Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = nucleic acid binders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2215 KB  
Article
Exploring an Aptamer-Based Approach to Assess Canine Parvovirus Integrity After Disinfection Treatment
by Md Anik Ashfaq Khan, Ahmed Abd El Wahed, Stefan Breuers, Knut Krohn, Günter Mayer, Torsten Schöneberg and Uwe Truyen
Viruses 2025, 17(10), 1309; https://doi.org/10.3390/v17101309 - 27 Sep 2025
Viewed by 952
Abstract
Virus inactivation exhibits varying disinfection kinetics due to structural or genomic differences. Standard post-disinfection assessment relies on observing cytopathic effects in inoculated cell cultures, which are limited by sensitivity, availability, cost, and turnaround time. This study explores nucleic acid aptamers as molecular sensors [...] Read more.
Virus inactivation exhibits varying disinfection kinetics due to structural or genomic differences. Standard post-disinfection assessment relies on observing cytopathic effects in inoculated cell cultures, which are limited by sensitivity, availability, cost, and turnaround time. This study explores nucleic acid aptamers as molecular sensors to differentiate between intact and post-disinfection virus particles. To discover aptamers, 12 cycles of an automated SELEX (Systematic Evolution of Ligands by Exponential Enrichment) experiment were performed using recombinant (r)-VP2 protein of canine parvovirus (CPV). Enrichment of single stranded (ss) DNA binders was evaluated by sequencing the enriched libraries. The most abundant sequences were tested for binding with coated rVP2 and CPV (intact and treated with heat and peracetic acid (PAA) disinfectant) followed by detection using PCR. Binding specificity was assessed using intact and heat-treated feline panleukopenia virus (FPV) and porcine parvovirus (PPV). Sequencing of the DNA libraries from selection cycle 6 and cycle 12 products showed individual sequence enrichment with maximum frequencies of 2.14% and 8.65%, respectively. The top three abundant sequences from each cycle confirmed rVP2 binding. In the case of CPV, only heat-treated and PAA-treated CPV showed binding to the candidate sequences. However, reduced binding to the CPV-specific antibody was observed for rVP2 and treated CPV compared to intact CPV. No apparent binding of the tested sequences was observed for FPV and PPV. Aptamers binding to denatured but not intact CPV demonstrate the potential to distinguish between the two states, providing a basis for developing a molecular assay to assess disinfection efficacy. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

14 pages, 5556 KB  
Article
Lipidated DAPEG Polymers as a Non-Toxic Transfection Agent—Influence of Fatty Acid Side Chain on Transfection Efficacy
by Wiktoria Mallek, Anita Romanowska, Wiktoria Machowicz, Agnieszka Piwkowska, Adam Lesner and Magdalena Wysocka
Molecules 2025, 30(7), 1644; https://doi.org/10.3390/molecules30071644 - 7 Apr 2025
Viewed by 766
Abstract
This study describes the synthesis, interaction with DNA, and transfection efficacy of eight lipidated compounds based on a recently published non-lipidated parent molecule, an octamer of 2,3-l-Dap, carrying the guanidine group on its side chain. The compounds obtained were found to [...] Read more.
This study describes the synthesis, interaction with DNA, and transfection efficacy of eight lipidated compounds based on a recently published non-lipidated parent molecule, an octamer of 2,3-l-Dap, carrying the guanidine group on its side chain. The compounds obtained were found to be non-toxic up to 5 µM and efficient DNA binders and showed greater transfection efficiency than the parent compound, with two leading molecules containing acetic and decanoic moieties. DLS experiments indicated two groups of interaction with DNA. One group modified by short-chain lipids (up to eight carbon atoms in the main chain) forms large structures due to the aggregation of multiple nucleic acids. The second group (from twelve to sixteen carbon atoms) with dominant condensation creates smaller forms and is less effective in transporting DNA into the cells. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Graphical abstract

20 pages, 10507 KB  
Article
Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
by Sonia Ilieva, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Biosensors 2025, 15(3), 187; https://doi.org/10.3390/bios15030187 - 14 Mar 2025
Cited by 1 | Viewed by 1149
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b [...] Read more.
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)—were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes’ photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism–aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

