb 2025
Viewed by 943
Abstract
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation [...] Read more.
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation of many proteins, such as odorant-binding proteins (OBPs) and odorant receptors (ORs), but ORs play a central role in olfactory specificity and sensitivity. The beet webworm, Loxostege sticticalis, is an omnivorous agricultural pest that endangers crops and poses a significant risk to the agricultural and animal husbandry production in northern China. In this study, Illumina sequencing was conducted on the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends. A total of 10,320 DEGs were identified, from which 46 candidate olfactory genes were selected for further analysis. These candidate olfactory genes comprise 13 odorant receptors, 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs), 12 odorant-binding proteins, and 13 chemosensory proteins (CSPs). In summary, we analyzed the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends and identified several candidate olfactory genes. This discovery offers a foundation for further molecular-level investigations into the olfactory system of L. sticticalis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

16 pages, 4494 KiB  
Article
Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae)
by Yu Zhang, Yanyan Li, Haibin Han, Xiaoling Wang, Shujing Gao, Qing Zhao, Halima Bieerdebieke, Linbo Xu, Qicong Zang, Hui Wang, Penghua Bai and Kejian Lin
Life 2024, 14(12), 1705; https://doi.org/10.3390/life14121705 - 23 Dec 2024
Cited by 1 | Viewed by 958
Abstract
The beet webworm, Loxostege sticticalis, is a typical migratory pest. Although miRNAs participate in many physiological functions, little is known about the functions of miRNAs in olfactory regulation. In this study, 1120 (869 known and 251 novel) miRNAs were identified in the [...] Read more.
The beet webworm, Loxostege sticticalis, is a typical migratory pest. Although miRNAs participate in many physiological functions, little is known about the functions of miRNAs in olfactory regulation. In this study, 1120 (869 known and 251 novel) miRNAs were identified in the antennae of L. sticticalis by using high-throughput sequencing technology. Among the known miRNAs, 189 from 49 families were insect-specific, indicating that these miRNAs might play unique roles in insects. Furthermore, based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found that 3647 and 1393 miRNAs were associated with localization and the regulation of localization, respectively, and 80 miRNAs were enriched in the neuroactive ligand–receptor interaction pathway. These miRNAs might be involved in the olfactory system of L. sticticalis. Notably, qRT-PCR showed that most of the tested miRNAs presented similar expression patterns compared with the RNA-seq data and that miR-87-3, novel-miR-78, and novel-miR-142 were significantly differentially expressed in the antennae of males and females. In addition, 21 miRNAs were predicted to target 23 olfactory genes, including 10 odorant-binding proteins (OBPs), 3 chemosensory proteins (CSPs), 4 odorant receptors (ORs), 1 ionotropic receptor (IR), and 5 gustatory receptors (GRs). The olfactory-related miRNAs exhibited low-abundance transcripts, except undef-miR-55 and undef-miR-523, and gender-biased expression was not observed for olfactory-related miRNAs. Our findings provide an overview of the potential miRNAs involved in olfactory regulation, which may provide important information on the function of miRNAs in the insect olfactory system. Full article
Show Figures

Figure 1

15 pages, 14402 KiB  
Article
Pheromone-Binding Protein 1 Performs a Dual Function for Intra- and Intersexual Signaling in a Moth
by Yidi Zhan, Jiahui Zhang, Mengxian Xu, Frederic Francis and Yong Liu
Int. J. Mol. Sci. 2024, 25(23), 13125; https://doi.org/10.3390/ijms252313125 - 6 Dec 2024
Cited by 2 | Viewed by 1016
Abstract
Moths use pheromones to ensure intraspecific communication. Nevertheless, few studies are focused on both intra- and intersexual communication based on pheromone recognition. Pheromone-binding proteins (PBPs) are generally believed pivotal for male moths in recognizing female pheromones. Our research revealed that PBP1 of Agriphila [...] Read more.
Moths use pheromones to ensure intraspecific communication. Nevertheless, few studies are focused on both intra- and intersexual communication based on pheromone recognition. Pheromone-binding proteins (PBPs) are generally believed pivotal for male moths in recognizing female pheromones. Our research revealed that PBP1 of Agriphila aeneociliella (AaenPBP1) serves a dual function in both intra- and intersexual pheromone recognition. Here, a total of 20 odorant-binding protein (OBP) family genes from A. aeneociliella were identified and subjected to transcriptional analysis. Among these, AaenPBP1 was primarily highly expressed in the antennae. Competitive fluorescence binding assays and molecular docking analyses demonstrated that AaenPBP1 exhibits a strong binding affinity for the female sex pheromone (Z)-9-Hexadecenyl acetate and the male pheromone 1-Nonanal. Notably, hydrogen bonds were observed between Ser56 and the ligands. The analysis of pheromone components and PBPs in lepidopteran lineage suggested that their strong and precise interactions, shaped by coevolution, may play a crucial role in facilitating reproductive isolation in moths. Our findings provide valuable insight into the functional significance of PBPs in invertebrates and support the development of behavioral regulation tools as part of an integrated pest management strategy targeting crambid pests. Full article
(This article belongs to the Special Issue Molecular Signalling in Multitrophic Systems Involving Arthropods)
Show Figures

