Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,789)

Search Parameters:
Keywords = nutrient pollution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1409 KB  
Article
Effects of Biochar Combined with Nitrogen Fertilizer Application on Pepper Yield, Quality and Rhizosphere Soil Microbial Community Diversity
by Chunyan Wu, Qiyuan Sun and Wei Wang
Plants 2025, 14(19), 3082; https://doi.org/10.3390/plants14193082 - 6 Oct 2025
Abstract
In agricultural systems, excessive application of nitrogen fertilizer often leads to low nitrogen use efficiency and environmental pollution. In order to solve this problem, we studied the synergistic effect of biochar and nitrogen fertilizer on pepper yield, quality and rhizosphere soil health. This [...] Read more.
In agricultural systems, excessive application of nitrogen fertilizer often leads to low nitrogen use efficiency and environmental pollution. In order to solve this problem, we studied the synergistic effect of biochar and nitrogen fertilizer on pepper yield, quality and rhizosphere soil health. This study was conducted under a temperate continental monsoon climate in Changchun, China. Using ‘Jinfu 803’ pepper (Capsicum annuum L.) as the test material, biochar was prepared from corn straw under oxygen-limited conditions at 500 °C. the comprehensive effects of the combined application of biochar (0, 0.7% soil mass ratio) and nitrogen fertilizer (0, 75, 375, 675 kg/hm2 pure nitrogen) on pepper yield, fruit quality, rhizosphere soil physicochemical properties, and microbial community structure were studied. Redundancy analysis (RDA), high-throughput sequencing, and multivariate statistical methods were used to analyze the association patterns between soil environmental factors and microbial functional groups. The results showed that the combined application of biochar and nitrogen fertilizer significantly improved soil porosity (increased by 12.3–28.6%) and nutrient content, increased yield, and improved quality, among which the treatment of 0.7% biochar combined with 375 kg/hm2 nitrogen fertilizer (B1N2) had the best effect. Under this treatment, the pepper yield reached 24,854.1 kg/hm2, which was 42.35% higher than that of the control (B0N0). Notably, the nitrogen partial factor productivity (PFPN) of the B1N2 treatment (66.3 kg/kg) was significantly higher than that of the corresponding treatment without biochar and was not significantly lower than that of the high-nitrogen B1N3 treatment. The contents of soluble sugar and vitamin C in fruits increased by 51.18% and 39.16%, respectively. Redundancy analysis (RDA) revealed that the bacterial community structure was primarily shaped by soil pH, organic matter, and porosity, while the fungal community was predominantly influenced by alkaline hydrolyzable nitrogen and total nitrogen. Furthermore, the B1N2 treatment specifically enriched key functional microbial taxa, such as Chloroflexi (involved in carbon cycling) and Mortierellomycota (phosphate-solubilizing), which showed significant positive correlations with improved soil properties. In conclusion, B1N2 is the optimal treatment combination as it improves soil physical conditions, increases nutrient content, optimizes microbial community structure, and enhances pepper yield and quality. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

