Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = novel tank diving test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4918 KiB  
Article
Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish
by Ion Brinza, Razvan Stefan Boiangiu, Elena Todirascu-Ciornea, Lucian Hritcu and Gabriela Dumitru
Molecules 2025, 30(13), 2858; https://doi.org/10.3390/molecules30132858 - 4 Jul 2025
Viewed by 939
Abstract
Foeniculum vulgare Mill. (Apiaceae) is an aromatic medicinal plant known for its anti-inflammatory, antispasmodic, antiseptic, carminative, diuretic, and analgesic properties. This study aimed to investigate the effects of F. vulgare essential oil (FVEO; 25, 150, and 300 μL/L) on the cognitive performance and [...] Read more.
Foeniculum vulgare Mill. (Apiaceae) is an aromatic medicinal plant known for its anti-inflammatory, antispasmodic, antiseptic, carminative, diuretic, and analgesic properties. This study aimed to investigate the effects of F. vulgare essential oil (FVEO; 25, 150, and 300 μL/L) on the cognitive performance and brain oxidative stress in a scopolamine (SCOP; 100 μM)-induced zebrafish model of cognitive impairment. Additionally, the pharmacokinetic properties and bioactivity profiles of the main FVEO constituents were predicted to be used in silico tools, including SwissADME, pkCSM, PASS online, and ADMETlab 2.0. Behavioral assays, novel tank diving test (NTT), Y-maze, and novel object recognition (NOR) test, were used to evaluate anxiety-like behavior, spatial memory, and recognition memory, respectively. Biochemical assessments of acetylcholinesterase (AChE) activity and oxidative stress biomarkers were also conducted. The results demonstrated that FVEO significantly improved cognitive performance in SCOP-treated zebrafish, normalized AChE activity, and reduced oxidative stress in the brain. These findings suggest the therapeutic potential of FVEO in ameliorating memory impairment and oxidative damage associated with neurodegenerative disorders such as Alzheimer’s disease (AD). Full article
(This article belongs to the Special Issue Novel Compounds in the Treatment of the CNS Disorders, 2nd Edition)
Show Figures

Figure 1

26 pages, 6937 KiB  
Article
Solanum macrocarpon L. Ethanolic Leaf Extract Exhibits Neuroprotective and Anxiolytic Effects in Scopolamine-Induced Amnesic Zebrafish Model
by Ion Brinza, Corina Guliev, Ibukun Oluwabukola Oresanya, Hasya Nazli Gok, Ilkay Erdogan Orhan and Lucian Hritcu
Pharmaceuticals 2025, 18(5), 706; https://doi.org/10.3390/ph18050706 - 9 May 2025
Viewed by 661
Abstract
Background/Objectives: Solanum macrocarpon L. has been studied for its neuroprotective potential and memory-enhancing properties. Research suggests that bioactive compounds, including flavonoids, alkaloids, and phenolics, contribute to its cognitive benefits. These compounds may help protect against oxidative stress, neuroinflammation, and cholinergic dysfunction factors [...] Read more.
Background/Objectives: Solanum macrocarpon L. has been studied for its neuroprotective potential and memory-enhancing properties. Research suggests that bioactive compounds, including flavonoids, alkaloids, and phenolics, contribute to its cognitive benefits. These compounds may help protect against oxidative stress, neuroinflammation, and cholinergic dysfunction factors in memory impairment. This study was undertaken to investigate the effects of S. macrocarpon ethanolic leaf extract (SMEE) on the memory, anxiety-like behavior, and brain antioxidant status of scopolamine (SCOP, 100 μM)-induced amnesic zebrafish (Danio rerio) and thus to understand its possible mechanism of action. Methods: Adult zebrafish (n = 100) were divided into two cohorts (±SCOP) of five experimental groups: (I) control; (II) galantamine (GAL, 1 mg/L), serving as a positive control for both behavioral and biochemical assessments; (III–V) three groups treated with SMEE (1, 3, and 6 mg/L); (VI) scopolamine (SCOP, 100 μM); (VII) SCOP (100 μM) combined with GAL (1 mg/L); and (VIII–X) three groups treated with SCOP (100 μM) plus SMEE (1, 3, and 6 mg/L). The treatment lasted 23 days and amnesia was induced by a single dose of SCOP (100 μM) before testing. Results: The phenolic characterization from the samples was performed by using HPLC-PDA chromatography. Following HPLC analysis, an in silico pharmacokinetic evaluation was conducted using the ADMET model to investigate the pharmacological and toxicological profiles of the identified compounds. Spatial memory was evaluated through the Y-maze and novel object recognition (NOR) tests, while anxiety-like behavior was assessed using the novel tank diving test (NTT), novel approach test (NAT), and light–dark test (LDT). The zebrafish were euthanized, and homogenates of isolated brain samples were assayed for acetylcholinesterase (AChE) activity and brain antioxidant markers. The HPLC analysis revealed that the main major compounds in the extract were chlorogenic acid and rutin, both recognized for their significant antioxidant properties. Conclusions: SMEE enhanced memory by inhibiting AChE, alleviated SCOP-induced anxiety-like behavior, and significantly decreased oxidative stress markers. These findings support the potential role of SMEE in counteracting SCOP-induced cognitive and behavioral dysfunctions, related to dementia conditions. Full article
(This article belongs to the Special Issue Therapeutic Potential of Scopolamine and Its Adverse Effect)
Show Figures

Graphical abstract

35 pages, 4036 KiB  
Article
Neuroprotective Potential of Origanum majorana L. Essential Oil Against Scopolamine-Induced Memory Deficits and Oxidative Stress in a Zebrafish Model
by Ion Brinza, Razvan Stefan Boiangiu, Iasmina Honceriu, Ahmed M. Abd-Alkhalek, Samir M. Osman, Omayma A. Eldahshan, Elena Todirascu-Ciornea, Gabriela Dumitru and Lucian Hritcu
Biomolecules 2025, 15(1), 138; https://doi.org/10.3390/biom15010138 - 16 Jan 2025
Cited by 1 | Viewed by 1705
Abstract
Origanum majorana L., also known as sweet marjoram, is a plant with multiple uses, both in the culinary field and traditional medicine, because of its major antioxidant, anti-inflammatory, antimicrobial, and digestive properties. In this research, we focused on the effects of O. majorana [...] Read more.
Origanum majorana L., also known as sweet marjoram, is a plant with multiple uses, both in the culinary field and traditional medicine, because of its major antioxidant, anti-inflammatory, antimicrobial, and digestive properties. In this research, we focused on the effects of O. majorana essential oil (OmEO, at concentrations of 25, 150, and 300 μL/L), evaluating chemical structure as well as its impact on cognitive performance and oxidative stress, in both naive zebrafish (Danio rerio), as well as in a scopolamine-induced amnesic model (SCOP, 100 μM). The fish behavior was analyzed in a novel tank-diving test (NTT), a Y-maze test, and a novel object recognition (NOR) test. We also investigated acetylcholinesterase (AChE) activity and the brain’s oxidative stress status. In parallel, we performed in silico predictions (research conducted using computational models) of the pharmacokinetic properties of the main compounds identified in OmEO, using platforms such as SwissADME, pKCSM, ADMETlab 2.0, and ProTox-II. The results revealed that the major compounds were trans-sabinene hydrate (36.11%), terpinen-4-ol (17.97%), linalyl acetate (9.18%), caryophyllene oxide (8.25%), and α-terpineol (6.17%). OmEO can enhance memory through AChE inhibition, reduce SCOP-induced anxiety by increasing the time spent in the top zone in the NTT, and significantly reduce oxidative stress markers. These findings underscore the potential of using O. majorana to improve memory impairment and reduce oxidative stress associated with cognitive disorders, including Alzheimer’s disease (AD). Full article
Show Figures