Figure 1

21 pages, 10105 KiB  
Article
Antennal Transcriptome Screening and Identification of Chemosensory Proteins in the Double-Spine European Spruce Bark Beetle, Ips duplicatus (Coleoptera: Scolytinae)
by Jibin Johny, Ewald Große-Wilde, Blanka Kalinová and Amit Roy
Int. J. Mol. Sci. 2024, 25(17), 9513; https://doi.org/10.3390/ijms25179513 - 1 Sep 2024
Cited by 4 | Viewed by 1950
Abstract
The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led [...] Read more.
The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led to the rapid spread of this species, leaving the current monitoring strategies inefficient. As understanding the molecular components of pheromone detection is key to developing novel control strategies, we generated antennal transcriptomes from males and females of this species and annotated the chemosensory proteins. We identified putative candidates for 69 odorant receptors (ORs), 50 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 27 odorant-binding proteins (OBPs), including a tetramer-OBP, 9 chemosensory proteins (CSPs), and 6 sensory neuron membrane proteins (SNMPs). However, no sex-specific chemosensory genes were detected. The phylogenetic analysis revealed conserved orthology in bark beetle chemosensory proteins, especially with a major forest pest and co-habitant, Ips typographus. Recent large-scale functional studies in I. typographus chemoreceptors add greater significance to the orthologous sequences reported here. Nevertheless, identifying chemosensory genes in I. duplicatus is valuable to understanding the chemosensory system and its evolution in bark beetles (Coleoptera) and, generally, insects. Full article
(This article belongs to the Special Issue Molecular Mechanisms Subserving Taste and Olfaction Systems)
Show Figures

Figure 1

19 pages, 2699 KiB  
Article
Sex Differences in Antennal Transcriptome of Hyphantria cunea and Analysis of Odorant Receptor Expression Profiles
by Weichao Ma, Yaning Li, Lina Yang and Shanchun Yan
Int. J. Mol. Sci. 2024, 25(16), 9070; https://doi.org/10.3390/ijms25169070 - 21 Aug 2024
Cited by 1 | Viewed by 1500
Abstract
Insects rely on olfaction for mating, finding oviposition sites, and locating hosts. Hyphantria cunea is a serious pest that severely damages forests. Differential expression analysis of olfactory-related genes between males and females is the basis for elucidating the functions of olfactory-related proteins in [...] Read more.
Insects rely on olfaction for mating, finding oviposition sites, and locating hosts. Hyphantria cunea is a serious pest that severely damages forests. Differential expression analysis of olfactory-related genes between males and females is the basis for elucidating the functions of olfactory-related proteins in H. cunea. In this study, Illumina HiSeqTM 4000 high-throughput sequencing technology was used to perform transcriptome sequencing of the antennal tissues of adult male and female H. cunea. Functional annotation was conducted using the NR, Swiss-Prot, KOG, KEGG, and GO databases, and the results showed that the antennal transcriptome of adult H. cunea contained 50,158 unigenes. Differential expression analysis identified 3923 genes that were significantly differentially expressed between male and female antennae. A total of 221 olfactory-related genes were annotated, and 96 sex-biased genes were identified, including 13 odorant receptors (ORs), 48 odorant binding proteins (OBPs), 7 chemosensory proteins (CSPs), 10 ionotropic receptors (IRs), 10 sensory neuron membrane proteins (SNMPs), 2 gustatory receptors (GRs), and 6 odorant-degrading enzymes (ODEs), indicating that there were differences in olfaction between male and female H. cunea. Quantitative real-time PCR was used to verify the expression levels of 21 putative general odorant receptor genes in male and female antennae. HcunOR4 and HcunOR5 showed female-biased expression; HcunOR48, HcunOR49 and HcunOR50 showed male-biased expression. The results were consistent with the transcriptome differential analysis. The screening of male-biased odorant receptor genes might provide a theoretical basis for the functional characterization of odorant receptors for recognizing sex pheromones in H. cunea. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