19 pages, 3397 KB  
Article
Solid Phase Synthesis and TAR RNA-Binding Activity of Nucleopeptides Containing Nucleobases Linked to the Side Chains via 1,4-Linked-1,2,3-triazole
by Piotr Mucha, Małgorzata Pieszko, Irena Bylińska, Wiesław Wiczk, Jarosław Ruczyński, Katarzyna Prochera and Piotr Rekowski
Biomedicines 2024, 12(3), 570; https://doi.org/10.3390/biomedicines12030570 - 3 Mar 2024
Cited by 2 | Viewed by 2151
Abstract
Nucleopeptides (NPs) represent synthetic polymers created by attaching nucleobases to the side chains of amino acid residues within peptides. These compounds amalgamate the characteristics of peptides and nucleic acids, showcasing a unique ability to recognize RNA structures. In this study, we present the [...] Read more.
Nucleopeptides (NPs) represent synthetic polymers created by attaching nucleobases to the side chains of amino acid residues within peptides. These compounds amalgamate the characteristics of peptides and nucleic acids, showcasing a unique ability to recognize RNA structures. In this study, we present the design and synthesis of Fmoc-protected nucleobase amino acids (1,4-TzlNBAs) and a new class of NPs, where canonical nucleobases are affixed to the side chain of L-homoalanine (Hal) through a 1,4-linked-1,2,3-triazole (HalTzl). Fmoc-protected 1,4-TzlNBAs suitable for HalTzl synthesis were obtained via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) conjugation of Fmoc-L-azidohomoalanine (Fmoc-Aha) and N1- or N9-propargylated nucleobases or their derivatives. Following this, two trinucleopeptides, HalTzlAAA and HalTzlAGA, and the hexanucleopeptide HalTzlTCCCAG, designed to complement bulge and outer loop structures of TAR (trans-activation response element) RNA HIV-1, were synthesized using the classical solid-phase peptide synthesis (SPPS) protocol. The binding between HalTzls and fluorescently labeled 5′-(FAM(6))-TAR UCU and UUU mutant was characterized using circular dichroism (CD) and fluorescence spectroscopy. CD results confirmed the binding of HalTzls to TAR RNA, which was evident by a decrease in ellipticity band intensity around 265 nm during complexation. CD thermal denaturation studies indicated a relatively modest effect of complexation on the stability of TAR RNA structure. The binding of HalTzls at an equimolar ratio only marginally increased the melting temperature (Tm) of the TAR RNA structure, with an increment of less than 2 °C in most cases. Fluorescence spectroscopy revealed that HalTzlAAA and HalTzlAGA, complementary to UUU or UCU bulges, respectively, exhibited disparate affinities for the TAR RNA structure (with Kd ≈ 30 and 256 µM, respectively). Hexamer HalTzlTCCCAG, binding to the outer loop of TARUCU, demonstrated a moderate affinity with Kd ≈ 38 µM. This study demonstrates that newly designed HalTzls effectively bind the TAR RNA structure, presenting a potential new class of RNA binders and may be a promising scaffold for the development of a new class of antiviral drugs. Full article
(This article belongs to the Special Issue Vaccines and Antivirals against Emerging Viruses)
Show Figures

Figure 1

19 pages, 4562 KB  
Article
Lighting-Up the Far-Red Fluorescence of RNA-Selective Dyes by Switching from Ortho to Para Position
by Alessio Cesaretti, Eleonora Calzoni, Nicolò Montegiove, Tommaso Bianconi, Martina Alebardi, Maria Antonietta La Serra, Giuseppe Consiglio, Cosimo Gianluca Fortuna, Fausto Elisei and Anna Spalletti
Int. J. Mol. Sci. 2023, 24(5), 4812; https://doi.org/10.3390/ijms24054812 - 2 Mar 2023
Cited by 13 | Viewed by 4008
Abstract
Fluorescence imaging is constantly searching for new far-red emitting probes whose turn-on response is selective upon the interaction with specific biological targets. Cationic push-pull dyes could indeed respond to these requirements due to their intramolecular charge transfer (ICT) character, by which their optical [...] Read more.
Fluorescence imaging is constantly searching for new far-red emitting probes whose turn-on response is selective upon the interaction with specific biological targets. Cationic push-pull dyes could indeed respond to these requirements due to their intramolecular charge transfer (ICT) character, by which their optical properties can be tuned, and their ability to interact strongly with nucleic acids. Starting from the intriguing results recently achieved with some push-pull dimethylamino-phenyl dyes, two isomers obtained by switching the cationic electron acceptor head (either a methylpyridinium or a methylquinolinium) from the ortho to the para position have been scrutinized for their ICT dynamics, their affinity towards DNA and RNA, and in vitro behavior. By exploiting the marked fluorescence enhancement observed upon complexation with polynucleotides, fluorimetric titrations were employed to evaluate the dyes’ ability as efficient DNA/RNA binders. The studied compounds exhibited in vitro RNA-selectivity by localizing in the RNA-rich nucleoli and within the mitochondria, as demonstrated by fluorescence microscopy. The para-quinolinium derivative showed some modest antiproliferative effect on two tumor cell lines as well as improved properties as an RNA-selective far-red probe in terms of both turn-on response (100-fold fluorescence enhancement) and localized staining ability, attracting interest as a potential theranostic agent. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

22 pages, 3038 KB  
Article
Insight into the Structural Basis for Dual Nucleic Acid—Recognition by the Scaffold Attachment Factor B2 Protein
by Sophie M. Korn, Julian Von Ehr, Karthikeyan Dhamotharan, Jan-Niklas Tants, Rupert Abele and Andreas Schlundt
Int. J. Mol. Sci. 2023, 24(4), 3286; https://doi.org/10.3390/ijms24043286 - 7 Feb 2023
Cited by 2 | Viewed by 3125
Abstract
The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes [...] Read more.
The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic. We here provide the SAFB2 DNA- and RNA-binding SAP and RRM domains in their functional boundaries and use solution NMR spectroscopy to ascribe DNA- and RNA-binding functions. We give insight into their target nucleic acid preferences and map the interfaces with respective nucleic acids on sparse data-derived SAP and RRM domain structures. Further, we provide evidence that the SAP domain exhibits intra-domain dynamics and a potential tendency to dimerize, which may expand its specifically targeted DNA sequence range. Our data provide a first molecular basis of and a starting point towards deciphering DNA- and RNA-binding functions of SAFB2 on the molecular level and serve a basis for understanding its localization to specific regions of chromatin and its involvement in the processing of specific RNA species. Full article
(This article belongs to the Special Issue RNA-Binding Proteins — Structure, Function, Networks and Diseases)
Show Figures

Figure 1

21 pages, 6068 KB  
Article
New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies
by Ernest Ewert, Izabela Pospieszna-Markiewicz, Martyna Szymańska, Adrianna Kurkiewicz, Agnieszka Belter, Maciej Kubicki, Violetta Patroniak, Marta A. Fik-Jaskółka and Giovanni N. Roviello
Molecules 2023, 28(1), 400; https://doi.org/10.3390/molecules28010400 - 3 Jan 2023
Cited by 3 | Viewed by 3363
Abstract
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the [...] Read more.
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV–Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt. Full article
(This article belongs to the Special Issue Shaping Medicinal Chemistry for the New Decade)
Show Figures

Graphical abstract

8 pages, 1439 KB  
Communication
Development of Fluorescent Turn-On Probes for CAG-RNA Repeats
by Matthew Ho Yan Lau, Chun-Ho Wong, Ho Yin Edwin Chan and Ho Yu Au-Yeung
Biosensors 2022, 12(12), 1080; https://doi.org/10.3390/bios12121080 - 25 Nov 2022
Cited by 2 | Viewed by 2624
Abstract
Fluorescent sensing of nucleic acids is a highly sensitive and efficient bioanalytical method for their study in cellular processes, detection and diagnosis in related diseases. However, the design of small molecule fluorescent probes for the selective binding and detection of RNA of a [...] Read more.
Fluorescent sensing of nucleic acids is a highly sensitive and efficient bioanalytical method for their study in cellular processes, detection and diagnosis in related diseases. However, the design of small molecule fluorescent probes for the selective binding and detection of RNA of a specific sequence is very challenging because of their diverse, dynamic, and flexible structures. By modifying a bis(amidinium)-based small molecular binder that is known to selectively target RNA with CAG repeats using an environment-sensitive fluorophore, a turn-on fluorescent probe featuring aggregation-induced emission (AIE) is successfully developed in this proof-of-concept study. The probe (DB-TPE) exhibits a strong, 19-fold fluorescence enhancement upon binding to a short CAG RNA, and the binding and fluorescence response was found to be specific to the overall RNA secondary structure with A·A mismatches. These promising analytical performances suggest that the probe could be applied in pathological studies, disease progression monitoring, as well as diagnosis of related neurodegenerative diseases due to expanded CAG RNA repeats. Full article
Show Figures

Figure 1

14 pages, 3127 KB  
Article
Tailoring the Structure of Cell Penetrating DNA and RNA Binding Nucleopeptides
by Stefano Tomassi, Caterina Ieranò, Alessandra Del Bene, Antonia D’Aniello, Maria Napolitano, Giuseppina Rea, Federica Auletta, Luigi Portella, Anna Capiluongo, Vincenzo Mazzarella, Rosita Russo, Angela Chambery, Stefania Scala, Salvatore Di Maro and Anna Messere
Int. J. Mol. Sci. 2022, 23(15), 8504; https://doi.org/10.3390/ijms23158504 - 31 Jul 2022
Cited by 3 | Viewed by 2886
Abstract
Synthetic nucleic acid interactors represent an exciting research field due to their biotechnological and potential therapeutic applications. The translation of these molecules into drugs is a long and difficult process that justifies the continuous research of new chemotypes endowed with favorable binding, pharmacokinetic [...] Read more.
Synthetic nucleic acid interactors represent an exciting research field due to their biotechnological and potential therapeutic applications. The translation of these molecules into drugs is a long and difficult process that justifies the continuous research of new chemotypes endowed with favorable binding, pharmacokinetic and pharmacodynamic properties. In this scenario, we describe the synthesis of two sets of homo-thymine nucleopeptides, in which nucleobases are inserted in a peptide structure, to investigate the role of the underivatized amino acid residue and the distance of the nucleobase from the peptide backbone on the nucleic acid recognition process. It is worth noting that the CD spectroscopy investigation showed that two of the reported nucleopeptides, consisting of alternation of thymine functionalized L-Orn and L-Dab and L-Arg as underivatized amino acids, were able to efficiently bind DNA and RNA targets and cross both cell and nuclear membranes. Full article
(This article belongs to the Special Issue Peptides and Their Synthetic Analogs in Medicine and Biotechnology)
Show Figures

Figure 1

19 pages, 11941 KB  
Article
Amphiphilicity-Controlled Localization of Red Emitting Bicationic Fluorophores in Tumor Cells Acting as Bio-Probes and Anticancer Drugs
by Alessio Cesaretti, Letizia Mencaroni, Carmela Bonaccorso, Valentina Botti, Eleonora Calzoni, Benedetta Carlotti, Cosimo Gianluca Fortuna, Nicolò Montegiove, Anna Spalletti and Fausto Elisei
Molecules 2022, 27(12), 3713; https://doi.org/10.3390/molecules27123713 - 9 Jun 2022
Cited by 6 | Viewed by 2748
Abstract
Small organic molecules arouse lively interest for their plethora of possible biological applications, such as anticancer therapy, for their ability to interact with nucleic acids, or bioimaging, thanks to their fluorescence emission. Here, a panchromatic series of styryl-azinium bicationic dyes, which have already [...] Read more.
Small organic molecules arouse lively interest for their plethora of possible biological applications, such as anticancer therapy, for their ability to interact with nucleic acids, or bioimaging, thanks to their fluorescence emission. Here, a panchromatic series of styryl-azinium bicationic dyes, which have already proved to exhibit high water-solubility and significant red fluorescence in water, were investigated through spectrofluorimetric titrations to assess the extent of their association constants with DNA and RNA. Femtosecond-resolved transient absorption spectroscopy was also employed to characterize the changes in the photophysical properties of these fluorophores upon interaction with their biological targets. Finally, in vitro experiments conducted on tumor cell lines revealed that some of the bicationic fluorophores had a peculiar localization within cell nuclei exerting important antiproliferative effects, others were instead found to localize in the cytoplasm without leading to cell death, being useful to mark specific organelles in light of live cell bioimaging. Interestingly, this molecule-dependent behavior matched the different amphiphilicity featured by these bioactive compounds, which are thus expected to be caught in a tug-of-war between lipophilicity, ensured by the presence of aromatic rings and needed to pass cell membranes, and hydrophilicity, granted by charged groups and necessary for stability in aqueous media. Full article
Show Figures

Graphical abstract

18 pages, 5865 KB  
Article
Novel Anti Double-Stranded Nucleic Acids Full-Length Recombinant Camelid Heavy-Chain Antibody for the Detection of miRNA
by Malgorzata Czarnecka, Ulrike Weichelt, Stefan Rödiger and Katja Hanack
Int. J. Mol. Sci. 2022, 23(11), 6275; https://doi.org/10.3390/ijms23116275 - 3 Jun 2022
Cited by 3 | Viewed by 2819
Abstract
The discovery that certain diseases have specific miRNA signatures which correspond to disease progression opens a new biomarker category. The detection of these small non-coding RNAs is performed routinely using body fluids or tissues with real-time PCR, next-generation sequencing, or amplification-based miRNA assays. [...] Read more.
The discovery that certain diseases have specific miRNA signatures which correspond to disease progression opens a new biomarker category. The detection of these small non-coding RNAs is performed routinely using body fluids or tissues with real-time PCR, next-generation sequencing, or amplification-based miRNA assays. Antibody-based detection systems allow an easy onset handling compared to PCR or sequencing and can be considered as alternative methods to support miRNA diagnostic in the future. In this study, we describe the generation of a camelid heavy-chain-only antibody specifically recognizing miRNAs to establish an antibody-based detection method. The generation of nucleic acid-specific binders is a challenge. We selected camelid binders via phage display, expressed them as VHH as well as full-length antibodies, and characterized the binding to several miRNAs from a signature specific for dilated cardiomyopathy. The described workflow can be used to create miRNA-specific binders and establish antibody-based detection methods to provide an additional way to analyze disease-specific miRNA signatures. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

17 pages, 6086 KB  
Article
Chromene Derivatives as Selective TERRA G-Quadruplex RNA Binders with Antiproliferative Properties
by Roberta Rocca, Francesca Scionti, Matteo Nadai, Federica Moraca, Annalisa Maruca, Giosuè Costa, Raffaella Catalano, Giada Juli, Maria Teresa Di Martino, Francesco Ortuso, Stefano Alcaro, Pierosandro Tagliaferri, Pierfrancesco Tassone, Sara N. Richter and Anna Artese
Pharmaceuticals 2022, 15(5), 548; https://doi.org/10.3390/ph15050548 - 28 Apr 2022
Cited by 12 | Viewed by 3807
Abstract
In mammalian cells, telomerase transcribes telomeres in large G-rich non-coding RNA, known as telomeric repeat-containing RNA (TERRA), which folds into noncanonical nucleic acid secondary structures called G-quadruplexes (G4s). Since TERRA G4 has been shown to be involved in telomere length and translation regulation, [...] Read more.
In mammalian cells, telomerase transcribes telomeres in large G-rich non-coding RNA, known as telomeric repeat-containing RNA (TERRA), which folds into noncanonical nucleic acid secondary structures called G-quadruplexes (G4s). Since TERRA G4 has been shown to be involved in telomere length and translation regulation, it could provide valuable insight into fundamental biological processes, such as cancer growth, and TERRA G4 binders could represent an innovative strategy for cancer treatment. In this work, the three best candidates identified in our previous virtual screening campaign on bimolecular DNA/RNA G4s were investigated on the monomolecular Tel DNA and TERRA G4s by means of molecular modelling simulations and in vitro and in cell analysis. The results obtained in this work highlighted the stabilizing power of all the three candidates on TERRA G4. In particular, the two compounds characterized by a chromene scaffold were selective TERRA G4 binders, while the compound with a naphthyridine core acted as a dual Tel/TERRA G4-binder. A biophysical investigation by circular dichroism confirmed the relative stabilization efficiency of the compounds towards TERRA and Tel G4s. The TERRA G4 stabilizing hits showed good antiproliferative activity against colorectal and lung adenocarcinoma cell lines. Lead optimization to increase TERRA G4 stabilization may provide new powerful tools against cancer. Full article
(This article belongs to the Special Issue In Silico Approaches in Drug Design)
Show Figures

Graphical abstract

17 pages, 2832 KB  
Article
Synthesis and Investigation of the G-Quadruplex Binding Properties of Kynurenic Acid Derivatives with a Dihydroimidazoquinoline-3,5-dione Core
by Stefania Mazzini, Salvatore Princiotto, Loana Musso, Daniele Passarella, Giovanni Luca Beretta, Paola Perego and Sabrina Dallavalle
Molecules 2022, 27(9), 2791; https://doi.org/10.3390/molecules27092791 - 27 Apr 2022
Cited by 2 | Viewed by 2888
Abstract
G-quadruplexes are secondary structures originating from nucleic acid regions rich in guanines, which are well known for their involvement in gene transcription and regulation and DNA damage repair. In recent studies from our group, kynurenic acid (KYNA) derivative 1 was synthesized and found [...] Read more.
G-quadruplexes are secondary structures originating from nucleic acid regions rich in guanines, which are well known for their involvement in gene transcription and regulation and DNA damage repair. In recent studies from our group, kynurenic acid (KYNA) derivative 1 was synthesized and found to share the structural features typical of G-quadruplex binders. Herein, structural modifications were conducted on this scaffold in order to assist the binding with a G-quadruplex, by introducing charged hydrophilic groups. The antiproliferative activity of the new analogues was evaluated on an IGROV-1 human ovarian cancer cell line, and the most active compound, compound 9, was analyzed with NMR spectrometry in order to investigate its binding mode with DNA. The results indicated that a weak, non-specific interaction was set with duplex nucleotides; on the other hand, titration in the presence of a G-quadruplex from human telomere d(TTAGGGT)4 showed a stable, although not strong, interaction at the 3′-end of the nucleotidic sequence, efficiently assisted by salt bridges between the quaternary nitrogen and the external phosphate groups. Overall, this work can be considered a platform for the development of a new class of potential G-quadruplex stabilizing molecules, confirming the crucial role of a planar system and the ability of charged nitrogen-containing groups to facilitate the binding to G-quadruplex grooves and loops. Full article
(This article belongs to the Special Issue Bioorganic Chemistry: Current and Future Perspectives)
Show Figures

Graphical abstract

19 pages, 3639 KB  
Review
G-Quadruplex Targeting in the Fight against Viruses: An Update
by Emanuela Ruggiero, Irene Zanin, Marianna Terreri and Sara N. Richter
Int. J. Mol. Sci. 2021, 22(20), 10984; https://doi.org/10.3390/ijms222010984 - 12 Oct 2021
Cited by 67 | Viewed by 6448
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of [...] Read more.
G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of the presence and role of G4s in viral genomes has led to the discovery of G4-regulated key viral pathways. In this context, employment of selective G4 ligands has helped to understand the complexity of G4-mediated mechanisms in the viral life cycle, and highlighted the possibility to target viral G4s as an emerging antiviral approach. Research in this field is growing at a fast pace, providing increasing evidence of the antiviral activity of old and new G4 ligands. This review aims to provide a punctual update on the literature on G4 ligands exploited in virology. Different classes of G4 binders are described, with emphasis on possible antiviral applications in emerging diseases, such as the current COVID-19 pandemic. Strengths and weaknesses of G4 targeting in viruses are discussed. Full article
Show Figures

Figure 1

20 pages, 5405 KB  
Article
Polycationic Monomeric and Homodimeric Asymmetric Monomethine Cyanine Dyes with Hydroxypropyl Functionality—Strong Affinity Nucleic Acids Binders
by Ivana Mikulin, Ivana Ljubić, Ivo Piantanida, Aleksey Vasilev, Mihail Mondeshki, Meglena Kandinska, Lidija Uzelac, Irena Martin-Kleiner, Marijeta Kralj and Lidija-Marija Tumir
Biomolecules 2021, 11(8), 1075; https://doi.org/10.3390/biom11081075 - 21 Jul 2021
Cited by 7 | Viewed by 3430
Abstract
New analogs of the commercial asymmetric monomethine cyanine dyes thiazole orange (TO) and thiazole orange homodimer (TOTO) with hydroxypropyl functionality were synthesized and their properties in the presence of different nucleic acids were studied. The novel compounds showed strong, micromolar and submicromolar affinities [...] Read more.
New analogs of the commercial asymmetric monomethine cyanine dyes thiazole orange (TO) and thiazole orange homodimer (TOTO) with hydroxypropyl functionality were synthesized and their properties in the presence of different nucleic acids were studied. The novel compounds showed strong, micromolar and submicromolar affinities to all examined DNA ds-polynucleotides and poly rA–poly rU. The compounds studied showed selectivity towards GC-DNA base pairs over AT-DNA, which included both binding affinity and a strong fluorescence response. CD titrations showed aggregation along the polynucleotide with well-defined supramolecular chirality. The single dipyridinium-bridged dimer showed intercalation at low dye-DNA/RNA ratios. All new cyanine dyes showed potent micromolar antiproliferative activity against cancer cell lines, making them promising theranostic agents. Full article
(This article belongs to the Special Issue Polynucleotides)
Show Figures

Figure 1

Back to TopTop