Figure 1

17 pages, 4465 KiB  
Article
Anxiolytic and Antidepressant Effects of Tribulus terrestris Ethanolic Extract in Scopolamine-Induced Amnesia in Zebrafish: Supported by Molecular Docking Investigation Targeting Monoamine Oxidase A
by Salwa Bouabdallah, Mona H. Ibrahim, Ion Brinza, Razvan Stefan Boiangiu, Iasmina Honceriu, Amr Amin, Mossadok Ben-Attia and Lucian Hritcu
Pharmaceuticals 2024, 17(9), 1208; https://doi.org/10.3390/ph17091208 - 13 Sep 2024
Cited by 4 | Viewed by 2685
Abstract
Plants of the genus Tribulus have been used in folk medicine for wound healing, alleviating liver, stomach, and rheumatism pains, and as cognitive enhancers, sedatives, antiseptics, tonics, and stimulants. The present work aimed to evaluate whether Tribulus terrestris (Tt) administered for 15 days [...] Read more.
Plants of the genus Tribulus have been used in folk medicine for wound healing, alleviating liver, stomach, and rheumatism pains, and as cognitive enhancers, sedatives, antiseptics, tonics, and stimulants. The present work aimed to evaluate whether Tribulus terrestris (Tt) administered for 15 days attenuated cognitive deficits and exhibited anxiolytic and antidepressant profiles in scopolamine-induced amnesia in zebrafish. Animals were randomly divided into six groups (eight animals per group): (1)–(3) Tt treatment groups (1, 3 and 6 mg/L), (4) control, (5) scopolamine (SCOP, 0.7 mg/kg), and (6) galantamine (Gal, 1 mg/L). Exposure to SCOP (100 µM) resulted in anxiety in zebrafish, as assessed by the novel tank diving test (NTT) and novel approach test (NAT). When zebrafish were given SCOP and simultaneously given Tt (1, 3, and 6 mg/L once daily for 10 days), the deficits were averted. Molecular interactions of chemical compounds from the Tt fractions with the monoamine oxidase A (MAO-A) were investigated via molecular docking experiments. Using behavioral experiments, we showed that administration of Tt induces significant anxiolytic-antidepressant-like effects in SCOP-treated zebrafish. Our result indicated that flavonoids of Tt, namely kaempferol, quercetin, luteolin, apigetrin, and epigallocatechin, could act as promising phytopharmaceuticals for improving anxiety-related disorders. Full article
Show Figures

Figure 1

20 pages, 3580 KiB  
Article
Wetsuit Thermal Resistivity Measurements
by Gianluca Crotti, Roberto Cantù, Stefano Malavasi, Gianluca Gatti, Christian Laurano and Cesare Svelto
Sensors 2024, 24(14), 4561; https://doi.org/10.3390/s24144561 - 14 Jul 2024
Cited by 1 | Viewed by 1522
Abstract
In recent years, attention to the realization and characterization of wetsuits for scuba diving and other sea sports or activities has increased. The research has aimed to establish reliable and standardized measurement methods to objectively assess wetsuit quality, particularly focusing on their mechanical [...] Read more.
In recent years, attention to the realization and characterization of wetsuits for scuba diving and other sea sports or activities has increased. The research has aimed to establish reliable and standardized measurement methods to objectively assess wetsuit quality, particularly focusing on their mechanical and thermal properties. In this work, we describe and compare two different measurement methods for the characterization of neoprene wetsuit thermal resistivity. The first method follows the existing regulations in the field, while the second one, which we are originally proposing in this paper, offers an alternative yet accurate way based on a simplified experimental set-up and easier measurements. In both cases, the wetsuit sample under testing was shaped in the form of a cylindrical sleeve of proper dimensions and wrapped around a phantom containing water at a higher temperature and surrounded by water at a lower temperature. The wetsuit’s cylindrical surface allows heat flow from the warmer water on the inside to the colder water on the outside through the wetsuit area. In the first case, a thermal steady state was achieved, with constant heat flow from the phantom to the exterior. This was obtained with a power balance between two homogenous quantities. Electrically supplied thermal heating within the phantom was used to balance the thermal energy naturally flowing through the wetsuit’s surface. In this first case, a stable and fixed temperature difference was obtained between the inner and the outer surfaces of the wetsuit sample. In the second case, a thermal transient was analyzed during the cooling process of the phantom, and the thermal time constant was measured, providing the sample thermal resistance once the phantom thermal capacity was known. In both cases and methods, the heat flow and thermal resistance of other elements than the wetsuit must be evaluated and compensated for if they are not negligible. Finally, the thermal resistivity per unit area of the wetsuit material was obtained with the product of the wetsuit sample’s thermal resistance and the wetsuit area. The measurements, conducted until now by immersing the phantom in a free surface tank, show that both methods—under stationary and under transient temperature conditions—were valid to assess the wetsuit’s thermal resistivity. The stationary method somehow provided better accuracy while involving less well-known parameters but at the expense of a more complicated experimental set-up and additional energy consumption. The transitory method, on the other hand, is quite easy to implement and, after careful characterization of the phantom’s parameters, it provided similar results to the stationary one. An uncertainty budget was evaluated for both methods, and they did provide highly compatible measurement results, with resistivity values of 0.104(9) m2·K/W (stationary method) and 0.095(9) K·m2/W (transient method) for the same wetsuit sample under testing, which is also consistent with the values in the literature. We finally propose that the novel method is a valid alternative for characterization of the thermal insulation properties of a scuba diving wetsuit. Full article
Show Figures

