Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = nucleotide regeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3020 KB  
Article
Cytokinins Are Age- and Injury-Responsive Molecules That Regulate Skeletal Myogenesis
by Farnoush Kabiri, Zeynab Azimychetabi, Dev Seneviratne, Lorna N. Phan, Hannah M. Kavanagh, Hannah C. Smith, R. J. Neil Emery, Craig R. Brunetti, Janet Yee and Stephanie W. Tobin
Int. J. Mol. Sci. 2025, 26(20), 10136; https://doi.org/10.3390/ijms262010136 - 18 Oct 2025
Viewed by 373
Abstract
Myogenesis is a tightly regulated process essential for embryonic development, postnatal growth, and muscle regeneration. We recently identified that cytokinins (CTKs), a class of adenine-derived signaling molecules originally characterized in plants, are present in cultured skeletal muscle cells. The most abundant type of [...] Read more.
Myogenesis is a tightly regulated process essential for embryonic development, postnatal growth, and muscle regeneration. We recently identified that cytokinins (CTKs), a class of adenine-derived signaling molecules originally characterized in plants, are present in cultured skeletal muscle cells. The most abundant type of cytokinins detected within cultured muscle cells was isopentenyladenine (iP) in its nucleotide, riboside, and free base derivatives. The purpose of this study was to determine whether CTKs are also present in regenerating muscle tissue in vivo and to characterize the effects of iP and its riboside form, isopentenyladenosine (iPR), on muscle cell proliferation and differentiation. These effects were observed relative to adenine and adenosine, and to a second class of cytokinins with a large aromatic side chain, kinetin (the free base), and kinetin riboside. Cardiotoxin was used to induce muscle injury and repair processes in the gastrocnemius of 3- and 12-month-old mice. Samples were collected 3- and 7 days post-injury for ultra high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC-(ESI+)-HRMS/MS). Four CTKs (N6-benzyladenine (BA), dihydrozeatin-9-N-glucoside (DZ9G), isopentenyladenosine (iPR), and 2-methylthio-isopentenyladenosine (2-MeSiPR) were detected. 2-MeSiPR levels were significantly influenced by aging, as this CTK was increased in response to injury only in the younger mice. Treatment of C2C12 myoblasts with 10 µM of isopentenyladenosine (iPR) or kinetin riboside reduced cell proliferation, whereas iP (the free base) increased proliferation in a biphasic response. During differentiation, both iPR and kinetin riboside impaired myotube formation, while the free-base forms of iP and kinetin had no effect. Our data establishes that CTKs are present within muscle tissue and highly responsive to injury and aging. Furthermore, the biological activities of CTKs in muscle cells are influenced by structural modifications, including riboside conjugation and side chain composition. Understanding these differences provides insight into the distinct roles of CTKs in muscle cell metabolism and differentiation, offering potential implications for the use of exogenous CTKs in muscle biology and regenerative medicine. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

11 pages, 1329 KB  
Article
Active Inclusion Bodies in the Multienzymatic Synthesis of UDP-N-acetylglucosamine
by Romana Köszagová, Klaudia Palenčárová and Jozef Nahálka
Int. J. Mol. Sci. 2025, 26(19), 9679; https://doi.org/10.3390/ijms26199679 - 4 Oct 2025
Viewed by 490
Abstract
Bacterial inclusion bodies (IBs) are still generally considered to be waste products of recombinant protein production, despite various studies that have challenged this conventional view in the last two decades, and have been proposed for use as immobilized enzymes in vivo for biocatalysis. [...] Read more.
Bacterial inclusion bodies (IBs) are still generally considered to be waste products of recombinant protein production, despite various studies that have challenged this conventional view in the last two decades, and have been proposed for use as immobilized enzymes in vivo for biocatalysis. Current advances in genetic and molecular biology make it possible to perform multienzymatic reactions or enzymatic cascades to synthesize valuable products. When cascades need cofactor regener tion, it is difficult to use “cheap” whole cells or their lysates, and “expensive” enzyme purification is required. The capture of enzymatic activity into active IBs (aIBs), well-separable protein aggregates from cell lysate, could represent a usable compromise between purified enzymes and cell lysates. It is shown here that the combination of two polyphosphate kinases (PPKs) in the form of aIBs leads to almost 10-fold ATP regeneration and 100% UTP utilization without degradation into adenosine or uridine. PPKs have been combined with N-acetylhexosamine 1-kinase and N-acetylglucosamine-1-phosphate uridyltransferase to produce valuable UDP-N-acetylglucosamine, but the described approach could be used in various multienzymatic syntheses to avoid enzyme purification and ensure nucleotide triphosphate regeneration. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 3583 KB  
Review
Hyaluronic Acid and Its Synthases—Current Knowledge
by Klaudia Palenčárová, Romana Köszagová and Jozef Nahálka
Int. J. Mol. Sci. 2025, 26(15), 7028; https://doi.org/10.3390/ijms26157028 - 22 Jul 2025
Cited by 2 | Viewed by 3729
Abstract
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the [...] Read more.
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the food industry. The molecular weight of HA might vary significantly, as it can be less than 10 kDa or reach more than 6000 kDa. There is a strong correlation between variations in its molecular weight and bioactivities, as well as with various pathological processes. Consequently, monodispersity is a crucial requirement for HA production, together with purity and safety. Common industrial approaches, such as extraction from animal sources and microbial fermentation, have limits in fulfilling these requests. Research and protein engineering with hyaluronic acid synthases can provide a strong tool for the production of monodisperse HA. One-pot multi-enzyme reactions that include in situ nucleotide phosphate regeneration systems might represent the future of HA production. In this review, we explore the current knowledge about HA, its production, hyaluronic synthases, the most recent stage of in vitro enzymatic synthesis research, and one-pot approaches. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

22 pages, 4242 KB  
Review
Extracellular Vesicle Metabolomics Holds Promise for Adult Axon Regeneration
by Maria D. Cabrera Gonzalez, Jackson Watson, Laura Leal, Isabella Moceri, Camille Plummer, Biraj Mahato, Abdelrahman Y. Fouda and Sanjoy K. Bhattacharya
Metabolites 2025, 15(7), 454; https://doi.org/10.3390/metabo15070454 - 4 Jul 2025
Viewed by 1414
Abstract
Extracellular vesicles (EVs) are bilayer lipid membrane particles that are released by every cell type. These secretions are further classified as exosomes, ectosomes, and microvesicles. They contain biomolecules (RNAs, proteins, metabolites, and lipids) with the ability to modulate various biological processes and have [...] Read more.
Extracellular vesicles (EVs) are bilayer lipid membrane particles that are released by every cell type. These secretions are further classified as exosomes, ectosomes, and microvesicles. They contain biomolecules (RNAs, proteins, metabolites, and lipids) with the ability to modulate various biological processes and have been shown to play a role in intercellular communication and cellular rejuvenation. Various studies suggest exosomes and/or microvesicles as a potential platform for drug delivery. EVs may deliver lipids and nucleotides directly to an injury site in an axon, promoting growth cone stabilization and membrane expansion as well as repair, thus positively modulating adult axon regeneration. In this review, we will provide a perspective on the metabolite composition of EVs in adult axonal regeneration relevant to the central nervous system (CNS), specifically that pertaining to the optic nerve. We will present an overview of the methods for isolation, enrichment, omics data analysis and quantification of extracellular vesicles with the goal of providing direction for future studies relevant to axon regeneration. We will also include current resources for multi-omics data integration relevant to extracellular vesicles from diverse cell types. Full article
Show Figures

Graphical abstract

16 pages, 1687 KB  
Article
Phylogeography of the Endangered Endemic Perkinsiodendron macgregorii Based on Chloroplast Genome Data
by Ming-Hui Yan, Yan-Rong Du, Jia-Yi Zhao, Ke-Xin Xu, Lu Zhao, Jia-Meng Su and Lu-Miao Yan
Diversity 2025, 17(7), 439; https://doi.org/10.3390/d17070439 - 20 Jun 2025
Viewed by 618
Abstract
Perkinsiodendron macgregorii, an endangered Chinese endemic tree with high ornamental and ecological value, faces extinction threats due to its poor natural regeneration and habitat degradation. Despite the urgent need for its conservation, the genetic architecture and population differentiation mechanisms of this taxon [...] Read more.
Perkinsiodendron macgregorii, an endangered Chinese endemic tree with high ornamental and ecological value, faces extinction threats due to its poor natural regeneration and habitat degradation. Despite the urgent need for its conservation, the genetic architecture and population differentiation mechanisms of this taxon remain poorly understood, hindering science-based protection strategies. We conducted comprehensive chloroplast genomic analyses of 134 individuals from 13 natural populations to inform science-based conservation. The chloroplast genome (158,538–158,641 bp) exhibited conserved quadripartite organization, with 113 functional genes and elevated GC contents in IR regions (42.99–43.02%). Population-level screening identified 741 SNPs and 678 indels, predominantly in non-coding regions (89.8%), with three distinct phylogeographic clades revealing north-to-south genetic stratification. The northern clade (Clade A) demonstrates the highest haplotype diversity and nucleotide diversity, followed by the southern clade (Clade C), while the central clade (Clade B) exhibits signals of genetic erosion (Tajima’s D > 3.43). Based on the genetic diversity distribution and phylogenetic tree of extant P. macgregorii, we inferred that the northern populations represent ancestral groups, while the Wuyi Mountains region and Nanling Mountains region served as glacial refugia. It is imperative to implement in situ conservation in these two regions. Additionally, ex situ conservation should involve collecting seed from representative populations across all three clades and establishing isolated cultivation lines for each clade. These findings establish a genomic framework for conserving endangered plants. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

22 pages, 3608 KB  
Article
The Application of S-Substituted Pteridine for CCl4-Induced Acute Hepatitis Treatment in Rats
by Natalia Lohvinenko, Volodymyr Shvets, Oleksii Antypenko, Oleksii Voskoboinik, Andrii Bozhkov, Hanna Maslak, Valentyn Oksenych, Oleksandr Kamyshnyi, Sergiy Okovytyy and Serhii Kovalenko
Biomedicines 2025, 13(6), 1276; https://doi.org/10.3390/biomedicines13061276 - 22 May 2025
Viewed by 979
Abstract
Background/Objectives: Liver disease is one of the most common medical problems in the world. The pharmacological correction of these pathologies includes the use of drugs with antioxidant and hepatoprotective action, among which there are natural and synthetic sulfur-containing compounds. However, many of these [...] Read more.
Background/Objectives: Liver disease is one of the most common medical problems in the world. The pharmacological correction of these pathologies includes the use of drugs with antioxidant and hepatoprotective action, among which there are natural and synthetic sulfur-containing compounds. However, many of these drugs have side effects, and their application does not always correspond to approaches in evidence-based medicine. Therefore, today the urgent problem is the search for new effective substances with high metabolitotropic properties and high safety criteria. The aim of this work was an in-depth study of the hepatoprotective and antioxidant action of a new investigational pteridine-containing “lead-compound” (DCTP) under conditions of experimental tetrachloromethane hepatitis in rats in comparison with the reference drug “Thiotriazoline”. Methods: The hepatoprotective effect of the compound was studied using a model of acute tetrachloromethane (CCl4) hepatitis in adult male Wistar rats. The levels of biochemical liver damage markers were estimated with spectrophotometric methods. Histological and immunohistochemical methods were used for the determination of hepatocyte damage. The statistical processing of data was performed using the nonparametric Wilcoxon–Mann–Whitney method. Results: The results of the studies showed that DCTP was superior to the reference drug Thiotriazoline in terms of its effect on the levels of AST, DC, Schiff bases, and carbonylated proteins, which are markers of oxidative (Nrf2) and inflammatory (Lipocalin-2) stress, as well as its effect on animal survival. The results were confirmed by histological examination data, which showed regeneration of the hepatocyte membrane structure; a reduction in infiltrative, destructive, and inflammatory process in the liver; a reduction in the cytolytic process; stabilization; and an increase in the functional activity of the liver due to the administration of the study drug. The pharmacological effects of the studied compound (DCTP) are probably associated with its structural similarity to tetrahydrofolic acid, which is an integral component of oxidation–reduction processes and a participant in the biosynthesis of nitrogenous bases of nucleotides and amino acids. The obtained data show the antioxidant and hepatoprotective properties of the studied “lead-compound” from the pteridinethione group (DCTP). Conclusions: It was shown that the studied substance DCTP significantly reduces acute hepatotoxic effects caused by CCl4, as evidenced by the decrease in the level of lipid peroxidation and prooxidant markers, the normalization of liver biochemical markers, the regeneration of the liver architecture, the limitation of inflammatory effects, the decrease in Nrf2 and Lipocalin-2 markers, and the induction of liver antioxidant enzymes. Full article
Show Figures

Figure 1

17 pages, 2425 KB  
Article
Identification of Critical Molecular Pathways Induced by HDAC11 Overexpression in Cardiac Mesenchymal Stem Cells
by Chongyu Zhang, Neal L. Weintraub and Yaoliang Tang
Biomolecules 2025, 15(5), 662; https://doi.org/10.3390/biom15050662 - 3 May 2025
Viewed by 1029
Abstract
HDAC11, the only class IV histone deacetylase, primarily functions as a fatty acid deacylase and has been implicated in metabolic regulation, cancer stemness, and muscle regeneration. However, its role in cardiac mesenchymal stem cells (CMSCs) remains unexplored. To investigate the effects of HDAC11 [...] Read more.
HDAC11, the only class IV histone deacetylase, primarily functions as a fatty acid deacylase and has been implicated in metabolic regulation, cancer stemness, and muscle regeneration. However, its role in cardiac mesenchymal stem cells (CMSCs) remains unexplored. To investigate the effects of HDAC11 overexpression on the gene regulatory networks in CMSCs, we treated mouse CMSCs with an adenoviral vector encoding human HDAC11 (Ad-HDAC11) versus adenoviral GFP (Ad-GFP) as a control. Gene expression and pathway enrichment were assessed using RNA sequencing (RNA-seq), and HDAC11 overexpression was validated at the RNA and protein levels through qRT-PCR and Western blot. RNA-seq and Gene Ontology (GO) analysis revealed that HDAC11 overexpression activated cell cycle pathways while suppressing nucleotide transport and phagolysosome-related processes. Furthermore, pHH3 protein level was increased, suggested enhanced proliferation in HDAC11-overexpressed CMSCs. qRT-PCR also confirmed the downregulation of GM11266, a long non-coding RNA, in HDAC11-overexpressing CMSCs. In summary, HDAC11 overexpression promotes transcriptional reprogramming, cell cycle progression, and CMSC proliferation, underscoring its potential role in regulating CMSC growth and division. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 1959 KB  
Article
A Protoplast System for CRISPR-Cas Ribonucleoprotein Delivery in Pinus taeda and Abies fraseri
by Barbara M. Marques, Daniel B. Sulis, Bethany Suarez, Chenmin Yang, Carlos Cofre-Vega, Robert D. Thomas, Justin G. A. Whitehill, Ross W. Whetten, Rodolphe Barrangou and Jack P. Wang
Plants 2025, 14(7), 996; https://doi.org/10.3390/plants14070996 - 22 Mar 2025
Cited by 2 | Viewed by 2159
Abstract
Climate change profoundly impacts the health, productivity, and resilience of forest ecosystems and threatens the sustainability of forest products and wood-based industries. Innovations to enhance tree growth, development, and adaptation offer unprecedented opportunities to strengthen ecosystem resilience and mitigate the effects of climate [...] Read more.
Climate change profoundly impacts the health, productivity, and resilience of forest ecosystems and threatens the sustainability of forest products and wood-based industries. Innovations to enhance tree growth, development, and adaptation offer unprecedented opportunities to strengthen ecosystem resilience and mitigate the effects of climate change. Here, we established a method for protoplast isolation, purification, and CRISPR-Cas ribonucleoprotein (RNP) delivery in Pinus taeda and Abies fraseri as a step towards accelerating the genetic improvement of these coniferous tree species. In this system, purified protoplasts could be isolated from somatic embryos with up to 2 × 106 protoplasts/g of tissue and transfected with proteins and nucleotides, achieving delivery efficiencies up to 13.5%. The delivery of functional RNPs targeting phenylalanine ammonia lyase in P. taeda and phytoene desaturase in A. fraseri yielded gene editing efficiencies that reached 2.1% and 0.3%, respectively. This demonstration of RNP delivery for DNA-free genome editing in the protoplasts of P. taeda and A. fraseri illustrates the potential of CRISPR-Cas to enhance the traits of value in ecologically and economically important tree species. The editing system provides a foundation for future efforts to regenerate genome-edited forest trees to improve ecosystem health and natural resource sustainability. Full article
Show Figures

Figure 1

22 pages, 3017 KB  
Review
Advances in the Enzymatic Synthesis of Nucleoside-5′-Triphosphates and Their Analogs
by Maryke Fehlau, Sarah Westarp, Peter Neubauer and Anke Kurreck
Catalysts 2025, 15(3), 270; https://doi.org/10.3390/catal15030270 - 13 Mar 2025
Cited by 2 | Viewed by 4353
Abstract
Nucleoside-5′-triphosphates (5′-NTPs) are essential building blocks of nucleic acids in nature and play an important role in molecular biology, diagnostics, and mRNA therapeutic synthesis. Chemical synthesis has long been the standard method for producing modified 5′-NTPs. However, chemical routes face limitations, including low [...] Read more.
Nucleoside-5′-triphosphates (5′-NTPs) are essential building blocks of nucleic acids in nature and play an important role in molecular biology, diagnostics, and mRNA therapeutic synthesis. Chemical synthesis has long been the standard method for producing modified 5′-NTPs. However, chemical routes face limitations, including low regio- and stereoselectivity, along with the need for protection/deprotection cycles, resulting in low yields, high costs, and lengthy processes. In contrast, enzymatic synthesis methods offer significant advantages, such as improved regio- and stereoselectivity and the use of mild reaction conditions, which often leads to higher product yields in “one-pot” reactions. Despite the extensive review of chemical synthesis routes for 5′-NTPs, there has not yet been any comprehensive analysis of enzymatic approaches. Initially, this review provides a brief overview of the enzymes involved in nucleotide metabolism, introducing valuable biocatalysts for 5’-NTP synthesis. Furthermore, the available enzymatic methods for efficient 5′-NTP synthesis using purified enzymes and starting from either nucleobases or nucleosides are examined, highlighting their respective advantages and disadvantages. Special attention is also given to the importance of ATP regeneration systems for 5′-NTP synthesis. We aim to demonstrate the remarkable potential of enzymatic in vitro cascade reactions, promoting their broader application in both basic research and industry. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis for Pharmaceuticals)
Show Figures

Graphical abstract

27 pages, 6880 KB  
Article
Deciphering the Transcriptional Metabolic Profile of Adipose-Derived Stem Cells During Osteogenic Differentiation and Epigenetic Drug Treatment
by Giulia Gerini, Alice Traversa, Fabrizio Cece, Matteo Cassandri, Paola Pontecorvi, Simona Camero, Giulia Nannini, Enrico Romano, Francesco Marampon, Mary Anna Venneri, Simona Ceccarelli, Antonio Angeloni, Amedeo Amedei, Cinzia Marchese and Francesca Megiorni
Cells 2025, 14(2), 135; https://doi.org/10.3390/cells14020135 - 17 Jan 2025
Cited by 3 | Viewed by 1988
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper [...] Read more.
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential. In this study, we employed the NanoString nCounter technology, an advanced multiplexed digital counting method of RNA molecules, to comprehensively characterize differentially expressed transcripts involved in metabolic pathways at distinct time points in osteogenically differentiating ASCs treated with or without the pan-DNMT inhibitor RG108. In silico annotation and gene ontology analysis highlighted the activation of ethanol oxidation, ROS regulation, retinoic acid metabolism, and steroid hormone metabolism, as well as in the metabolism of lipids, amino acids, and nucleotides, and pinpointed potential new osteogenic drivers like AOX1 and ADH1A. RG108-treated cells, in addition to the upregulation of the osteogenesis-related markers RUNX2 and ALPL, showed statistically significant alterations in genes implicated in transcriptional control (MYCN, MYB, TP63, and IRF1), ethanol oxidation (ADH1C, ADH4, ADH6, and ADH7), and glucose metabolism (SLC2A3). These findings highlight the complex interplay of the metabolic, structural, and signaling pathways that orchestrate osteogenic differentiation. Furthermore, this study underscores the potential of epigenetic drugs like RG108 to enhance ASC properties, paving the way for more effective and personalized cell-based therapies for bone regeneration. Full article
(This article belongs to the Special Issue New Insights into Adipose-Derived Stem Cells (ADSCs))
Show Figures

Graphical abstract

15 pages, 2384 KB  
Article
Application of PS2M Aptamer as Receptor Layer for Electrochemical Detection of Lead Ions
by Izabela Zaras, Olga Kujawa, Marcin Olszewski and Marta Jarczewska
Biosensors 2025, 15(1), 59; https://doi.org/10.3390/bios15010059 - 17 Jan 2025
Cited by 1 | Viewed by 1416
Abstract
Since lead can cause severe effects on living organisms’ health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers [...] Read more.
Since lead can cause severe effects on living organisms’ health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose. Herein, we present studies on the electrochemical detection of lead ions using PS2M aptamer, which contains several guanine nucleotides, as the receptor element. Firstly, the method of aptamer-based layer fabrication was optimized along with the choice of a redox active indicator, which was a source of current signal. The experiments revealed the possibility of lead ion detection from 50 to 600 nM, which covers the range below and above the maximum accepted limit stated by US EPA (72 nM). Moreover, the sensing layer exhibited high selectivity towards lead ions and was successfully applied both for the analysis of tap water spiked with Pb2+ ions and as a miniaturized sensor. Finally, stability and regeneration studies on the aptamer-based receptor layer were executed to confirm the utility of the elaborated tool. Full article
(This article belongs to the Special Issue Electrochemical DNA Biosensors)
Show Figures

Figure 1

13 pages, 8941 KB  
Article
Genetic Variation for Wild Populations of the Rare and Endangered Plant Glyptostrobus pensilis Based on Double-Digest Restriction Site-Associated DNA Sequencing
by Yongrong Huang, Yu Li, Xiaojie Hong, Suzhen Luo, Dedan Cai, Xiangxi Xiao, Yunpeng Huang and Yushan Zheng
Curr. Issues Mol. Biol. 2025, 47(1), 12; https://doi.org/10.3390/cimb47010012 - 30 Dec 2024
Cited by 2 | Viewed by 1041
Abstract
Glyptostrobus pensilis is an endangered tree species, and detecting its genetic diversity can reveal the mechanisms of endangerment, providing references for the conservation of genetic resources. Samples of 137 trees across seven populations within Fujian Province were collected and sequenced using double-digest restriction [...] Read more.
Glyptostrobus pensilis is an endangered tree species, and detecting its genetic diversity can reveal the mechanisms of endangerment, providing references for the conservation of genetic resources. Samples of 137 trees across seven populations within Fujian Province were collected and sequenced using double-digest restriction site-associated DNA (ddRAD-seq). A total of 3,687,189 single-nucleotide polymorphisms (SNPs) were identified, and 15,158 high-quality SNPs were obtained after filtering. The genetic diversity in the populations was found to be low (Ho = 0.08630, He = 0.03475, π = 0.07239), with a high genetic differentiation coefficient (Fst). When K = 4, the coefficient of variation (CV) error value was minimized, suggesting that the 137 individuals could be divided into four groups, with frequent gene flow between them. Principal component analysis (PCA) divided the seven populations into two major categories based on their north–south geographic location. The clustering was consistent with those obtained from the PCA. The main reasons for the endangerment of G. pensilis are likely to be poor natural regeneration, human disturbances, and climatic factors. It is recommended that methods such as in situ conservation, ex situ conservation, and the establishment of germplasm banks be implemented to maintain the genetic diversity of G. pensilis populations. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 1535 KB  
Article
Tenascin-C-Matrix Metalloproteinase-3 Phenotype and the Risk of Tendinopathy in High-Performance Athletes: A Case–Control Study
by Lucas Rafael Lopes, Marcus Vinícius Galvão Amaral, Rodrigo Araujo Goes, Valéria Tavares, Francisca Dias, Rui Medeiros, Daniel Escorsim Machado and Jamila Alessandra Perini
Diagnostics 2024, 14(22), 2469; https://doi.org/10.3390/diagnostics14222469 - 5 Nov 2024
Cited by 3 | Viewed by 1973
Abstract
Background/Objectives: Tendon structure is predominantly composed of the extracellular matrix (ECM), and genetic variants in non-collagenous ECM components may influence susceptibility to tendinopathy. We investigated the potential influence of single nucleotide polymorphisms (SNPs) in fibrillin-2 (FBN2), tenascin-C (TNC), and [...] Read more.
Background/Objectives: Tendon structure is predominantly composed of the extracellular matrix (ECM), and genetic variants in non-collagenous ECM components may influence susceptibility to tendinopathy. We investigated the potential influence of single nucleotide polymorphisms (SNPs) in fibrillin-2 (FBN2), tenascin-C (TNC), and matrix metalloproteinase-3 (MMP3) on the tendon regeneration failure phenotype and impact on the susceptibility to tendinopathy in Brazilian high-performance athletes. Methods: This case–control study was conducted with 397 high-performance athletes from different sports modalities (197 tendinopathy cases and 200 controls), and they were analyzed by validated TaqManTM SNP genotyping assays of the SNPs FBN2 (rs331079), TNC (rs2104772), and MMP3 (rs591058). Results: Out of the 197 tendinopathy cases, 63% suffered from chronic tendon pain and 22% experienced more than three episodes of disease manifestation. The TNC-rs2104772-A allele was significantly associated with tendinopathy (OR: 1.4; 95% CI: 1.1–1.8), while athletes carrying the MMP3-rs591058-T allele were linked to an increased risk of more episodes of disease manifestation (OR: 1.7; 95% CI: 1.1–2.8). The TNC-MMP3 tendon regeneration failure phenotype (TNC-A/MMP3-T) was associated with an increased risk of tendinopathy (OR: 1.4; 95% CI: 1.1–2.0) and episodes of disease manifestation (OR: 2.0; 95% CI: 1.2–3.5). Athletes with tendinopathy who had the TNC-A/MMP3-T interaction were more prone to experiencing more than three disease exacerbations (OR: 4.3; 95% CI: 1.8–10.5) compared to TNC-A/TNC-C. Conclusions: This study suggests that rs2104772 and rs591058 SNPs could be involved in the tendon regeneration failure phenotype and may influence the molecular mechanism related to the regulation of the tendon ECM during training workload. Full article
Show Figures

Figure 1

17 pages, 3757 KB  
Article
Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice
by Maximilian M. Menger, Rouven Speicher, Sandra Hans, Tina Histing, Moses K. D. El Kayali, Sabrina Ehnert, Michael D. Menger, Emmanuel Ampofo, Selina Wrublewsky and Matthias W. Laschke
Int. J. Mol. Sci. 2024, 25(21), 11788; https://doi.org/10.3390/ijms252111788 - 2 Nov 2024
Cited by 1 | Viewed by 1400
Abstract
Inflammation has been recognized as major factor for successful bone regeneration. On the other hand, a prolonged or overshooting inflammatory response can also cause fracture healing failure. The nucleotide-binding oligomerization domain (NOD)-like receptor protein (NLRP)3 inflammasome plays a crucial role in inflammatory cytokine [...] Read more.
Inflammation has been recognized as major factor for successful bone regeneration. On the other hand, a prolonged or overshooting inflammatory response can also cause fracture healing failure. The nucleotide-binding oligomerization domain (NOD)-like receptor protein (NLRP)3 inflammasome plays a crucial role in inflammatory cytokine production. However, its role during fracture repair remains elusive. We investigated the effects of Nlrp3 deficiency on the healing of closed femoral fractures in Nlrp3−/− and wildtype mice. The callus tissue was analyzed by means of X-ray, biomechanics, µCT and histology, as well as immunohistochemistry and Western blotting at 2 and 5 weeks after surgery. We found a significantly reduced trabecular thickness at 2 weeks after fracture in the Nlrp3−/− mice when compared to the wildtype animals. However, the amount of bone tissue did not differ between the two groups. Additional immunohistochemical analyses showed a reduced number of CD68-positive macrophages within the callus tissue of the Nlrp3−/− mice at 2 weeks after fracture, whereas the number of myeloperoxidase (MPO)-positive granulocytes was increased. Moreover, we detected a significantly lower expression of vascular endothelial growth factor (VEGF) and a reduced number of microvessels in the Nlrp3−/− mice. The expression of the absent in melanoma (AIM)2 inflammasome was increased more than 2-fold in the Nlrp3−/− mice, whereas the expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 was not affected. Our results demonstrate that Nlrp3 deficiency does not markedly affect femoral fracture healing in mice. This is most likely due to the unaltered expression of pro-inflammatory cytokines and pro-osteogenic growth factors. Full article
(This article belongs to the Special Issue Molecular Studies of Bone Biology and Bone Tissue)
Show Figures

Figure 1

19 pages, 1548 KB  
Review
Polynucleotides in Aesthetic Medicine: A Review of Current Practices and Perceived Effectiveness
by Kar Wai Alvin Lee, Kwin Wah Lisa Chan, Angela Lee, Cheuk Hung Lee, Jovian Wan, Sky Wong and Kyu-Ho Yi
Int. J. Mol. Sci. 2024, 25(15), 8224; https://doi.org/10.3390/ijms25158224 - 27 Jul 2024
Cited by 17 | Viewed by 28441
Abstract
Polynucleotides, complex molecules composed of nucleotides, have gained attention in aesthetic medicine for their potential to regulate gene expression and promote tissue regeneration. This review aims to provide an overview of the current practices and perceived effectiveness of polynucleotides in aesthetic medicine. A [...] Read more.
Polynucleotides, complex molecules composed of nucleotides, have gained attention in aesthetic medicine for their potential to regulate gene expression and promote tissue regeneration. This review aims to provide an overview of the current practices and perceived effectiveness of polynucleotides in aesthetic medicine. A comprehensive search of the literature was conducted using keywords related to polynucleotides, cosmetic application, and aesthetic application. Studies were selected based on their relevance to aesthetic medicine and the inclusion of human subjects. The review found that polynucleotides have been used to improve skin texture, reduce wrinkle depth, and enhance facial appearance. The studies reported varying degrees of efficacy and safety, with some studies demonstrating significant improvements in skin elasticity and hydration. However, others reported limited or no benefits. The review also highlighted the need for further research to establish the optimal use and efficacy of polynucleotides in aesthetic medicine. While the existing literature suggests that polynucleotides may have potential benefits in aesthetic medicine, more research is needed to fully understand their mechanisms of action and optimal use. Clinicians should be aware of the current limitations and potential risks associated with the use of polynucleotides in aesthetic medicine. Full article
Show Figures

Figure 1

Back to TopTop