24 pages, 669 KB  
Review
Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications
by Xichao Sun, Liwen Zhang, Yingchen Gu, Peng Wang, Haiwei Liu, Liwen Qiang and Qingqing Huang
Plants 2025, 14(19), 3081; https://doi.org/10.3390/plants14193081 - 6 Oct 2025
Abstract
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as [...] Read more.
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as a critical physiological and biochemical strategy for mitigating Cd stress. This comprehensive review delves deeply into the multifaceted roles of essential macronutrient elements (nitrogen, phosphorus, potassium, calcium, magnesium, sulfur), essential micronutrient elements (zinc, iron, manganese, copper) and non-essential beneficial elements (silicon, selenium) in modulating plant responses to Cd toxicity. We meticulously dissect the physiological, biochemical, and molecular underpinnings of how these nutrients influence Cd bioavailability in the rhizosphere, Cd uptake and translocation pathways, sequestration and compartmentalization within plant tissues, and the activation of antioxidant defense systems. Nutrient elements exert their influence through diverse mechanisms: competing with Cd for root uptake transporters, promoting the synthesis of complexes that reduce Cd mobility, stabilizing cell walls and plasma membranes to restrict apoplastic flow and symplastic influx, modulating redox homeostasis by enhancing antioxidant enzyme activities and non-enzymatic antioxidant pools, regulating signal transduction pathways, and influencing gene expression profiles related to metal transport, chelation, and detoxification. The complex interactions between nutrients themselves further shape the plant’s capacity to withstand Cd stress. Recent advances elucidating nutrient-mediated epigenetic regulation, microRNA involvement, and the role of nutrient-sensing signaling hubs in Cd responses are critically evaluated. Furthermore, we synthesize the practical implications of nutrient management strategies, including optimized fertilization regimes, selection of nutrient-efficient genotypes, and utilization of nutrient-enriched amendments, for enhancing phytoremediation efficiency and developing low-Cd-accumulating crops, thereby contributing to safer food production and environmental restoration in Cd-contaminated soils. The intricate interplay between plant nutritional status and Cd stress resilience underscores the necessity for a holistic, nutrient-centric approach in managing Cd toxicity in agroecosystems. Full article
(This article belongs to the Special Issue Plant Ecotoxicology and Remediation Under Heavy Metal Stress)
Show Figures

Figure 1

31 pages, 6180 KB  
Review
Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies
by Armstrong Ighodalo Omoregie, Muhammad Oliver Ensor Silini, Lin Sze Wong and Adharsh Rajasekar
Nitrogen 2025, 6(4), 92; https://doi.org/10.3390/nitrogen6040092 - 4 Oct 2025
Abstract
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments [...] Read more.
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments such as lakes, rivers, and coastal waters. The primary sources of nitrogen enrichment are excessive fertilizer application, livestock manure discharge, industrial emissions, and untreated industrial and municipal wastewater. These inputs have led to severe ecological consequences, including harmful algal blooms, hypoxia, loss of biodiversity, and deteriorating water quality, threatening ecosystem health and human well-being. The review also examines mitigation strategies implemented in China, encompassing regulatory policies such as the “Zero Growth” fertilizer initiative, as well as technological advancements in wastewater treatment and sustainable farming practices. Case studies highlighting successful interventions, such as lake restoration projects and integrated watershed management, demonstrate the potential for effective nitrogen control. However, persistent challenges remain, including uneven policy enforcement, insufficient public awareness, and gaps in scientific understanding of nitrogen cycling dynamics. This review aims to inform future efforts toward achieving sustainable nitrogen management in China by synthesizing current research and identifying key knowledge gaps. Addressing these issues is crucial for safeguarding China’s aquatic ecosystems and promoting global nutrient stewardship. Full article
25 pages, 4589 KB  
Review
Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems
by Pasquale Napoletano, Noureddine Guezgouz, Lorenza Parato, Rosa Maisto, Imen Benradia, Sarra Benredjem, Teresa Rosaria Verde and Anna De Marco
Sustainability 2025, 17(19), 8843; https://doi.org/10.3390/su17198843 - 2 Oct 2025
Abstract
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At [...] Read more.
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At the core of these functions lie the unique characteristics of riparian soils, which result from complex interactions between water dynamics, sedimentation, vegetation, and microbial activity. This paper provides a comprehensive overview of the origin, structure, and functioning of riparian soils, with particular attention being paid to their physical, chemical, and biological properties and how these properties are shaped by periodic flooding and vegetation patterns. Special emphasis is placed on Mediterranean riparian environments, where marked seasonality, alternating wet–dry cycles, and increasing climate variability enhance both the importance and fragility of riparian systems. A bibliographic study, covering 25 years (2000–2025), was carried out through Scopus and Web of Science. The results highlight that riparian areas are key for carbon sequestration, nutrient retention, and ecosystem connectivity in water-limited regions, yet they are increasingly threatened by land use change, water abstraction, pollution, and biological invasions. Climate change exacerbates these pressures, altering hydrological regimes and reducing soil resilience. Conservation requires integrated strategies that maintain hydrological connectivity, promote native vegetation, and limit anthropogenic impacts. Preserving riparian soils is therefore fundamental to sustain ecosystem services, improve water quality, and enhance landscape resilience in vulnerable Mediterranean contexts. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
21 pages, 1640 KB  
Review
Advances in Ulva Linnaeus, 1753 Research: From Structural Diversity to Applied Utility
by Thanh Thuy Duong, Hang Thi Thuy Nguyen, Hoai Thi Nguyen, Quoc Trung Nguyen, Bach Duc Nguyen, Nguyen Nguyen Chuong, Ha Duc Chu and Lam-Son Phan Tran
Plants 2025, 14(19), 3052; https://doi.org/10.3390/plants14193052 - 2 Oct 2025
Abstract
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These [...] Read more.
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These traits support their ecological roles in nutrient cycling, primary productivity, and habitat provision, and they also explain their growing relevance to the blue bioeconomy. This review summarizes current knowledge of Ulva biodiversity, taxonomy, and physiology, and evaluates applications in food, feed, bioremediation, biofuel, pharmaceuticals, and biomaterials. Particular attention is given to molecular approaches that resolve taxonomic difficulties and to biochemical profiles that determine nutritional value and industrial potential. This review also considers risks and limitations. Ulva species can act as hyperaccumulators of heavy metals, microplastics, and organic pollutants, which creates safety concerns for food and feed uses and highlights the necessity of strict monitoring and quality control. Technical and economic barriers restrict large-scale use in energy and material production. By presenting both opportunities and constraints, this review stresses the dual role of Ulva as a promising bioresource and a potential ecological risk. Future research must integrate molecular genetics, physiology, and applied studies to support sustainable utilization and ensure safe contributions of Ulva to biodiversity assessment, environmental management, and bioeconomic development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

22 pages, 3975 KB  
Article
Comparative Phycoremediation Performance of Two Green Microalgal Strains Under Four Biomass Conditions for Industrial Wastewater Treatment
by Mostafa M. El-Sheekh, Reda M. Moghazy, Mai M. Hamoud and Mostafa E. Elshobary
Phycology 2025, 5(4), 53; https://doi.org/10.3390/phycology5040053 - 1 Oct 2025
Abstract
This study uses industrial wastewater from an aluminum factory to evaluate the phycoremediation efficiency of two green microalgal strains, Dictyosphaerium sp. and Tetradesmus obliquus. The industrial wastewater contained high levels of pollutants, including COD, ammonium, nitrate, phosphate, and heavy metal ions (Al [...] Read more.
This study uses industrial wastewater from an aluminum factory to evaluate the phycoremediation efficiency of two green microalgal strains, Dictyosphaerium sp. and Tetradesmus obliquus. The industrial wastewater contained high levels of pollutants, including COD, ammonium, nitrate, phosphate, and heavy metal ions (Al3+, Cu2+, Cr3+, Zn2+, Mn2+, Cd2+). Four biomass conditions were tested: free-living cells (active living cells), immobilized cells (entrapped within alginate), dried biomass (non-living dried cells), and acid-treated dried biomass (chemically modified for enhanced adsorption). Both strains demonstrated significant pollutant removal, with living biomass (free and immobilized) achieving the highest nutrient and organic pollutant removal, and non-living biomass (dried and acid-treated) being more efficient for rapid heavy metal removal. Tetradesmus obliquus showed superior performance across most parameters, while Dictyosphaerium sp. exhibited the highest aluminum removal (99.4%, reducing Al from 481.2 mg/L to 10.2 mg/L). These findings highlight the potential of microalgae-based approaches and support species-specific strategies for cost-effective and sustainable phycoremediation of industrial wastewater. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
Show Figures

Figure 1

23 pages, 6455 KB  
Article
Detection of Sulfur from Industrial Emissions Across a Complex Mountainous Landscape: An Isotope Approach Using Plant-Based Biomonitors in Winter
by Ann-Lise Norman, Sunita LeGallou, Erin E. Caldwell, Patrick M. Blancher, Jelena Matic and Ralph Cartar
Atmosphere 2025, 16(10), 1149; https://doi.org/10.3390/atmos16101149 - 30 Sep 2025
Abstract
Tree rings, tree needles, and moss can be used as biomonitors to evaluate atmospheric pollutant concentrations and deposition patterns spanning different timescales. This study compares output from air quality modeling and measurements to patterns observed using a combination of sulfur concentration and isotope [...] Read more.
Tree rings, tree needles, and moss can be used as biomonitors to evaluate atmospheric pollutant concentrations and deposition patterns spanning different timescales. This study compares output from air quality modeling and measurements to patterns observed using a combination of sulfur concentration and isotope composition in moss (using moss bags and controls) as biomonitors in a region of southern Alberta, Canada influenced by industrial emissions. Tree rings allow comparisons of historical to current sulfur deposition patterns. Moss, which integrates atmospheric nutrients during growth, allows for concurrent comparisons. The contrast of inorganic and organic sulfur within conifer tree needles provides a measure of pollutant uptake over their short lifespans. Sulfur uptake within biomonitors in a southern Alberta ecosystem allow assessment of the presence (in moss, needles) and effects (on conifer growth) of atmospheric sulfur deposition from industrial emissions. These data were examined relative to California Puff (CALPuff) model projections and traditional active and passive air quality sampling. Patterns in sulfur isotope abundance (δ34S) from moss bags placed throughout the eastern slopes of the southern Alberta foothills of the Rocky Mountains implicate local industry as the dominant atmospheric sulfur source over winter, with the tissues of conifers (needles and cores) and moss decreasing with distance from industrial emissions. This was consistent with apportionment calculations based on active and passive sampling, which also showed a surprising trend of sulfur deposition upwind of the industrial stack in the mountains to the west. δ34S values for pine needles and tree rings were consistent with greater sulfur stress and reductions in tree growth associated with increased industrial sulfur concentrations and deposition. We conclude that plant biomonitors are effective short-term (tree needles and moss) and long-term (tree cores) indicators of sulfur pollution in a complex, mountainous landscape. Full article
Show Figures

Figure 1

12 pages, 1732 KB  
Data Descriptor
A Dataset of Environmental Toxins for Water Monitoring in Coastal Waters of Southern Centre, Vietnam: Case of Nha Trang Bay
by Hoang Xuan Ben, Tran Cong Thinh and Phan Minh-Thu
Data 2025, 10(10), 155; https://doi.org/10.3390/data10100155 - 29 Sep 2025
Abstract
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: [...] Read more.
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: surface samples at approximately 0.5–1.0 m below the water surface, and bottom samples 1.0 to 2.0 m above the seabed, depending on site-specific bathymetry. These samples were analyzed for key water quality parameters, including biological oxygen demand (BOD5), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and Chlorophyll-a (Chl-a). The data establish a valuable baseline for assessing both spatial and temporal patterns of water quality, and for calculating eutrophication index to evaluate potential environmental degradation. Importantly, it also demonstrates practical applications for environmental management. The dataset can support assessments of how seasonal tourism peaks contribute to nutrient enrichment, how aquaculture expansion affects dissolved oxygen dynamics, and how water quality trends evolve under increasing anthropogenic pressure. These applications make it a useful resource for evaluating pollution control efforts and for guiding sustainable development in coastal areas. By promoting open access, the dataset not only supports scientific research but also strengthens evidence-based management strategies to protect ecosystem health and socio-economic resilience in Nha Trang Bay. Full article
Show Figures

Figure 1

21 pages, 2038 KB  
Article
Improving the Yield and Quality of Morchella spp. Using Agricultural Waste
by Jiawen Wang, Weiming Cai, Qunli Jin, Lijun Fan, Zier Guo and Weilin Feng
J. Fungi 2025, 11(10), 703; https://doi.org/10.3390/jof11100703 - 28 Sep 2025
Abstract
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered [...] Read more.
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered attention. Specifically, reusing tomato substrate, mushroom residues, and coconut shells can lower the production costs and reduce environmental pollution, demonstrating remarkable ecological and economic benefits. To determine the soil microbial communities of Morchella spp. using different culture medias and influencing factors, this study analysed the relative abundance of bacterial and fungal communities in natural soil, soil with 5% tomato substrate, soil with 5% mushroom residues, and soil with 5% coconut shells using Illumina NovaSeq high-throughput sequencing. In addition, intergroup differences, soil physiochemical properties, and product quality were also determined. Results demonstrated that agricultural waste consisting of mushroom residues, waste tomato substrate, and coconut shells can improve the efficiency of Morchella spp. cultivation. When considering yield and quality, mushroom residue achieved the highest yield (soil nutrient enrichment), followed by tomato substrate (water holding + grass carbon nutrient). All three types of agricultural waste promoted early fruiting, significantly increased polysaccharide, crude protein, and potassium content, and lowered crude fat and fibre. In regard to soil improvement, the addition of different materials optimized the soil’s physical structure (reducing volume weight and increasing water holding capacity) and chemical properties (enrichment of nitrogen, phosphorus, and potassium, regulating nitrogen and medium trace elements). For microbial regulation, the added materials significantly increased the abundance of beneficial bacteria (e.g., Actinomycetota, Gemmatimonadota and Devosia) and strengthened nitrogen’s fixation/nitration/decomposition functions. In the mushroom residue group, the abundance of Bacillaceae was positively related to yield. Moreover, it inhibited pathogenic fungi like Mortierella and Trichoderma, and lowered fungal diversity to decrease ecological competition. In summary, mushroom residues have nutrient releasing and microbial regulation advantages, while tomato substrate and coconut shells are new high-efficiency resources. These increase yield through the “physiochemical–microorganism” collaborative path. Future applications may include regulating the function of microorganisms and optimizing waste preprocessing technologies to achieve sustainability. Full article
Show Figures

Figure 1

24 pages, 2044 KB  
Article
Evaluation of the Synergistic Control Efficiency of Multi-Dimensional Best Management Practices Based on the HYPE Model for Nitrogen and Phosphorus Pollution in Rural Small Watersheds
by Yi Wang, Yule Liu, Huawu Wu, Junwei Ding, Qian Xiao and Wen Chen
Agriculture 2025, 15(19), 2030; https://doi.org/10.3390/agriculture15192030 - 27 Sep 2025
Abstract
Non-point source pollution (NPS) from agriculture is a primary driver of water eutrophication, necessitating effective control for regional water ecological security and sustainable agricultural development. This study focuses on the Chenzhuang village watershed, a typical green agricultural demonstration area in Jiangsu Province, using [...] Read more.
Non-point source pollution (NPS) from agriculture is a primary driver of water eutrophication, necessitating effective control for regional water ecological security and sustainable agricultural development. This study focuses on the Chenzhuang village watershed, a typical green agricultural demonstration area in Jiangsu Province, using the HYPE model to analyze hydrological processes and Total Nitrogen (TN) and Total Phosphorus (TP) migration patterns. The model achieved robust performance, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.7 for daily runoff and 0.35 for monthly TN and TP simulations, ensuring reliable predictions. A multi-scenario simulation framework evaluated the synergistic control effectiveness of Best Management Practices (BMPs), including agricultural production management, nutrient management, and landscape configuration, on TN and TP pollution. The results showed that crop rotation reduced annual average TN and TP concentrations by 11.8% and 13.6%, respectively, by shortening the fallow period. Substituting 50% of chemical fertilizers with organic fertilizers decreased TN by 50.5% (from 1.92 mg/L to 0.95 mg/L) and TP by 68.2% (from 0.22 mg/L to 0.07 mg/L). Converting 3% of farmland to forest enhanced pollutant interception, reducing TN by 4.14% and TP by 2.78%. The integrated BMP scenario (S13), combining these measures, achieved TN and TP concentrations of 0.63 mg/L and 0.046 mg/L, respectively, meeting Class II surface water standards since 2020. Economic analysis revealed an annual net income increase of approximately 15,000 CNY for a 50-acre plot. This was achieved through cost savings, increased crop value, and policy compensation. These findings validate a “source reduction–process interception” approach, providing a scalable management solution for NPS control in small rural watersheds while balancing environmental and economic benefits. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

8 pages, 3209 KB  
Proceeding Paper
Resource Efficiency of Swiss Chard Crop in Vertical Hydroponic Towers Under Greenhouse Conditions
by Manuel Felipe López-Mora, Calina Borgovan, Carlos Alberto González-Murillo, María Solano-Betancour, María Fernanda Quintero-Castellanos and Miguel Guzmán
Biol. Life Sci. Forum 2025, 47(1), 5; https://doi.org/10.3390/blsf2025047005 - 26 Sep 2025
Abstract
Resource efficiency is essential in today’s approach to horticulture. The global problems of water scarcity, soil pollution, biodiversity loss, and rapid growth of the global population require increased food production with fewer resources. Resource efficiency is an indicator that allows defining how much [...] Read more.
Resource efficiency is essential in today’s approach to horticulture. The global problems of water scarcity, soil pollution, biodiversity loss, and rapid growth of the global population require increased food production with fewer resources. Resource efficiency is an indicator that allows defining how much biomass an agri-food system can produce per unit of the resource used. Closed hydroponic systems, such as vertical hydroponic towers (VHTs), exhibit high resource efficiency. In these systems, the water use efficiency (WUE) and the nutrient use efficiency (NUE) can be calculated in terms of the water loss through transpiration and the ion concentration in the nutrient solution. The research aimed to determine the WUE and NUE for chard crops in VHT under greenhouse conditions and to evaluate its feasibility as an urban and peri-urban system for leafy vegetable production. Trials were carried out with chard in the fall 2024 in a tunnel-type greenhouse at the facilities of the Autonomous University of San Luis Potosi. The VHTs were built with a 20 L square lower deposit on which a cylindrical pipeline of 11.5 cm in diameter and 1.6 m in height was vertically placed. Each pipe had 45 growing containers distributed on 15 levels of three containers spaced vertically 9 cm and a density of 25 plants·m−2. The experimental design was completely randomized with three treatments (75, 100, and 125% of Steiner’s nutrient solution) and three replications. The transpiration (Tr) of the crop (recording weight loss in the deposit) and the shoot fresh weight (SFW) of the plants were measured daily using a scale. An ANOVA and Tukey’s test for mean differentiation were performed with p < 0.05. Significant differences were found between treatments for SFW, WUE and NUE obtaining the best results at 75% of Steiner’s nutrient solution. Results show that WUE increased between 3 and 6 times, and NUE between 3 and 12 times compared to chard grown in soil. These results were equal and even higher than horizontal hydroponic systems or vertical farms. Vertical hydroponic closed towers installed in greenhouses are an optimal horticultural production system with high resources use efficiency. The implementation of VHT is feasible in areas where there is water scarcity or have a high population density. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Horticulturae)
Show Figures

Figure 1

16 pages, 4052 KB  
Article
Investigation of the Impact of Coal Fires on Soil: A Case Study of the Wugong Coal Fire Area, Xinjiang, China
by Ruirui Hao, Qiang Zeng, Ting Ren, Suqing Wu and Haijian Li
Fire 2025, 8(10), 385; https://doi.org/10.3390/fire8100385 - 26 Sep 2025
Abstract
This study focused on the Wugong coal fire area in the Zhunnan coalfield of Xinjiang, analyzing 41 soil samples extending from the fire center outward. The key parameters included pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), [...] Read more.
This study focused on the Wugong coal fire area in the Zhunnan coalfield of Xinjiang, analyzing 41 soil samples extending from the fire center outward. The key parameters included pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), various ions (Ca2+, Na+, Mg2+, SO42−, CO32−, HCO3, and Cl), and heavy metal concentrations (As, Cr, Hg, Ni, Cd, Cu, Zn, and Pb). The primary objectives were to evaluate heavy metal pollution levels and potential ecological risks using the single factor pollution index (Pi), the Geo-accumulation index (IGeo), Nemero’s pollution index (Pn), the pollution load index (PLI), and the ecological risk factor (Eri) and risk index (RI). Spatial distribution analysis indicated higher heavy metal concentrations in the southwestern and central regions. The heavy metals Cr, Ni, Cd, Cu, and Zn reached mild pollution levels, while Hg exhibited high pollution, with Pi, IGeo, and Pn values of 3.27, 0.61, and 9.68, respectively. Hg (Eri = 111.07) and Cd (Eri = 45.91) emerged as the primary ecological risk factors. The overall ecological risk index (RI) of 184.98 indicated a moderate ecological risk. The results demonstrate that soils surrounding the coal fire zone are significantly impacted by coal fire, characterized by severe heavy metal contamination and nutrient deficiency. Full article
Show Figures

Figure 1

14 pages, 1314 KB  
Article
Polyvinylpolypyrrolidone Immobilized Cu, Cd and Zn in Soils and Reduced Their Uptake by Oilseed Rape
by Yiliu Wang, Diedrich Steffens, Yunsheng Jia and Huoyan Wang
Agronomy 2025, 15(10), 2258; https://doi.org/10.3390/agronomy15102258 - 23 Sep 2025
Viewed by 105
Abstract
Organic amendments application has been proposed as an efficient method for remediation of heavy metals-contaminated soils. This study evaluated the performance of the water-insoluble organic material polyvinylpolypyrrolidone on decontaminating water and soil polluted by heavy metals Cu, Cd and Zn via batch trials, [...] Read more.
Organic amendments application has been proposed as an efficient method for remediation of heavy metals-contaminated soils. This study evaluated the performance of the water-insoluble organic material polyvinylpolypyrrolidone on decontaminating water and soil polluted by heavy metals Cu, Cd and Zn via batch trials, soil incubation and pot experiments with oilseed rape. The adsorption process of Cu, Cd and Zn by polyvinylpolypyrrolidone included a rapid step which achieved 92%, 76% and 87% of adsorption capacities within 10 min, followed with a slow step before reaching equilibrium which varied from 4 to 24 h among the three heavy metals. The maximum adsorption capacities were 327, 330 and 186 mg g−1 for Cu, Cd and Zn, respectively. With application doses of polyvinylpolypyrrolidone ranging from 10 to 60 g kg−1, the DTPA-extracted Cu, Cd and Zn showed 59–96%, 27–93% and 13–83% reduction compared to no addition. Moreover, the uptake of Cu, Cd and Zn by oilseed rape were significantly inhibited with polyvinylpolypyrrolidone amendments, and the effects improved with the accrual of polyvinylpolypyrrolidone. Intriguingly, the application of polyvinylpolypyrrolidone showed insignificant influences on nutrients taken up by oilseed rape. Results of the present study indicated that polyvinylpolypyrrolidone is a promising organic amendment for heavy metal (Cu, Cd and Zn) stabilization in polluted water and soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 1679 KB  
Review
Advancements in Agricultural Nanotechnology: An Updated Review
by Mario Pagano, Erika Lunetta, Francesco Belli, Giacomo Mocarli, Claudia Cocozza and Ilaria Cacciotti
Plants 2025, 14(18), 2939; https://doi.org/10.3390/plants14182939 - 22 Sep 2025
Viewed by 172
Abstract
Sustainable agriculture aims to meet the growing food demands of a rising global population while minimizing negative impacts on the environment, preserving natural resources, and ensuring long-term agricultural productivity. However, conventional agricultural practices often involve excessive use of chemical fertilizers, pesticides, and water, [...] Read more.
Sustainable agriculture aims to meet the growing food demands of a rising global population while minimizing negative impacts on the environment, preserving natural resources, and ensuring long-term agricultural productivity. However, conventional agricultural practices often involve excessive use of chemical fertilizers, pesticides, and water, leading to soil degradation, water pollution, and ecosystem imbalances. In this context, agricultural nanotechnology has emerged as a transformative field, offering innovative solutions to enhance crop productivity, improve soil health, and ensure sustainable agricultural practices. This review has explored the wide-ranging uses of nanotechnology in agriculture, highlighting innovative plant-targeted delivery systems—such as polymer-based nanoparticles, carbon nanomaterials, dendrimers, metal oxide particles, and nanoemulsions—as well as its contributions to minimizing pesticide application, alleviating plant stress, and improving interactions between plants and nanoparticles. By examining recent research and development, the review highlights the potential of nanotechnology to address critical challenges such as pest resistance, nutrient management, and environmental sustainability. In conclusion, we believe that, in the immediate future, key priorities should include: (1) scaling up field trials to validate laboratory findings, (2) developing biodegradable nanomaterials to ensure environmental safety, and (3) integrating nanotechnology with digital agriculture platforms to enable real-time monitoring and adaptive management. These steps are essential for translating promising research into practical, sustainable solutions that can effectively support global food security. Full article
Show Figures

Figure 1

28 pages, 6123 KB  
Article
Evaluating Future Water Resource Risks in the Driftless Midwest from Climate and Land Use Change
by Sagarika Rath, Sam Arden, Tassia Mattos Brighneti, Sam Moore and Raghavan Srinivasan
Land 2025, 14(9), 1919; https://doi.org/10.3390/land14091919 - 20 Sep 2025
Viewed by 370
Abstract
Assessing the impacts of future changes in rainfall, temperature, and land use on streamflow and nutrient loads is critical for long-term watershed management, particularly in the unglaciated Driftless Area with steep slopes, erodible soils, and karst geology. This study evaluates the Kickapoo watershed [...] Read more.
Assessing the impacts of future changes in rainfall, temperature, and land use on streamflow and nutrient loads is critical for long-term watershed management, particularly in the unglaciated Driftless Area with steep slopes, erodible soils, and karst geology. This study evaluates the Kickapoo watershed in southwestern Wisconsin to examine how projected climate change and cropland expansion may affect hydrology during the mid- (post-2050) and late century (post-2070). Climate projections suggest temperature increase, wetter springs, and drier summers over the century. Annual average streamflow is projected to decline by 5–40% relative to 2000–2020, primarily due to a 5–15% reduction in groundwater discharge. While land use changes from prairie to cropland had a limited additional impact on streamflow, it increased annual average total phosphorus (TP) by 5.67–10.08%, total nitrogen (TN) by 1.08–2.34%, and sediment by 3.11–6.07%, frequently exceeding total maximum daily load (TMDL) thresholds in comparison to the climate change scenario. These findings suggest that although land use changes exacerbate nutrient and sediment pollution, climate change remains the dominant driver of hydrologic alteration in this watershed. Instead, converting 18% (~290 km2) of cropland to grassland could enhance baseflow (0.84–14%), and reduce TP (30–45%), TN (3–5%), sediment (80–90%), and meeting TMDL 90% of the time. These findings underscore the importance of nature-based solutions, such as prairie restoration, supporting adaptive management to reduce nutrient load, sustaining low flows, and strengthening hydrologic resilience, that support key Sustainable Development Goals. This approach offers valuable insights for other unglaciated watersheds globally. Full article
(This article belongs to the Special Issue Integrating Climate, Land, and Water Systems)
Show Figures

Figure 1

Back to TopTop