Figure 1

29 pages, 9250 KiB  
Article
Investigating the Potential of Essential Oils from Citrus reticulata Leaves in Mitigating Memory Decline and Oxidative Stress in the Scopolamine-Treated Zebrafish Model
by Ion Brinza, Razvan Stefan Boiangiu, Iasmina Honceriu, Ahmed M. Abd-Alkhalek, Omayma A. Eldahshan, Gabriela Dumitru, Lucian Hritcu and Elena Todirascu-Ciornea
Plants 2024, 13(12), 1648; https://doi.org/10.3390/plants13121648 - 14 Jun 2024
Cited by 3 | Viewed by 3025
Abstract
Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were [...] Read more.
Petitgrain essential oil (PGEO) is derived from the water distillation process on mandarin (Citrus reticulata) leaves. The chemical constituents of PGEO were analyzed by gas chromatography/mass spectrometry (GC/MS) method which revealed the presence of six compounds (100%). The major peaks were for methyl-N-methyl anthranilate (89.93%) and γ-terpinene (6.25%). Over 19 days, zebrafish (Tubingen strain) received PGEO (25, 150, and 300 μL/L) before induction of cognitive impairment with scopolamine immersion (SCOP, 100 μM). Anxiety-like behavior and memory of the zebrafish were assessed by a novel tank diving test (NTT), Y-maze test, and novel object recognition test (NOR). Additionally, the activity of acetylcholinesterase (AChE) and the extent of the brain’s oxidative stress were explored. In conjunction, in silico forecasts were used to determine the pharmacokinetic properties of the principal compounds discovered in PGEO, employing platforms such as SwissADME, Molininspiration, and pKCSM. The findings provided evidence that PGEO possesses the capability to enhance memory by AChE inhibition, alleviate SCOP-induced anxiety during behavioral tasks, and diminish brain oxidative stress. Full article
Show Figures

Figure 1

14 pages, 1177 KiB  
Article
Effect of Tryptophan Dietary Content on Meagre, Argyrosomus regius, Juveniles Stress and Behavioral Response
by Ana Vasconcelos, Marta C. Soares, Marisa Barata, Ana Couto, Bárbara Teixeira, Laura Ribeiro, Pedro Pousão-Ferreira, Rogério Mendes and Margarida Saavedra
Animals 2023, 13(24), 3762; https://doi.org/10.3390/ani13243762 - 6 Dec 2023
Cited by 1 | Viewed by 1527
Abstract
There are a high number of stressors present in aquaculture that can affect fish welfare and quality. One way of mitigating stress response is by increasing dietary tryptophan. In this study, three diets containing 0.5% (Tript1), 0.6% (Tript2), and 0.8% (Tript3) of tryptophan [...] Read more.
There are a high number of stressors present in aquaculture that can affect fish welfare and quality. One way of mitigating stress response is by increasing dietary tryptophan. In this study, three diets containing 0.5% (Tript1), 0.6% (Tript2), and 0.8% (Tript3) of tryptophan were tested in 32 g juvenile meagre for 56 days. At the end of the trial, survival, growth, and proximate composition were similar between treatments. Significant differences were found in the plasma parameters before and after a stress test consisting of 30 s of air exposure. Blood glucose levels were higher in the post-stress for all treatments (e.g., 63.9 and 76.7 mg/dL for Tript1 before and after the stress test), and the hemoglobin values were lower in the post-stress of Tript1 (1.9 g/dL compared to 3.0 and 2.4 g/dL for Tript2 and Tript3, respectively). In terms of behavior, three tests were carried out (novel tank diving and shoaling assays, and lateralization test), but no significant differences were found, except for the number of freezing episodes during the anxiety test (1.4 for Tript3 compared to 3.5 and 4.2 for the other treatments). This study suggests that supplementation with dietary tryptophan, particularly in higher dosage (0.8%), can reduce anxiety-like behavior in meagre exposure to acute stress (novel tank). Although the remaining results showed mild effects, they provide some clues as to the potential of this amino acid as a stress mitigator in aquaculture. Full article
(This article belongs to the Special Issue Amino Acid Supplementation in Fish Nutrition and Welfare)
Show Figures

Figure 1

15 pages, 2330 KiB  
Article
Effects of Noise Exposure and Ageing on Anxiety and Social Behaviour in Zebrafish
by Raquel O. Vasconcelos, Flora Gordillo-Martinez, Andreia Ramos and Ieng Hou Lau
Biology 2023, 12(9), 1165; https://doi.org/10.3390/biology12091165 - 24 Aug 2023
Cited by 13 | Viewed by 2984
Abstract
Noise pollution is creating a wide range of health problems related to physiological stress and anxiety that impact the social life of vertebrates, including humans. Ageing is known to be associated with changes in susceptibility to acoustic stimuli; however, the interaction between noise [...] Read more.
Noise pollution is creating a wide range of health problems related to physiological stress and anxiety that impact the social life of vertebrates, including humans. Ageing is known to be associated with changes in susceptibility to acoustic stimuli; however, the interaction between noise effects and senescence is not well understood. We tested the effects of 24 h continuous white noise (150 dB re 1 Pa) on both young adults and old zebrafish in terms of anxiety (novel tank diving test), social interactions (with mirror/conspecific attraction), and shoaling behaviour. Both noise and ageing induced higher anxiety responses in a novel environment. Since the old zebrafish showed longer bottom dwelling, acoustic treatment induced the opposite pattern with an initial increase in vertical exploration in the aged individuals. Both noise- and age-related anxiety responses were lowered when individuals were tested within a group. Regarding social interactions, both noise and ageing seemed to cause an increase in their proximity to a mirror. Although the results were not statistically significant, noise exposure seemed to further enhance conspecific attraction. Moreover, the interindividual distance within a shoal decreased with noise treatment in the aged individuals. This study is a first attempt to investigate the effects of both noise and ageing on zebrafish behaviour, suggesting the age-dependent physiological coping mechanisms associated with environmental stress. Full article
(This article belongs to the Special Issue Social Behavior in Zebrafish)
Show Figures

Figure 1

14 pages, 3716 KiB  
Article
Obesity Impairs Cognitive Function with No Effects on Anxiety-like Behaviour in Zebrafish
by Alejandra Godino-Gimeno, Per-Ove Thörnqvist, Mauro Chivite, Jesús M. Míguez, Svante Winberg and José Miguel Cerdá-Reverter
Int. J. Mol. Sci. 2023, 24(15), 12316; https://doi.org/10.3390/ijms241512316 - 1 Aug 2023
Cited by 7 | Viewed by 3487
Abstract
Over the last decade, the zebrafish has emerged as an important model organism for behavioural studies and neurological disorders, as well as for the study of metabolic diseases. This makes zebrafish an alternative model for studying the effects of energy disruption and nutritional [...] Read more.
Over the last decade, the zebrafish has emerged as an important model organism for behavioural studies and neurological disorders, as well as for the study of metabolic diseases. This makes zebrafish an alternative model for studying the effects of energy disruption and nutritional quality on a wide range of behavioural aspects. Here, we used the zebrafish model to study how obesity induced by overfeeding regulates emotional and cognitive processes. Two groups of fish (n = 24 per group) were fed at 2% (CTRL) and 8% (overfeeding-induced obesity, OIO) for 8 weeks and tested for anxiety-like behaviour using the novel tank diving test (NTDT). Fish were first tested using a short-term memory test (STM) and then trained for four days for a long-term memory test (LTM). At the end of the experiment, fish were euthanised for biometric sampling, total lipid content, and triglyceride analysis. In addition, brains (eight per treatment) were dissected for HPLC determination of monoamines. Overfeeding induced faster growth and obesity, as indicated by increased total lipid content. OIO had no effect on anxiety-like behaviour. Animals were then tested for cognitive function (learning and memory) using the aversive learning test in Zantiks AD units. Results show that both OIO and CTRL animals were able to associate the aversive stimulus with the conditioned stimulus (conditioned learning), but OIO impaired STM regardless of fish sex, revealing the effects of obesity on cognitive processes in zebrafish. Obese fish did not show a deficiency in monoaminergic transmission, as revealed by quantification of total brain levels of dopamine and serotonin and their metabolites. This provides a reliable protocol for assessing the effect of metabolic disease on cognitive and behavioural function, supporting zebrafish as a model for behavioural and cognitive neuroscience. Full article
(This article belongs to the Special Issue Zebrafish as a Model for Biomedical Studies)
Show Figures

Figure 1

20 pages, 6324 KiB  
Article
Direct Evidence for Using Coriandrum sativum var. microcarpum Essential Oil to Ameliorate Scopolamine-Induced Memory Impairment and Brain Oxidative Stress in the Zebrafish Model
by Ion Brinza, Razvan Stefan Boiangiu, Oana Cioanca, Monica Hancianu, Gabriela Dumitru, Lucian Hritcu, Gheorghe-Ciprian Birsan and Elena Todirascu-Ciornea
Antioxidants 2023, 12(8), 1534; https://doi.org/10.3390/antiox12081534 - 31 Jul 2023
Cited by 15 | Viewed by 3196
Abstract
Essential oil from Coriandrum sativum has been demonstrated to provide various pharmacological properties, such as antioxidant, antimicrobial, antibacterial, antifungal, antidiabetic, anticonvulsive, anxiolytic-antidepressant, and anti-aging properties. This study investigated the mechanism of Coriandrum sativum var. microcarpum essential oil (CSEO, 25, 150, and 300 μL/L) [...] Read more.
Essential oil from Coriandrum sativum has been demonstrated to provide various pharmacological properties, such as antioxidant, antimicrobial, antibacterial, antifungal, antidiabetic, anticonvulsive, anxiolytic-antidepressant, and anti-aging properties. This study investigated the mechanism of Coriandrum sativum var. microcarpum essential oil (CSEO, 25, 150, and 300 μL/L) and cognitive impairment and brain oxidative stress in a scopolamine (SCOP, 100 μM) zebrafish model (Danio rerio) of cognitive impairment. Spatial memory, response to novelty, and recognition memory were assessed using the Y-maze test and the novel object recognition test (NOR), while anxiety-like behavior was investigated using the novel tank diving test (NTT). The cholinergic system activity and brain oxidative stress were also evaluated. CSEO was administered to zebrafish once a day for 21 days, while SCOP and galantamine (GAL, 1 mg/L) were delivered 30 min before behavioral testing and euthanasia. Our data revealed that SCOP induced memory dysfunction and anxiety-like behavior, while CSEO improved memory performance, as evidenced by behavioral tasks. Moreover, CSEO attenuated SCOP-induced brain oxidative stress and decreased acetylcholinesterase (AChE) activity. The results demonstrated the potential use of the CSEO in providing beneficial effects by reducing memory deficits and brain oxidative stress involved in the genesis of a dementia state. Full article
Show Figures

Figure 1

11 pages, 2394 KiB  
Article
Behavioral Study of 3- and 5-Halocytisine Derivatives in Zebrafish Using the Novel Tank Diving Test (NTT)
by Amaury Farías-Cea, Cristóbal Leal, Martín Hödar-Salazar, Erica Esparza, Luis Martínez-Duran, Irma Fuentes and Patricio Iturriaga-Vásquez
Int. J. Mol. Sci. 2023, 24(13), 10635; https://doi.org/10.3390/ijms241310635 - 25 Jun 2023
Cited by 10 | Viewed by 3335
Abstract
Anxiety is a serious mental disorder, and recent statistics have determined that 35.12% of the global population had an anxiety disorder during the COVID-19 pandemic. A mechanism associated with anxiolytic effects is related to nicotinic acetylcholine receptor (nAChR) agonists, principally acting on the [...] Read more.
Anxiety is a serious mental disorder, and recent statistics have determined that 35.12% of the global population had an anxiety disorder during the COVID-19 pandemic. A mechanism associated with anxiolytic effects is related to nicotinic acetylcholine receptor (nAChR) agonists, principally acting on the α4β2 nAChR subtype. nAChRs are present in different animal models, including murine and teleosteos ones. Zebrafish has become an ideal animal model due to its high human genetic similarities (70%), giving it high versatility in different areas of study, among them in behavioral studies related to anxiety. The novel tank diving test (NTT) is one of the many paradigms used for studies on new drugs related to their anxiolytic effect. In this work, an adult zebrafish was used to determine the behavioral effects of 3- and 5-halocytisine derivatives, using the NTT at different doses. Our results show that substitution at position 3 by chlorine or bromine decreases the time spent by the fish at the bottom compared to the control. However, the 3-chloro derivative at higher doses increases the bottom dwelling time. In contrast, substitution at the 5 position increases bottom dwelling at all concentrations showing no anxiolytic effects in this model. Unexpected results were observed with the 5-chlorocytisine derivative, which at a concentration of 10 mg/L produced a significant decrease in bottom dwelling and showed high times of freezing. In conclusion, the 3-chloro and 3-bromo derivatives show an anxiolytic effect, the 3-chlorocytisine derivative being more potent than the 3-bromo derivative, with the lowest time at the bottom of the tank at 1mg/L. On the other hand, chlorine, and bromine at position 5 produce an opposite effect. Full article
(This article belongs to the Special Issue Zebrafish as a Model for Biomedical Studies)
Show Figures

Figure 1

17 pages, 3946 KiB  
Article
Promnesic, Anxiolytic and Antioxidant Effects of Glaucosciadium cordifolium (Boiss.) Burtt & Davis Essential Oil in a Zebrafish Model of Cognitive Impairment
by Razvan Stefan Boiangiu, Eyup Bagci, Gabriela Dumitru, Lucian Hritcu and Elena Todirascu-Ciornea
Plants 2023, 12(4), 784; https://doi.org/10.3390/plants12040784 - 9 Feb 2023
Cited by 9 | Viewed by 2775
Abstract
The purpose of this study was to investigate the effect of Glaucosciadium cordifolium essential oil (GCEO, 25 and 150 µL/L) on anxiety and learning and memory impairment induced by scopolamine (SCOP) in zebrafish. The chemical composition was analyzed by GC-MS, and the results [...] Read more.
The purpose of this study was to investigate the effect of Glaucosciadium cordifolium essential oil (GCEO, 25 and 150 µL/L) on anxiety and learning and memory impairment induced by scopolamine (SCOP) in zebrafish. The chemical composition was analyzed by GC-MS, and the results showed that the highest content was limonene followed by α- and β-pinene, p-cymene and α-phellandrene. The dementia model was induced by SCOP (100 µM), whereas GCEO and galantamine (GAL, 1 mg/L) were delivered to the SCOP-induced model. It was found that GCEO significantly improved memory impairment and anxiety-like response induced by SCOP through the Y-maze, novel object recognition (NOR) test, and novel tank diving tests (NTT). Biochemical analyses showed that GCEO reduced SCOP-induced oxidative damage. Additionally, the cholinergic system activity was improved in the SCOP-induced model by decreasing the acetylcholinesterase (AChE) activity following the exposure to GCEO. It was clear that as a mixture, GCEO displays positive action in improving memory impairment through restoring cholinergic dysfunction and brain antioxidant status. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

9 pages, 907 KiB  
Article
Non-Dose-Dependent Relationship between Antipredator Behavior and Conspecific Alarm Substance in Zebrafish
by Yaxi Li, Zhi Yan, Ainuo Lin, Xiaodong Li and Ke Li
Fishes 2023, 8(2), 76; https://doi.org/10.3390/fishes8020076 - 28 Jan 2023
Cited by 6 | Viewed by 2456
Abstract
A series of behavioral detection paradigms have been developed for zebrafish (Danio rerio) to examine anxiety-like behavioral responses. Among them, the novel tank diving test is rapidly gaining popularity in translational neuroscience and behavioral research for the investigation of psychopharmacological activity [...] Read more.
A series of behavioral detection paradigms have been developed for zebrafish (Danio rerio) to examine anxiety-like behavioral responses. Among them, the novel tank diving test is rapidly gaining popularity in translational neuroscience and behavioral research for the investigation of psychopharmacological activity focusing on stress. Zebrafish respond to conspecific epidermal-released alarm substances with antipredator reactions. Although the alarm responses of zebrafish were well characterized in a novel tank diving experiment, the relationship between the intensity of the alarm behavior and the concentration of the alarm substance needed to be understood more adequately. In the current paper, we investigated the behavioral phenotypes and potencies of zebrafish elicited by the serial dilution of an alarm substance in the novel tank diving test. Using a video-tracking assisted behavioral quantification approach, we demonstrated no linear concentration-dependent relationship between antipredator behavior and skin extracts, suggesting that an optimal concentration induced each typical behavioral response. The results showed that the freezing duration (%) significantly increased when stimulated with 104-fold times dilutions of skin extract (equivalent 5 × 10−5 fish/L), while erratic movements (%), time in the bottom half (%), and latency to the upper half (s) significantly elevated when stimulated with 103-fold times dilutions (equivalent 5 × 10−4 fish/L). Therefore, the concentration threshold for an alarm substance that elicited innate fear behavior in zebrafish was presumed to be an equivalent concentration of approximately 5 × 10−4 fish/L. The conclusions may fill a knowledge gap between the innate fear response triggered by injured skin and a novel tank diving paradigm that provides insights into the characterization of alarm substance, behavioral responses, and physiological response mechanisms in zebrafish. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Graphical abstract

11 pages, 1451 KiB  
Article
Sweroside Ameliorated Memory Deficits in Scopolamine-Induced Zebrafish (Danio rerio) Model: Involvement of Cholinergic System and Brain Oxidative Stress
by Ion Brinza, Mohamed A. El Raey, Walaa El-Kashak, Omayma A. Eldahshan and Lucian Hritcu
Molecules 2022, 27(18), 5901; https://doi.org/10.3390/molecules27185901 - 11 Sep 2022
Cited by 16 | Viewed by 3097
Abstract
Sweroside is a secoiridoid glycoside and belongs to a large group of naturally occurring monoterpenes with glucose sugar attached to C-1 in the pyran ring. Sweroside can promote different biological activities such as antifungal, antibacterial, hepatoprotective, gastroprotective, sedative and antitumor, antioxidant, and neuroprotective [...] Read more.
Sweroside is a secoiridoid glycoside and belongs to a large group of naturally occurring monoterpenes with glucose sugar attached to C-1 in the pyran ring. Sweroside can promote different biological activities such as antifungal, antibacterial, hepatoprotective, gastroprotective, sedative and antitumor, antioxidant, and neuroprotective activities. Zebrafish were given sweroside (12.79, 8.35, and 13.95 nM) by immersion once daily for 8 days, along with scopolamine (Sco, 100 μM) 30 min before the initiation of the behavioral testing to cause anxiety and memory loss. Employing the novel tank diving test (NTT), the Y-maze, and the novel object recognition test (NOR), anxiety-like reactions and memory-related behaviors were assessed. The following seven groups (n = 10 animals per group) were used: control, Sco (100 μM), sweroside treatment (2.79, 8.35, and 13.95 nM), galantamine (GAL, 2.71 μM as the positive control in Y-maze and NOR tests), and imipramine (IMP, 63.11 μM as the positive control in NTT test). Acetylcholinesterase activity (AChE) and the antioxidant condition of the brains were also evaluated. The structure of sweroside isolated from Schenkia spicata was identified. Treatment with sweroside significantly improved the Sco-induced decrease of the cholinergic system activity and brain oxidative stress. These results suggest that sweroside exerts a significant effect on anxiety and cognitive impairment, driven in part by the modulation of the cholinergic system activity and brain antioxidant action. Full article
Show Figures

Figure 1

18 pages, 2002 KiB  
Article
Neuroprotective Effect of Yucca schidigera Roezl ex Ortgies Bark Phenolic Fractions, Yuccaol B and Gloriosaol A on Scopolamine-Induced Memory Deficits in Zebrafish
by Łukasz Pecio, Solomiia Kozachok, Ion Brinza, Razvan Stefan Boiangiu, Lucian Hritcu, Cornelia Mircea, Ana Flavia Burlec, Oana Cioanca, Monica Hancianu, Olga Wronikowska-Denysiuk, Krystyna Skalicka-Woźniak and Wiesław Oleszek
Molecules 2022, 27(12), 3692; https://doi.org/10.3390/molecules27123692 - 8 Jun 2022
Cited by 10 | Viewed by 3005
Abstract
Y. schidigera contains a number of unusual polyphenols, derivatives of resveratrol and naringenin, called spiro-flavostilbenoids, which have potent in vitro anti-inflammatory, antioxidant, and moderate cholinesterase inhibitory activities. To date, these compounds have not been tested in vivo for the treatment of neurodegenerative diseases. [...] Read more.
Y. schidigera contains a number of unusual polyphenols, derivatives of resveratrol and naringenin, called spiro-flavostilbenoids, which have potent in vitro anti-inflammatory, antioxidant, and moderate cholinesterase inhibitory activities. To date, these compounds have not been tested in vivo for the treatment of neurodegenerative diseases. The aim of the present study was to evaluate the effects of both single spiro-flavostilbenoids (yuccaol B and gloriosaol A) and phenolic fractions derived from Y. schidigera bark on scopolamine-induced anxiety and memory process deterioration using a Danio rerio model. Detailed phytochemical analysis of the studied fractions was carried out using different chromatographic techniques and Nuclear Magnetic Resonance (NMR). The novel tank diving test was used as a method to measure zebrafish anxiety, whereas spatial working memory function was assessed in Y-maze. In addition, acetylcholinesterase/butyrylcholinesterase (AChE/BChE) and 15-lipooxygenase (15-LOX) inhibition tests were performed in vitro. All pure compounds and fractions under study exerted anxiolytic and procognitive action. Moreover, strong anti-oxidant capacity was observed, whereas weak inhibition towards cholinesterases was found. Thus, we may conclude that the observed behavioral effects are complex and result rather from inhibition of oxidative stress processes and influence on cholinergic muscarinic receptors (both 15-LOX and scopolamine assays) than effects on cholinesterases. Y. schidigera is a source of substances with desirable properties in the prevention and treatment of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Novel Compounds in the Treatment of the CNS Disorders)
Show Figures

Figure 1

Back to TopTop