17 pages, 12124 KiB  
Article
The Neurotranscriptome of Monochamus alternatus
by Xiaohong Han, Mingqing Weng, Wenchao Shi, Yingxin Wen, Yirong Long, Xinran Hu, Guoxi Ji, Yukun Zhu, Xuanye Wen, Feiping Zhang and Songqing Wu
Int. J. Mol. Sci. 2024, 25(8), 4553; https://doi.org/10.3390/ijms25084553 - 22 Apr 2024
Cited by 3 | Viewed by 1921
Abstract
The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played [...] Read more.
The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 1574 KiB  
Article
Nursing Honeybee Behavior and Sensorial-Related Genes Are Altered by Deformed Wing Virus Variant A
by Silva Diego, Arismendi Nolberto, Alveal Juan Pablo, Ceballos Ricardo, Zapata Nelson and Vargas Marisol
Insects 2024, 15(2), 80; https://doi.org/10.3390/insects15020080 - 23 Jan 2024
Cited by 2 | Viewed by 2266
Abstract
Insect behavior is coordinated mainly by smell through the diverse odor-binding proteins (OBP) that allow them to identify and recognize their environment. Sensory information collected through smell is then analyzed and interpreted in the brain, allowing for correct insect functioning. The behavior of [...] Read more.
Insect behavior is coordinated mainly by smell through the diverse odor-binding proteins (OBP) that allow them to identify and recognize their environment. Sensory information collected through smell is then analyzed and interpreted in the brain, allowing for correct insect functioning. The behavior of honeybees (Apis mellifera L.) can be affected by different pathogens, such as deformed wing virus (DWV). In particular, the DWV variant A (DWV-A) is capable of altering olfactory sensitivity and reducing the gene expression of different OBPs, including those associated with nursing behavior. The DWV is also capable of replicating itself in the sensory lobes of the brain, further compromising the processing of sensory information. This study evaluated the behavioral response of nurse honeybees exposed to a pheromone compound and the alterations in the gene expression of the pre- and post-synaptic neuronal genes neuroxins-1 and neurogilin-1 in the bee heads and OBP proteins in the antennae of nurse bees inoculated with DWV-A. The behavioral response of nurse bees exposed to the larval pheromone compound benzyl alcohol was analyzed using a Y-tube olfactometer. The viral load, the gene expression of OBP5 and OBP11 in antennae, and neuroxins-1 and neurogilin-1 in the bee heads were analyzed via qPCR. High viral loads significantly reduced the ability of 10- and 15-day-old nurse honeybees to choose the correct pheromone compound. Also, the gene expression of OBP5, OBP11, neuroxin-1, and neurogilin-1 in nurse honeybees decreased when they were highly infected with DWV-A. These results suggest that a DWV-A infection can disturb information processing and cause nursing honeybees to reduce their activity inside the hive, altering internal cohesion. Full article
(This article belongs to the Special Issue Fundamental and Applied Research on Insect Olfaction)
Show Figures

Figure 1

14 pages, 3515 KiB  
Article
Genome-Wide Identification of the Genes of the Odorant-Binding Protein Family Reveal Their Role in the Olfactory Response of the Tomato Leaf Miner (Tuta absoluta) to a Repellent Plant
by Ruixin Ma, Donggui Li, Chen Peng, Shuangyan Wang, Yaping Chen, Furong Gui and Zhongxiang Sun
Agronomy 2024, 14(1), 231; https://doi.org/10.3390/agronomy14010231 - 22 Jan 2024
Cited by 4 | Viewed by 3236
Abstract
The remarkable biological and evolutionary adaptations of insects to plants are largely attributed to the powerful chemosensory systems of insects. The tomato leaf miner (Tuta absoluta) is a destructive invasive pest with a global distribution that poses a serious threat to [...] Read more.
The remarkable biological and evolutionary adaptations of insects to plants are largely attributed to the powerful chemosensory systems of insects. The tomato leaf miner (Tuta absoluta) is a destructive invasive pest with a global distribution that poses a serious threat to the production of nightshade crops, especially tomatoes. Functional plants can attract or repel insect pests by releasing volatiles that interact with the olfactory system of insects, thereby reducing the damage of insect pests to target crops. However, there is limited research on the interaction between T. absoluta olfactory genes and functional plants. In this study, 97 members of the putative odorant-binding protein (OBP) family have been identified in the whole genome of T. absoluta. Phylogenetic analysis involving various Lepidopteran and Dipteran species, including D. melanogaster, revealed that OBP gene families present conserved clustering patterns. Furthermore, the Plus-C subfamily of OBP showed extremely significant expansion. Moreover, the expression levels of the OBP genes varied significantly between different developmental stages; that is, the highest number of OBP genes were expressed in the adult stage, followed by the larval stage, and fewer genes were expressed in high abundance in the egg stage. On the other hand, through a Y-tube olfactometer, we identified a functional plant—Plectranthus tomentosa—that significantly repels adult and larval T. absoluta. Finally, we screened the OBP genes in response to tomato and P. tomentosa volatiles at the genomic level of T. absoluta using RT-qPCR. These results laid a good foundation for controlling T. absoluta with functional plants and further studying olfactory genes. Full article
Show Figures

Figure 1

14 pages, 3883 KiB  
Article
Evaluation of Reference Genes for Quantitative Real-Time PCR Analysis in the Bean Bug, Riptortus pedestris (Hemiptera: Alydidae)
by Liuyang Wang, Qingyu Liu, Pei Guo, Zhanlin Gao, Dan Chen, Tao Zhang and Jun Ning
Insects 2023, 14(12), 960; https://doi.org/10.3390/insects14120960 - 18 Dec 2023
Cited by 6 | Viewed by 2336
Abstract
Quantitative real-time PCR (qRT-PCR) is widely accepted as a precise and convenient method for quantitatively analyzing the expression of functional genes. The data normalization strongly depends upon stable reference genes. The bean bug, Riptortus pedestris (Hemiptera: Alydidae), is a significant pest of leguminous [...] Read more.
Quantitative real-time PCR (qRT-PCR) is widely accepted as a precise and convenient method for quantitatively analyzing the expression of functional genes. The data normalization strongly depends upon stable reference genes. The bean bug, Riptortus pedestris (Hemiptera: Alydidae), is a significant pest of leguminous crops and broadly distributed across Southeast Asia. In this study, a total of 16 candidate reference genes (RPL32, RPS23, SDHA, UBQ, UCCR, GST, TATAbox, HSP70, GAPDH, RPL7A, SOD, RPS3, Actin, α−tubulin, AK, and EF1) were carefully chosen in R. pedestris, and their expression levels were assessed across various conditions, including different developmental stages, diverse tissues, temperature treatments, adult age, molting time, and mating status. Following this, the stability of these reference genes was evaluated using four algorithms (ΔCt, GeNorm, NormFinder, and BestKeeper). Ultimately, the comprehensive rankings were determined using the online tool RefFinder. Our results demonstrate that the reference gene for qRT-PCR analysis in R. pedestris is contingent upon the specific experimental conditions. RPL7A and EF1 are optimal reference genes for developmental stages. Furthermore, α−tubulin and EF1 exhibit the most stable expression across various adult tissues. RPL32 and RPL7A exhibit the most stable expression for adult age. For nymph age, RPL32 and SOD display the most stable expression. For temperature conditions, RPS23 and RPL7A were identified as the most suitable for monitoring gene expression. Lastly, we verified the practicability of evaluating expression levels of odorant-binding protein 37 (RpedOBP37) and cytochrome P450 6a2 (RpedCYP6) throughout developmental stages, tissues, and temperature conditions. These findings are a significant addition to the qRT-PCR analysis studies on R. pedestris, serving as a fundamental groundwork for future investigations on stable reference genes in R. pedestris as well as other organisms. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop