Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = nonstructural protein NS2B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11611 KB  
Article
Zika NS2B Protein: In Vitro Formation of Large Multimeric Networks
by Caleb Ponniah, Wahyu Surya and Jaume Torres
Int. J. Mol. Sci. 2026, 27(3), 1504; https://doi.org/10.3390/ijms27031504 - 3 Feb 2026
Abstract
Flaviviruses are responsible for significant morbidity and mortality worldwide. Despite intensive research, the structure and oligomerization properties of non-structural (NS) proteins, like NS2 or NS4, are still uncertain because of their high hydrophobicity. Solution NMR has shown that NS2B protein has two hydrophobic [...] Read more.
Flaviviruses are responsible for significant morbidity and mortality worldwide. Despite intensive research, the structure and oligomerization properties of non-structural (NS) proteins, like NS2 or NS4, are still uncertain because of their high hydrophobicity. Solution NMR has shown that NS2B protein has two hydrophobic domains, organized as two short α-helical hairpins that contribute to both viral RNA replication and particle formation. These are separated by a hydrophilic loop that is a cofactor of protease NS3. However, the oligomerization behavior of NS2B has not been explored in detail. Herein, we have expressed Zika virus NS2B protein (ZIKV NS2B) and characterized its oligomerization in both detergent and lipids using crosslinking in liposomes, and mass photometry and analytical ultracentrifugation in detergent. We show that, in contrast to the small oligomers proposed earlier, ZIKV NS2B protein has a very complex oligomerization behavior, forming from dimers to very large multimers (>10) in both detergent and lipids. Although AlphaFold (AF) provided a model for monomeric NS2B that is consistent with available experimental data, no oligomeric model was predicted with confidence. We suggest that the role of the two short α-helical hairpins in membrane destabilization and reshaping host ER during viral infection may be aided or triggered by multimerization. Finally, although our results report a high tendency of NS2B to oligomerize, in the context of the infected cell, a biologically relevant multimeric complex may necessitate other viral proteins like NS4A or NS4B and/or host proteins. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

12 pages, 1117 KB  
Article
Genomic Characterization of Clinical Canine Parvovirus Type 2c Infection in Wild Coyotes (Canis latrans) in Mexico
by Armando Busqueta-Medina, Ramiro Ávalos-Ramírez, Diana Elisa Zamora-Ávila, Víctor Eustorgio Aguirre-Arzola, Juan Francisco Contreras-Cordero and Sibilina Cedillo-Rosales
Pathogens 2026, 15(1), 80; https://doi.org/10.3390/pathogens15010080 - 11 Jan 2026
Viewed by 340
Abstract
Canine parvovirus type 2 (CPV-2) is a primary etiological agent of acute gastroenteritis in domestic dogs. Although molecular and serological evidence have confirmed its circulation in wild carnivores, the clinical impact of spillover events in wildlife hosts remain insufficiently characterized. In this study, [...] Read more.
Canine parvovirus type 2 (CPV-2) is a primary etiological agent of acute gastroenteritis in domestic dogs. Although molecular and serological evidence have confirmed its circulation in wild carnivores, the clinical impact of spillover events in wildlife hosts remain insufficiently characterized. In this study, we investigated CPV-2 from wild coyote pups (Canis latrans) presenting with clinical gastroenteritis in northeastern Mexico. CPV-2 was successfully isolated in MDCK cells, and whole-genome sequencing was performed on two isolates, B55 and B56 (GenBank accession numbers PQ065988 and PQ065989). A comprehensive analysis identified 23 nucleotide mutations, eight of which were missense mutations resulting in amino acid substitutions in structural (VP) and non-structural (NS) proteins. Notably, amino acid substitution L354V was identified in the NS1 helicase domain of both isolates, a region critical for viral replication. Phylogenetic analysis confirmed that isolates B55 and B56 cluster within the CPV-2c subtype, showing high genetic relatedness to circulating Mexican and US canine strains which strongly suggests recent cross-species transmission between domestic dogs and wild coyotes. This study provides the first complete genomic characterization of a clinical CPV-2 infection in wild coyotes in Mexico, underscoring the immediate risk of CPV-2c transmission at the domestic animal–wildlife interface. Full article
Show Figures

Figure 1

24 pages, 7532 KB  
Review
Antiviral Compounds from Natural Sources Against Human Arboviruses: An Updated Review Including Illustrative In Silico Analysis
by Julio Aguiar-Pech, Rocío Borges-Argáez and Henry Puerta-Guardo
Pathogens 2025, 14(11), 1156; https://doi.org/10.3390/pathogens14111156 - 13 Nov 2025
Cited by 1 | Viewed by 957
Abstract
Arboviruses such as dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) remain major global health threats, especially in tropical regions, with no effective antiviral treatments available. Recent research highlights progress in identifying antiviral compounds from natural sources against arboviruses belonging to the flavivirus genus, [...] Read more.
Arboviruses such as dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) remain major global health threats, especially in tropical regions, with no effective antiviral treatments available. Recent research highlights progress in identifying antiviral compounds from natural sources against arboviruses belonging to the flavivirus genus, such as DENV and ZIKV. These compounds, derived from plants, marine organisms, and microorganisms, fall into several key chemical classes: quinones, flavonoids, phenolics, terpenoids, and alkaloids. Quinones inhibit viral entry and replication by targeting envelope proteins and proteases. Flavonoids disrupt RNA synthesis and show virucidal activity. Phenolic compounds reduce expression of non-structural proteins and inhibit enzyme function. Terpenoids demonstrate broad-spectrum activity against multiple arboviruses, while alkaloids interfere with early infection stages or viral enzymes. To support the reviewed literature, we performed molecular docking analyses of selected natural compounds and some arboviral proteins included as illustrative examples. These analyses support the structure–activity relationships reported for some natural compounds and highlight their potential interactions with essential viral targets such as the NS2B-NS3 protease and NS5 polymerase. Together, these literature and computational insights highlight the potential of natural products as scaffolds for antiviral drug development. Full article
Show Figures

Figure 1

13 pages, 839 KB  
Review
Strategies of Classical Swine Fever Immune Evasion
by Yuanji Zhang, Fangtao Li and Yebing Liu
Int. J. Mol. Sci. 2025, 26(16), 7838; https://doi.org/10.3390/ijms26167838 - 14 Aug 2025
Viewed by 1543
Abstract
Classical swine fever (CSF) is a highly contagious and lethal disease caused by classical swine fever virus (CSFV), and it is also a notifiable disease according to the World Organization for Animal Health. Owing to the continuous growth of the international trade in [...] Read more.
Classical swine fever (CSF) is a highly contagious and lethal disease caused by classical swine fever virus (CSFV), and it is also a notifiable disease according to the World Organization for Animal Health. Owing to the continuous growth of the international trade in pigs and pig products, pig farming has become the pillar industry of the global livestock industry and is the most important source of animal protein for mankind. As a single-stranded RNA virus, CSFV can avoid being recognized and cleared by the host immune system through a variety of immune evasion strategies so that it persists in the host body and causes multisystemic pathology. CSF has also become one of the most serious infectious diseases affecting the pig industry, resulting in considerable economic losses to the pig industry. Therefore, understanding the main immune evasion mechanism of CSFV is very important for the prevention and control of CSF infection. This article reviews the main immune evasion mechanisms of CSFV, including the suppression of nonspecific immune responses; evasion of adaptive immune responses; and the regulation of host cell apoptosis and cell autophagy. CSFV affects type I interferon regulatory signals; the JAK-STAT signaling pathway; the RIG-I and NF-κB signaling pathways; immune cell function; the mitochondrial apoptosis pathway; and the endoplasmic reticulum stress apoptosis pathway; the PI3K-Akt signaling mediated AMPK-mTOR macroautophagy pathway through its structural proteins Erns and E1 and E2; and the nonstructural proteins Npro, NS4B, and NS5A to achieve immune evasion. As our understanding of CSFV immune strategies continues to deepen, we believe that this understanding will provide new strategies for the development of new vaccines and novel diagnostic methods in the future. Full article
(This article belongs to the Special Issue Immune Responses to Viruses)
Show Figures

Figure 1

28 pages, 5849 KB  
Article
Attenuating Mutations in Usutu Virus: Towards Understanding Orthoflavivirus Virulence Determinants and Live Attenuated Vaccine Design
by Johanna M. Duyvestyn, Peter J. Bredenbeek, Marie J. Gruters, Ali Tas, Tessa Nelemans, Marjolein Kikkert and Martijn J. van Hemert
Vaccines 2025, 13(5), 495; https://doi.org/10.3390/vaccines13050495 - 3 May 2025
Viewed by 1867
Abstract
Background/Objectives: Understanding virulence determinants can inform safer and more efficacious live attenuated vaccine design. However, applying this knowledge across related viruses does not always result in conserved phenotypes from similar mutants. Methods: Using Usutu virus (USUV), an emerging orthoflavivirus spreading through Europe, we [...] Read more.
Background/Objectives: Understanding virulence determinants can inform safer and more efficacious live attenuated vaccine design. However, applying this knowledge across related viruses does not always result in conserved phenotypes from similar mutants. Methods: Using Usutu virus (USUV), an emerging orthoflavivirus spreading through Europe, we assessed whether the attenuating effect of the mutations described for related orthoflaviviruses is conserved. Candidate attenuating mutations were selected based on previous studies in other orthoflaviviruses and incorporated into USUV. Results: Nine variants, with mutations in the USUV envelope, non-structural (NS) proteins NS1, NS2A, or NS4B were stable and selected for further characterisation. The variants with an attenuating phenotype in cell culture were then compared to the wild-type virus in an Ifnar−/− mouse model. Mutations of the envelope glycosylation sites and glycosaminoglycan binding sites, which were recognised as more-conserved mechanisms of orthoflavivirus attenuation, were attenuating in USUV as well. However, not all the mutations explored in the USUV non-structural proteins exhibited an attenuated phenotype. Instead, the attenuation was either less pronounced, or there was no change in phenotype relative to the wild-type virus at all. Conclusions: In addition to improving our understanding of USUV virulence determinants, these results add to a growing body of literature highlighting the most promising mechanisms to target for the design of safe live attenuated vaccines against emerging orthoflaviviruses. Full article
Show Figures

Figure 1

14 pages, 2160 KB  
Article
Dengue Viral Infection Induces Alteration of CD95 Expression in B Cell Subsets with Potential Involvement of Dengue Viral Non-Structural Protein 1
by Siyu Wang, Premrutai Thitilertdecha, Ladawan Khowawisetsut, Theeraporn Maneesawat, Ampaiwan Chuansumrit, Kulkanya Chokephaibulkit, Kovit Pattanapanyasat and Nattawat Onlamoon
Viruses 2025, 17(4), 541; https://doi.org/10.3390/v17040541 - 8 Apr 2025
Viewed by 1049
Abstract
Little is known about the regulation of B cell subpopulations in association with programmed cell death during dengue virus (DENV) infection. Therefore, blood samples from dengue-infected patients and healthy donors were obtained for B cell subset characterization and the analysis of pro-apoptotic CD95 [...] Read more.
Little is known about the regulation of B cell subpopulations in association with programmed cell death during dengue virus (DENV) infection. Therefore, blood samples from dengue-infected patients and healthy donors were obtained for B cell subset characterization and the analysis of pro-apoptotic CD95 expression in these cell subsets. The results showed that the activated memory (AM) subset in the patients remained unchanged compared to the healthy donors. In contrast, tissue memory (TM) and antibody-secreting cells (ASCs) were notably increased, whereas naïve cells and resting memory (RM) cells were considerably decreased. Although the ASCs maintained comparably high levels of CD95 expression in both groups, significantly increased percentages of CD95-expressing cells in the other B cell subsets were found in the patients. When B cells from the healthy donors were treated with DENV non-structural protein 1 (NS1), the results showed that the NS1 protein at 2 µg/mL could induce CD95 expression and the exposure of phosphatidylserine on the cell membrane in most B cell subsets, except for the RM. This study demonstrates that DENV infection could induce CD95 expression in both activated and resting B cell subsets in all patients. The results also suggest a potential mechanism of apoptotic regulation in B cell subsets through the increased CD95 expression caused by the interaction between the B cells and the NS1 protein. Full article
(This article belongs to the Special Issue Host Defense, Viruses and Cell Death Pathways)
Show Figures

Figure 1

18 pages, 2580 KB  
Article
Avermectins Inhibit Replication of Parvovirus B19 by Disrupting the Interaction Between Importin α and Non-Structural Protein 1
by Gualtiero Alvisi, Elisabetta Manaresi, Silvia Pavan, David A. Jans, Kylie M. Wagstaff and Giorgio Gallinella
Viruses 2025, 17(2), 220; https://doi.org/10.3390/v17020220 - 3 Feb 2025
Cited by 1 | Viewed by 2154
Abstract
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized [...] Read more.
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized the interaction between NS1 classical nuclear localization signal (cNLS: GACHAKKPRIT-182) and host cell importin (IMP)α and proposed it as a potential target for antiviral drug development. Here, we further extend on such findings. First, we demonstrate that NS1 nuclear localization is required for viral production since introducing the K177T substitution in a cloned, infectious viral genome resulted in a non-viable virus. Secondly, we demonstrate that the antiparasitic drug ivermectin (IVM), known to inhibit the IMPα/β dependent nuclear import pathway, could impair the NS1-NLS:IMPα interaction and suppress viral replication in UT7/EpoS1 cells in a dose-dependent manner. We also show that a panel of structurally related avermectins (AVMs) can dissociate the NS1-NLS:IMPα complex with half-maximal inhibitory concentrations in the nanomolar range. Among them, Eprinomectin emerged as the most selective inhibitor of B19V replication, with a selectivity index of c. 5.0. However, when tested in EPCs generated from peripheral blood mononuclear cells, which constitute a cellular population close to the natural target cells in bone marrow, the inhibitory effect of IVM and Eprinomectin was demonstrated to a lesser extent, and both compounds exhibited high toxicity, thus highlighting the need for more specific inhibitors of the NS1-NLS:IMPα interaction. Full article
(This article belongs to the Special Issue Advances in Parvovirus Research 2024)
Show Figures

Figure 1

17 pages, 4110 KB  
Article
The Chikungunya Virus nsP3 Macro Domain Inhibits Activation of the NF-κB Pathway
by Grace C. Roberts, Nicola J. Stonehouse and Mark Harris
Viruses 2025, 17(2), 191; https://doi.org/10.3390/v17020191 - 29 Jan 2025
Cited by 3 | Viewed by 2214
Abstract
The role of the chikungunya virus (CHIKV) non-structural protein 3 (nsP3) in the virus lifecycle is poorly understood. The protein comprises three domains. At the N-terminus is a macro domain, biochemically characterised to bind both RNA and ADP-ribose and to possess ADP-ribosyl hydrolase [...] Read more.
The role of the chikungunya virus (CHIKV) non-structural protein 3 (nsP3) in the virus lifecycle is poorly understood. The protein comprises three domains. At the N-terminus is a macro domain, biochemically characterised to bind both RNA and ADP-ribose and to possess ADP-ribosyl hydrolase activity—an enzymatic activity that removes ADP-ribose from mono-ADP-ribosylated proteins. As ADP-ribosylation is important in the signalling pathway, leading to activation of the transcription factor NF-κB, we sought to determine whether the macro domain might perturb NF-κB signalling. We first showed that CHIKV infection did not induce NF-κB activation and could not block exogenous activation of the pathway via TNFα, although TNFα treatment did result in a modest reduction in virus titre. In contrast, ectopic expression of nsP3 was able to inhibit both basal and TNFα-mediated NF-κB activation, and this was dependent on the macro domain, as a mutation previously shown to disrupt ADP-ribose binding and hydrolase activity (D10A) eliminated the ability to inhibit NF-κB activation. The macro domain D10A mutant also resulted in a dramatic reduction in virus infectivity, consistent with the notion that the ability of the macro domain to inhibit NF-κB activation plays a role in the virus lifecycle. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses—Volume II)
Show Figures

Figure 1

20 pages, 6138 KB  
Article
Employing Machine Learning-Based QSAR for Targeting Zika Virus NS3 Protease: Molecular Insights and Inhibitor Discovery
by Hisham N. Altayb and Hanan Ali Alatawi
Pharmaceuticals 2024, 17(8), 1067; https://doi.org/10.3390/ph17081067 - 15 Aug 2024
Cited by 4 | Viewed by 2314
Abstract
Zika virus infection is a mosquito-borne viral disease that has become a global health concern recently. Zika virus belongs to the Flavivirus genus and is primarily transmitted by Aedes mosquitoes. Prevention of Zika virus infection involves avoiding mosquito bites by using repellent, wearing [...] Read more.
Zika virus infection is a mosquito-borne viral disease that has become a global health concern recently. Zika virus belongs to the Flavivirus genus and is primarily transmitted by Aedes mosquitoes. Prevention of Zika virus infection involves avoiding mosquito bites by using repellent, wearing protective clothing, and staying in screened areas, especially for pregnant women. Treatment focuses on managing symptoms with rest, fluids, and acetaminophen, with close monitoring for pregnant women. Currently, there is no specific antiviral treatment or vaccine for the Zika virus, highlighting the importance of prevention strategies to control its spread. Therefore, in this study, the Zika virus non-structural protein NS3 was targeted to inhibit Zika infection by identifying the novel inhibitor through an in silico approach. Here, 2864 natural compounds were screened using a machine learning-based QSAR model, and later docking was performed to select the potential target. Subsequently, Tanimoto similarity and clustering were performed to obtain the potential target. The three most potential compounds were obtained: (a) 5297, (b) 432449, and (c) 85137543. The protein–ligand complex’s stability and flexibility were then investigated by dynamic modelling. The 300 ns simulation showed that 5297 exhibited the steadiest deviation and constant creation of hydrogen bonds. Compared to the other compounds, 5297 demonstrated a superior binding free energy (ΔG = −20.81 kcal/mol) with the protein when the MM/GBSA technique was used. The study determined that 5297 showed significant therapeutic potential and justifies further experimental investigation as a possible inhibitor of the NS2B-NS3 protease target implicated in Zika virus infection. Full article
(This article belongs to the Special Issue Application of 2D and 3D-QSAR Models in Drug Design)
Show Figures

Graphical abstract

10 pages, 2185 KB  
Article
The Effect of Tryptophan-to-Tyrosine Mutation at Position 61 of the Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Virus on Viral Replication through Autophagosome Modulation
by Ji-Young Park, Amal Senevirathne, Khristine Kaith S. Lloren and John Hwa Lee
Int. J. Mol. Sci. 2024, 25(12), 6394; https://doi.org/10.3390/ijms25126394 - 10 Jun 2024
Cited by 1 | Viewed by 2283
Abstract
In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement [...] Read more.
In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement of NSs in replication via the modulation of autophagosomes. Initially, we examined the impact of NP expression levels, a marker for replication, upon the infection of HeLa cells with severe fever thrombocytopenia syndrome virus (SFTSV), with or without the inhibition of NP binding. Western blot analysis revealed a reduction in NP levels in NSsW61Y-expressing conditions. Furthermore, the expression levels of the canonical autophagosome markers p62 and LC3 decreased in HeLa cells expressing NSsW61Y, revealing the involvement of individual viral proteins on autophagy. Subsequent experiments confirmed that NSsW61Y perturbs autophagy flux, as evidenced by reduced levels of LC3B and p62 upon treatment with chloroquine, an inhibitor of autophagosome–lysosome fusion. LysoTracker staining demonstrated a decrease in lysosomes in cells expressing the NS mutant compared to those expressing wild-type NS. We further explored the mTOR-associated regulatory pathway, a key regulator affected by NS mutant expression. The observed inhibition of replication could be linked to conformational changes in the NSs, impairing their binding to NP and altering mTOR regulation, a crucial upstream signaling component in autophagy. These findings illuminate the intricate interplay between NSsW61Y and the suppression of host autophagy machinery, which is crucial for the generation of autophagosomes to facilitate viral replication. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 3218 KB  
Article
Evolutionary-Related High- and Low-Virulent Classical Swine Fever Virus Isolates Reveal Viral Determinants of Virulence
by Yoandry Hinojosa, Matthias Liniger, Obdulio García-Nicolás, Markus Gerber, Anojen Rajaratnam, Sara Muñoz-González, Liani Coronado, María Teresa Frías, Carmen Laura Perera, Llilianne Ganges and Nicolas Ruggli
Viruses 2024, 16(1), 147; https://doi.org/10.3390/v16010147 - 19 Jan 2024
Cited by 4 | Viewed by 3110
Abstract
Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the [...] Read more.
Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3′ untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3′UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence. Full article
(This article belongs to the Special Issue Pestivirus 2024)
Show Figures

Figure 1

18 pages, 2359 KB  
Article
Molecular Mechanisms of Resistance to Direct-Acting Antiviral (DAA) Drugs for the Treatment of Hepatitis C Virus Infections
by Mohammad Asrar Izhari
Diagnostics 2023, 13(19), 3102; https://doi.org/10.3390/diagnostics13193102 - 30 Sep 2023
Cited by 10 | Viewed by 3527
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that affects millions of human lives worldwide. Direct-acting antiviral (DAA) regimens are the most effective HCV treatment option. However, amino acid substitution-dependent resistance to DAAs has been a major challenge. This study aimed to determine [...] Read more.
Hepatitis C virus (HCV) is a hepatotropic virus that affects millions of human lives worldwide. Direct-acting antiviral (DAA) regimens are the most effective HCV treatment option. However, amino acid substitution-dependent resistance to DAAs has been a major challenge. This study aimed to determine the increasing risk of DAA resistance due to substitutions in DAA target non-structural proteins (NS3/4A, NS5A, and NS5B). Using a Sequence Retrieval System (SRS) at the virus pathogen resource (ViPR/BV-BRC), n = 32763 target protein sequences were retrieved and analyzed for resistance-associated amino acid substitutions (RAASs) by the Sequence Feature Variant Type (SFVT) antiviral-resistance assessment modeling tool. Reference target protein sequences with 100% identity were retried from UniProt following NCBI BLAST. The types and locations of RAASs were identified and visualized by AlphaFold and PyMol. Linux-r-base/R-studio was used for the data presentation. Multi-drug-resistant variants of NS3/4A in genotype 1 (n = 9) and genotype 5 (n = 5) along with DAA-specific NS3/4A, NS5A, and NS5B variants were identified pan-genotypically. A total of 27 variants (RAASs) of all the targets were identified. Fourteen genotype 1-specific substitutions: V1196A, V1158I, D1194A/T/G, R1181K, T1080S, Q1106R, V1062A, S1148G, A1182V, Y2065N, M2000T, and L2003V were identified. The most frequent substitutions were V1062L and L2003M, followed by Q2002H. L2003V, Q2002H, M2000T, Y2065N, and NL2003M of NS5A and L2003M of NS5B conferred resistance to daclatasvir. S2702T NS5B was the sofosbuvir-resistant variant. D1194A NS3/4A was triple DAA (simeprevir, faldaprevir, and asunaprevir) resistant. The double-drug resistant variants R1181K (faldaprevir and asunaprevir), A1182V and Q1106K/R (faldaprevir and simeprevir), T1080S (faldaprevir and telaprevir), and single drug-resistant variants V1062L (telaprevir), D1194E/T (simeprevir), D1194G (asunaprevir), S1148A/G (simeprevir), and Q1106L (Boceprevir) of NS3/4A were determined. The molecular phenomenon of DAA resistance is paramount in the development of HCV drug candidates. RAASs in NS3, NS5A, and NS5B reduce the susceptibility to DAAs; therefore, continuous RAAS-dependent resistance profiling in HCV is recommended to minimize the probability of DAA therapeutic failure. Full article
(This article belongs to the Special Issue Genomic Analysis of Infectious Diseases)
Show Figures

Figure 1

20 pages, 5052 KB  
Article
In Silico Screening of Inhibitors of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease
by Xin Hu, Elaine Morazzani, Jaimee R. Compton, Moeshia Harmon, Veronica Soloveva, Pamela J. Glass, Andres Dulcey Garcia, Juan J. Marugan and Patricia M. Legler
Viruses 2023, 15(7), 1503; https://doi.org/10.3390/v15071503 - 4 Jul 2023
Cited by 8 | Viewed by 3713
Abstract
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester [...] Read more.
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester (CA074me) and a reversible oxindole inhibitor. Here, we determined the X-ray crystal structure of the CA074-inhibited nsP2 protease and compared it with our E64d-inhibited structure. We found that the two inhibitors occupy different locations in the protease. We designed hybrid inhibitors with improved potency. Virus yield reduction assays confirmed that the viral titer was reduced by >5 logs with CA074me. Cell-based assays showed reductions in viral replication for CHIKV, VEEV, and WEEV, and weaker inhibition of EEEV by the hybrid inhibitors. The most potent was NCGC00488909-01 which had an EC50 of 1.76 µM in VEEV-Trd-infected cells; the second most potent was NCGC00484087 with an EC50 = 7.90 µM. Other compounds from the NCATS libraries such as the H1 antihistamine oxatomide (>5-log reduction), emetine, amsacrine an intercalator (NCGC0015113), MLS003116111-01, NCGC00247785-13, and MLS00699295-01 were found to effectively reduce VEEV viral replication in plaque assays. Kinetic methods demonstrated time-dependent inhibition by the hybrid inhibitors of the protease with NCGC00488909-01 (Ki = 3 µM) and NCGC00484087 (Ki = 5 µM). Rates of inactivation by CA074 in the presence of 6 mM CaCl2, MnCl2, or MgCl2 were measured with varying concentrations of inhibitor, Mg2+ and Mn2+ slightly enhanced inhibitor binding (3 to 6-fold). CA074 inhibited not only the VEEV nsP2 protease but also that of CHIKV and WEEV. Full article
(This article belongs to the Special Issue Alphaviruses)
Show Figures

Figure 1

20 pages, 8253 KB  
Article
Structural Modifications Introduced by NS2B Cofactor Binding to the NS3 Protease of the Kyasanur Forest Disease Virus
by Shivananda Kandagalla, Bhimanagoud Kumbar and Jurica Novak
Int. J. Mol. Sci. 2023, 24(13), 10907; https://doi.org/10.3390/ijms241310907 - 30 Jun 2023
Cited by 7 | Viewed by 2892
Abstract
Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. [...] Read more.
Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. The recent expansion of the endemic area of KFDV is of concern and requires the development of new preventive measures against KFDV. Currently, there is no antiviral therapy against KFDV, and the existing vaccine has limited efficacy. To develop a new antiviral therapy against KFDV, we focused on the nonstructural proteins NS2B and NS3 of KFDV, which are responsible for serine protease activity. Viral proteases have shown to be suitable therapeutic targets in the development of antiviral drugs against many diseases. However, success has been limited in flaviviruses, mainly because of the important features of the active site, which is flat and highly charged. In this context, the present study focuses on the dynamics of NS2B and NS3 to identify potential allosteric sites in the NS2B/NS3 protease of KDFV. To our knowledge, there are no reports on the dynamics of NS2B and NS3 in KFDV, and the crystal structure of the NS2B/NS3 protease of KFDV has not yet been solved. Overall, we created the structure of the NS2B/NS3 protease of KFDV using AlphaFold and performed molecular dynamics simulations with and without NS2B cofactor to investigate structural rearrangements due to cofactor binding and to identify alternative allosteric sites. The identified allosteric site is promising due to its geometric and physicochemical properties and druggability and can be used for new drug development. The applicability of the proposed allosteric binding sites was verified for the best-hit molecules from the virtual screening and MD simulations. Full article
Show Figures

Figure 1

11 pages, 2489 KB  
Article
Experimental Dengue Virus Type 4 Infection Increases the Expression of MicroRNAs-15/16, Triggering a Caspase-Induced Apoptosis Pathway
by Samir Mansour Moraes Casseb, Karla Fabiane Lopes de Melo, Carlos Alberto Marques de Carvalho, Carolina Ramos dos Santos, Edna Cristina Santos Franco and Pedro Fernando da Costa Vasconcelos
Curr. Issues Mol. Biol. 2023, 45(6), 4589-4599; https://doi.org/10.3390/cimb45060291 - 26 May 2023
Cited by 5 | Viewed by 2468
Abstract
The World Health Organization has estimated the annual occurrence of approximately 392 million dengue virus (DENV) infections in more than 100 countries where the virus is endemic, which represents a serious threat to humanity. DENV is a serologic group with four distinct serotypes [...] Read more.
The World Health Organization has estimated the annual occurrence of approximately 392 million dengue virus (DENV) infections in more than 100 countries where the virus is endemic, which represents a serious threat to humanity. DENV is a serologic group with four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) belonging to the genus Flavivirus, in the family Flaviviridae. Dengue is the most widespread mosquito-borne disease in the world. The ~10.7 kb DENV genome encodes three structural proteins (capsid (C), pre-membrane (prM), and envelope (E)) and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The NS1 protein is a membrane-associated dimer and a secreted, lipid-associated hexamer. Dimeric NS1 is found on membranes both in cellular compartments and cell surfaces. Secreted NS1 (sNS1) is often present in patient serum at very high levels, which correlates with severe dengue symptoms. This study was conducted to discover how the NS1 protein, microRNAs-15/16 (miRNAs-15/16), and apoptosis are related during DENV-4 infection in human liver cell lines. Huh 7.5 and HepG2 cells were infected with DENV-4, and miRNAs-15/16, viral load, NS1 protein, and caspases-3/7 were quantified after different durations of infection. This study demonstrated that miRNAs-15/16 were overexpressed during the infection of HepG2 and Huh 7.5 cells with DENV-4 and had a relationship with NS1 protein expression, viral load, and the activity of caspases-3/7, thus making these miRNAs potential injury markers during DENV infection in human hepatocytes. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop