Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = nonradioactive isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1242 KiB  
Article
Metabolic Effects of Sodium Thiosulfate During Resuscitation from Trauma and Hemorrhage in Cigarette-Smoke-Exposed Cystathionine-γ-Lyase Knockout Mice
by Maximilian Feth, Felix Hezel, Michael Gröger, Melanie Hogg, Fabian Zink, Sandra Kress, Andrea Hoffmann, Enrico Calzia, Ulrich Wachter, Peter Radermacher and Tamara Merz
Biomedicines 2024, 12(11), 2581; https://doi.org/10.3390/biomedicines12112581 - 12 Nov 2024
Viewed by 1348
Abstract
Background: Acute and chronic pre-traumatic cigarette smoke exposure increases morbidity and mortality after trauma and hemorrhage. In mice with a genetic deletion of the H2S-producing enzyme cystathione-γ-lyase (CSE−/−), providing exogenous H2S using sodium thiosulfate (Na2S [...] Read more.
Background: Acute and chronic pre-traumatic cigarette smoke exposure increases morbidity and mortality after trauma and hemorrhage. In mice with a genetic deletion of the H2S-producing enzyme cystathione-γ-lyase (CSE−/−), providing exogenous H2S using sodium thiosulfate (Na2S2O3) improved organ function after chest trauma and hemorrhagic shock. Therefore, we evaluated the effect of Na2S2O3 during resuscitation from blunt chest trauma and hemorrhagic shock on CSE−/− mice with pre-traumatic cigarette smoke (CS) exposure. Since H2S is well established as being able to modify energy metabolism, a specific focus was placed on whole-body metabolic pathways and mitochondrial respiratory activity. Methods: Following CS exposure, the CSE−/− mice underwent anesthesia, surgical instrumentation, blunt chest trauma, hemorrhagic shock for over 1 h (target mean arterial pressure (MAP) ≈ 35 ± 5 mmHg), and resuscitation for up to 8 h comprising lung-protective mechanical ventilation, the re-transfusion of shed blood, fluid resuscitation, and continuous i.v. noradrenaline (NoA) to maintain an MAP ≥ 55 mmHg. At the start of the resuscitation, the mice randomly received either i.v. Na2S2O3 (0.45 mg/gbodyweight; n = 14) or the vehicle (NaCl 0.9%; n = 11). In addition to the hemodynamics, lung mechanics, gas exchange, acid–base status, and organ function, we quantified the parameters of carbohydrate, lipid, and protein metabolism using a primed continuous infusion of stable, non-radioactive, isotope-labeled substrates (gas chromatography/mass spectrometry) and the post-mortem tissue mitochondrial respiratory activity (“high-resolution respirometry”). Results: While the hemodynamics and NoA infusion rates did not differ, Na2S2O3 was associated with a trend towards lower static lung compliance (p = 0.071) and arterial PO2 (p = 0.089) at the end of the experiment. The direct, aerobic glucose oxidation rate was higher (p = 0.041) in the Na2S2O3-treated mice, which resulted in lower glycemia levels (p = 0.050) and a higher whole-body CO2 production rate (p = 0.065). The mitochondrial respiration in the heart, kidney, and liver tissue did not differ. While the kidney function was comparable, the Na2S2O3-treated mice showed a trend towards a shorter survival time (p = 0.068). Conclusions: During resuscitation from blunt chest trauma and hemorrhagic shock in CSE−/− mice with pre-traumatic CS exposure, Na2S2O3 was associated with increased direct, aerobic glucose oxidation, suggesting a switch in energy metabolism towards preferential carbohydrate utilization. Nevertheless, treatment with Na2S2O3 coincided with a trend towards worsened lung mechanics and gas exchange, and, ultimately, shorter survival. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutics in Hemorrhagic Shock)
Show Figures

Figure 1

12 pages, 1947 KiB  
Article
Growth Responses of Holcus lanatus L. (Velvet Grass) in Soils Contaminated with Cesium or Strontium
by Bayezid M. Khan, M. Ferdous Alam, Zinnat A. Begum and Ismail M. M. Rahman
Soil Syst. 2024, 8(2), 57; https://doi.org/10.3390/soilsystems8020057 - 17 May 2024
Viewed by 1927
Abstract
Radiocesium (r-Cs) and radiostrontium (r-Sr) released from nuclear accidents (e.g., Chornobyl, Fukushima) and routine operations (reactors, reprocessing) pose environmental and health concerns. Their primary pathway to humans is through plant uptake and subsequent bioaccumulation within the food chain. While soil amendments with potassium [...] Read more.
Radiocesium (r-Cs) and radiostrontium (r-Sr) released from nuclear accidents (e.g., Chornobyl, Fukushima) and routine operations (reactors, reprocessing) pose environmental and health concerns. Their primary pathway to humans is through plant uptake and subsequent bioaccumulation within the food chain. While soil amendments with potassium (K) and calcium (Ca) are known to mitigate r-Cs and r-Sr uptake, respectively, the impact on plant growth remains unclear. This study investigates the effects of Cs and Sr on the growth of Holcus lanatus L. seedlings under hydroponic and soil conditions with varying Cs and Sr concentrations. Stable isotopes of Cs and Sr served as non-radioactive analogs. Seedling growth was assessed across a range of Cs and Sr concentrations (≤1 and ≥4 mg L−1). The impact of the addition of K and Ca on Cs/Sr uptake in amended soils was also evaluated. Additionally, this study examined how Cs and Sr amendments affected the influx rates of other nutrients in H. lanatus. Higher Cs and Sr concentrations (≥4 mg L−1) significantly inhibited seedling growth, while lower concentrations had no effect. Notably, H. lanatus exhibited moderate Cs tolerance and strong Sr tolerance. Furthermore, K and Ca supplementation in Cs/Sr-amended soils demonstrably reduced plant uptake of these elements. This study also observed alterations in the uptake rates of other nutrients within H. lanatus due to Cs/Sr addition. This study suggests that H. lanatus exhibits moderate tolerance to Cs and Sr contamination, potentially making it suitable for revegetation efforts in contaminated grasslands. Additionally, K and Ca amendments show promise as a strategy to mitigate plant uptake of these radioisotopes further. These findings contribute to the development of safer revitalization strategies for areas impacted by nuclear accidents. Full article
Show Figures

Figure 1

18 pages, 1183 KiB  
Article
Bacterial Lux Biosensors in Genotoxicological Studies
by Serikbai K. Abilev, Elena V. Igonina, Darya A. Sviridova and Svetlana V. Smirnova
Biosensors 2023, 13(5), 511; https://doi.org/10.3390/bios13050511 - 29 Apr 2023
Cited by 4 | Viewed by 2880
Abstract
The aim of this study was to assess the applicability of the bacterial lux biosensors for genotoxicological studies. Biosensors are the strains of E. coli MG1655 carrying a recombinant plasmid with the lux operon of the luminescent bacterium P. luminescens fused with the [...] Read more.
The aim of this study was to assess the applicability of the bacterial lux biosensors for genotoxicological studies. Biosensors are the strains of E. coli MG1655 carrying a recombinant plasmid with the lux operon of the luminescent bacterium P. luminescens fused with the promoters of inducible genes: recA, colD, alkA, soxS, and katG. The genotoxicity of forty-seven chemical compounds was tested on a set of three biosensors pSoxS-lux, pKatG-lux and pColD-lux, which allowed us to estimate the oxidative and DNA-damaging activity of the analyzed drugs. The comparison of the results with the data on the mutagenic activity of these drugs from the Ames test showed a complete coincidence of the results for the 42 substances. First, using lux biosensors, we have described the enhancing effect of the heavy non-radioactive isotope of hydrogen deuterium (D2O) on the genotoxicity of chemical compounds as possible mechanisms of this effect. The study of the modifying effect of 29 antioxidants and radioprotectors on the genotoxic effects of chemical agents showed the applicability of a pair of biosensors pSoxS-lux and pKatG-lux for the primary assessment of the potential antioxidant and radioprotective activity of chemical compounds. Thus, the results obtained showed that lux biosensors can be successfully used to identify potential genotoxicants, radioprotectors, antioxidants, and comutagens among chemical compounds, as well as to study the probable mechanism of genotoxic action of test substance. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

14 pages, 3676 KiB  
Article
Efforts toward PET-Activatable Red-Shifted Silicon Rhodamines and Silicon Pyronine Dyes
by Carsten Sven Kramer, Thines Kanagasundaram, Jessica Matthias and Klaus Kopka
Pharmaceuticals 2023, 16(3), 401; https://doi.org/10.3390/ph16030401 - 7 Mar 2023
Cited by 1 | Viewed by 2415
Abstract
Tracers for bimodal optical imaging and positron emission tomography unite multiple advantages in a single molecule. Their tumor-specific uptake can be visualized after their PET activation by radiofluorination via PET/CT or PET/MRI allowing for staging or therapy planning, while their non-radioactive moiety additionally [...] Read more.
Tracers for bimodal optical imaging and positron emission tomography unite multiple advantages in a single molecule. Their tumor-specific uptake can be visualized after their PET activation by radiofluorination via PET/CT or PET/MRI allowing for staging or therapy planning, while their non-radioactive moiety additionally facilitates the visualization of malignant tissue during intraoperative fluorescence-guided surgery or in histological assessments. The silicon-bridged xanthene core offers the opportunity for radiofluorination with SiFA isotope exchange to obtain a small-molecule, PET-activatable NIR dye that can be linked to different target vectors. Herein, we demonstrate for the first time the PET-activation of a fluorinated silicon pyronine, belonging to a class of low-molecular-weight fluorescence dyes with a large Stokes shift (up to 129 nm) and solvent-dependent NIR dye properties, with a successful radiochemical conversion of 70%. The non-fluorinated pyronine precursor is easily accessible by a three-step sequence from commercially starting material with a 12% overall yield. Moreover, a library of seven unusually functionalized (by approximately 15 nm), red-shifted silicon rhodamines were synthesized in three- to four-step sequences and the optical properties of the novel dyes were characterized. It was also shown that the synthesized silicon rhodamine dyes can be easily conjugated by amide bond formation or ‘click-reaction’ approaches. Full article
Show Figures

Figure 1

15 pages, 3422 KiB  
Article
Deuterium Tracer for Accurate Online Lube-Oil-Consumption Measurement: Stability, Compatibility and Tribological Characteristics
by Martin Vareka, Bernhard Rossegger, Franz Novotny-Farkas, Michael Engelmayer and Andreas Wimmer
Lubricants 2022, 10(5), 84; https://doi.org/10.3390/lubricants10050084 - 3 May 2022
Cited by 2 | Viewed by 2957
Abstract
Because of the impact of lubrication on the efficiency and the lifecycle cost and emissions, the lubricating-oil consumption (LOC) is one of the key indicators in the research and development of internal combustion engines. State-of-the-art methods for LOC measurement are based on the [...] Read more.
Because of the impact of lubrication on the efficiency and the lifecycle cost and emissions, the lubricating-oil consumption (LOC) is one of the key indicators in the research and development of internal combustion engines. State-of-the-art methods for LOC measurement are based on the use of a certain tracer to track the oil consumption. However, all of the currently available tracers have their downsides (e.g., the use of a radioactive tracer, corrosive emissions, etc.). Therefore, in the course of this research project, a new tracer substance that is based on a stable nonradioactive isotope of hydrogen—deuterium—was developed and tested thoroughly. The LOC is monitored by a hydrogen/deuterium isotopic ration in the exhaust gas by using an isotopic water analyzer. Tribologically important properties, such as the viscosity, stability, and compatibility of the tracer were investigated by laboratory experiments by using several tools, such as infrared spectroscopy, gas chromatography, thermogravimetry, etc. The properties relevant to the applicability of the method, such as the accuracy and the reproducibility, were investigated by engine test-bench experiments. Finally, long-term stability tests of the tracer were conducted with a field test. Full article
(This article belongs to the Special Issue Friction and Wear in Vehicles)
Show Figures

Figure 1

34 pages, 3055 KiB  
Review
Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests
by Agostino Di Ciaula, Giuseppe Calamita, Harshitha Shanmugam, Mohamad Khalil, Leonilde Bonfrate, David Q.-H. Wang, Gyorgy Baffy and Piero Portincasa
Int. J. Mol. Sci. 2021, 22(14), 7702; https://doi.org/10.3390/ijms22147702 - 19 Jul 2021
Cited by 20 | Viewed by 7382
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has [...] Read more.
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. “Dynamic” liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD. Full article
(This article belongs to the Special Issue Targeting Mitochondria in Metabolic Diseases)
Show Figures

Figure 1

19 pages, 18317 KiB  
Article
Selenoproteome Expression Studied by Non-Radioactive Isotopic Selenium-Labeling in Human Cell Lines
by Jordan Sonet, Anne-Laure Bulteau, Zahia Touat-Hamici, Maurine Mosca, Katarzyna Bierla, Sandra Mounicou, Ryszard Lobinski and Laurent Chavatte
Int. J. Mol. Sci. 2021, 22(14), 7308; https://doi.org/10.3390/ijms22147308 - 7 Jul 2021
Cited by 16 | Viewed by 3345
Abstract
Selenoproteins, in which the selenium atom is present in the rare amino acid selenocysteine, are vital components of cell homeostasis, antioxidant defense, and cell signaling in mammals. The expression of the selenoproteome, composed of 25 selenoprotein genes, is strongly controlled by the selenium [...] Read more.
Selenoproteins, in which the selenium atom is present in the rare amino acid selenocysteine, are vital components of cell homeostasis, antioxidant defense, and cell signaling in mammals. The expression of the selenoproteome, composed of 25 selenoprotein genes, is strongly controlled by the selenium status of the body, which is a corollary of selenium availability in the food diet. Here, we present an alternative strategy for the use of the radioactive 75Se isotope in order to characterize the selenoproteome regulation based on (i) the selective labeling of the cellular selenocompounds with non-radioactive selenium isotopes (76Se, 77Se) and (ii) the detection of the isotopic enrichment of the selenoproteins using size-exclusion chromatography followed by inductively coupled plasma mass spectrometry detection. The reliability of our strategy is further confirmed by western blots with distinct selenoprotein-specific antibodies. Using our strategy, we characterized the hierarchy of the selenoproteome regulation in dose–response and kinetic experiments. Full article
(This article belongs to the Special Issue Molecular Biology of Selenium in Health and Disease)
Show Figures

Figure 1

13 pages, 2028 KiB  
Article
In Vitro Evaluation of the Squaramide-Conjugated Fibroblast Activation Protein Inhibitor-Based Agents AAZTA5.SA.FAPi and DOTA.SA.FAPi
by Euy Sung Moon, Yentl Van Rymenant, Sandeep Battan, Joni De Loose, An Bracke, Pieter Van der Veken, Ingrid De Meester and Frank Rösch
Molecules 2021, 26(12), 3482; https://doi.org/10.3390/molecules26123482 - 8 Jun 2021
Cited by 16 | Viewed by 4195
Abstract
Recently, the first squaramide-(SA) containing FAP inhibitor-derived radiotracers were introduced. DATA5m.SA.FAPi and DOTA.SA.FAPi with their non-radioactive complexes showed high affinity and selectivity for FAP. After a successful preclinical study with [68Ga]Ga-DOTA.SA.FAPi, the first patient studies were realized for both [...] Read more.
Recently, the first squaramide-(SA) containing FAP inhibitor-derived radiotracers were introduced. DATA5m.SA.FAPi and DOTA.SA.FAPi with their non-radioactive complexes showed high affinity and selectivity for FAP. After a successful preclinical study with [68Ga]Ga-DOTA.SA.FAPi, the first patient studies were realized for both compounds. Here, we present a new squaramide-containing compound targeting FAP, based on the AAZTA5 chelator 1,4-bis-(carboxylmethyl)-6-[bis-(carboxymethyl)-amino-6-pentanoic-acid]-perhydro-1,4-diazepine. For this molecule (AAZTA5.SA.FAPi), complexation with radionuclides such as gallium-68, scandium-44, and lutetium-177 was investigated, and the in vitro properties of the complexes were characterized and compared with those of DOTA.SA.FAPi. AAZTA5.SA.FAPi and its derivatives labelled with non-radioactive isotopes demonstrated similar excellent inhibitory potencies compared to the previously published SA.FAPi ligands, i.e., sub-nanomolar IC50 values for FAP and high selectivity indices over the serine proteases PREP and DPPs. Labeling with all three radiometals was easier and faster with AAZTA5.SA.FAPi compared to the corresponding DOTA analogue at ambient temperature. Especially, scandium-44 labeling with the AAZTA derivative resulted in higher specific activities. Both DOTA.SA.FAPi and AAZTA5.SA.FAPi showed sufficiently high stability in different media. Therefore, these FAP inhibitor agents could be promising for theranostic approaches targeting FAP. Full article
(This article belongs to the Special Issue Radiolabeled Compounds for Diagnosis and Treatment of Cancer)
Show Figures

Figure 1

11 pages, 2497 KiB  
Perspective
Quantification of Boron Compound Concentration for BNCT Using Positron Emission Tomography
by Marcin Balcerzyk, Manuel De-Miguel, Carlos Guerrero and Begoña Fernandez
Cells 2020, 9(9), 2084; https://doi.org/10.3390/cells9092084 - 12 Sep 2020
Cited by 12 | Viewed by 4107
Abstract
Background: Boron neutron capture therapy requires a 2 mM 10B concentration in the tumor. The well-known BNCT patient treatment method using boronophenylalanine (BPA) as a boron-carrying agent utilizes [18F]fluoroBPA ([18F]FBPA) as an agent to qualify for treatment. [...] Read more.
Background: Boron neutron capture therapy requires a 2 mM 10B concentration in the tumor. The well-known BNCT patient treatment method using boronophenylalanine (BPA) as a boron-carrying agent utilizes [18F]fluoroBPA ([18F]FBPA) as an agent to qualify for treatment. Precisely, [18F]FBPA must have at least a 3:1 tumor to background tissue ratio to qualify the patient for BNCT treatment. Normal, hyperplasia, and cancer thyroids capture iodine and several other large ions, including BF4, through a sodium-iodine symporter (NIS) expressed on the cell surface in normal conditions. In cancer, NIS is also expressed within the thyroid cell and is not functional. Methods: To visualize the thyroids and NIS, we have used a [18F]NaBF4 positron emission tomography (PET) tracer. It was injected into the tail veins of rats. The [18F]NaBF4 PET tracer was produced from NaBF4 by the isotopic exchange of natural 19F with radioactive 18F. Rats were subject to hyperplasia and tumor-inducing treatment. The NIS in thyroids was visualized by immunofluorescence staining. The boron concentration was calculated from Standard Uptake Values (SUV) in the PET/CT images and from the production data. Results: 41 MBq, 0.64 pmol of [18F]NaBF4 PET tracer that contained 0.351 mM, 53 nmol of NaBF4 was injected into the tail vein. After 17 min, the peak activity in the thyroid reached 2.3 MBq/mL (9 SUVmax). The natB concentration in the thyroid with hyperplasia reached 381 nM. Conclusions: Such an incorporation would require an additional 110 mg/kg dose of [10B]NaBF4 to reach the necessary 2 mM 10B concentration in the tumor. For future BNCT treatments of thyroid cancer, contrary to the 131I used now, there is no post-treatment radioactive decay, the patient can be immediately discharged from hospital, and there is no six-month moratorium for pregnancy. This method can be used for BNCT treatment compounds of the type R-BFn, where 1 <= n <= 3, labeled with 18F relatively easily, as in our example. A patient may undergo injection of a mixture of nonradioactive R-BFn to reach the necessary 10B concentration for BNCT treatment in the tumor together, with [18F]R-BFn for boron mapping. Full article
(This article belongs to the Special Issue Biology of Boron Neutron Capture Therapy (BNCT))
Show Figures

Figure 1

18 pages, 5509 KiB  
Article
The Crystallinity of Apatite in Contact with Metamict Pyrochlore from the Silver Crater Mine, ON, Canada
by Christopher Emproto, Austin Alvarez, Christian Anderkin and John Rakovan
Minerals 2020, 10(3), 244; https://doi.org/10.3390/min10030244 - 7 Mar 2020
Cited by 8 | Viewed by 5094
Abstract
The purpose of this work is to evaluate the long-term effects of radiation on the structure of naturally occurring apatite in the hope of assessing its potential for use as a solid nuclear waste form for actinide sequestration over geologically relevant timescales. When [...] Read more.
The purpose of this work is to evaluate the long-term effects of radiation on the structure of naturally occurring apatite in the hope of assessing its potential for use as a solid nuclear waste form for actinide sequestration over geologically relevant timescales. When a crystal is exposed to radioactivity from unstable constituent atoms undergoing decay, the crystal’s structure may become damaged. Crystalline materials rendered partially or wholly amorphous in this way are deemed “partially metamict” or “metamict” respectively. Intimate proximity of a non-radioactive mineral to a radioactive one may also cause damage in the former, evident, for example, in pleochroic haloes surrounding zircon inclusions in micas. Radiation damage may be repaired through the process of annealing. Experimental evidence suggests that apatite may anneal during alpha particle bombardment (termed “self-annealing”), which, combined with a low solubility in aqueous fluids and propensity to incorporate actinide elements, makes this mineral a promising phase for nuclear waste storage. Apatite evaluated in this study occurs in a Grenville-aged crustal carbonatite at the Silver Crater Mine in direct contact with U-bearing pyrochlore (var. betafite)—a highly radioactive mineral. Stable isotope analyses of calcite from the carbonatite yield δ18O and δ13C consistent with other similar deposits in the Grenville Province. Although apatite and betafite imaged using cathodoluminescence (CL) show textures indicative of fracture-controlled alteration, Pb isotope analyses of betafite from the Silver Crater Mine reported in previous work are consistent with a model of long term Pb loss from diffusion, suggesting the alteration was not recent. Thus, it is interpreted that these minerals remained juxtaposed with no further metamorphic overprint for ≈1.0 Ga, and therefore provide an ideal opportunity to study the effects of natural, actinide-sourced radiation on the apatite structure over long timescales. Through broad and focused X-ray beam analyses and electron backscatter diffraction (EBSD) mapping, the pyrochlore is shown to be completely metamict—exhibiting no discernible diffraction associated with crystallinity. Meanwhile, apatite evaluated with these methods is confirmed to be highly crystalline with no detectable radiation damage. However, the depth of α-decay damage is not well-understood, with reported depths ranging from tens of microns to just a few nanometers. EBSD, a surface sensitive technique, was therefore used to evaluate the crystallinity of apatite surfaces which had been in direct contact with radioactive pyrochlore, and the entire volume of small apatite crystals whose cores may have received significant radiation doses. The EBSD results demonstrate that apatite remains crystalline, as derived from sharp and correctly-indexed Kikuchi patterns, even on surfaces in direct contact with a highly radioactive source for prolonged periods in natural systems. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

22 pages, 1665 KiB  
Article
Possible Mechanisms of Biological Effects Observed in Living Systems during 2H/1H Isotope Fractionation and Deuterium Interactions with Other Biogenic Isotopes
by Alexander Basov, Liliya Fedulova, Ekaterina Vasilevskaya and Stepan Dzhimak
Molecules 2019, 24(22), 4101; https://doi.org/10.3390/molecules24224101 - 13 Nov 2019
Cited by 29 | Viewed by 7312
Abstract
This article presents the original descriptions of some recent physics mechanisms (based on the thermodynamic, kinetic, and quantum tunnel effects) providing stable 2H/1H isotope fractionation, leading to the accumulation of particular isotopic forms in intra- or intercellular space, including the [...] Read more.
This article presents the original descriptions of some recent physics mechanisms (based on the thermodynamic, kinetic, and quantum tunnel effects) providing stable 2H/1H isotope fractionation, leading to the accumulation of particular isotopic forms in intra- or intercellular space, including the molecular effects of deuterium interaction with 18O/17O/16O, 15N/14N, 13C/12C, and other stable biogenic isotopes. These effects were observed mainly at the organelle (mitochondria) and cell levels. A new hypothesis for heavy nonradioactive isotope fractionation in living systems via neutron effect realization is discussed. The comparative analysis of some experimental studies results revealed the following observation: “Isotopic shock” is highly probable and is observed mostly when chemical bonds form between atoms with a summary odd number of neutrons (i.e., bonds with a non-compensated neutron, which correspond to the following equation: Nn − Np = 2k + 1, where k ϵ Z, k is the integer, Z is the set of non-negative integers, Nn is number of neutrons, and Np is number of protons of each individual atom, or in pair of isotopes with a chemical bond). Data on the efficacy and metabolic pathways of the therapy also considered 2H-modified drinking and diet for some diseases, such as Alzheimer’s disease, Friedreich’s ataxia, mitochondrial disorders, diabetes, cerebral hypoxia, Parkinson’s disease, and brain cancer. Full article
(This article belongs to the Special Issue Medicinal Biochemistry of Deuterium Discrimination)
Show Figures

Graphical abstract

14 pages, 11450 KiB  
Article
High-Throughput GLP-Capable Target Cell Visualization Assay for Measuring Cell-Mediated Cytotoxicity
by Anna Welter, Srividya Sundararaman, Ruliang Li, Ting Zhang, Alexey Y. Karulin, Alexander Lehmann, Villian Naeem, Diana R. Roen, Stefanie Kuerten and Paul V. Lehmann
Cells 2018, 7(5), 35; https://doi.org/10.3390/cells7050035 - 24 Apr 2018
Cited by 8 | Viewed by 6474
Abstract
One of the primary effector functions of immune cells is the killing of virus-infected or malignant cells in the body. Natural killer (NK) and CD8 effector T cells are specialized for this function. The gold standard for measuring such cell-mediated cytolysis has been [...] Read more.
One of the primary effector functions of immune cells is the killing of virus-infected or malignant cells in the body. Natural killer (NK) and CD8 effector T cells are specialized for this function. The gold standard for measuring such cell-mediated cytolysis has been the chromium release assay, in which the leakage of the radioactive isotope from damaged target cells is being detected. Flow cytometry-based single cell analysis of target cells has recently been established as a non-radioactive alternative. Here we introduce a target cell visualization assay (TVA) that applies similar target cell staining approaches as used in flow cytometry but based on single cell computer image analysis. Two versions of TVA are described here. In one, the decrease in numbers of calcein-stained, i.e., viable, target cells is assessed. In the other, the CFSE/PI TVA, the increase in numbers of dead target cells is established in addition. TVA assays are shown to operate with the same sensitivity as standard chromium release assays, and, leaving data audit trails in form of scanned (raw), analyzed, and quality-controlled images, thus meeting requirements for measuring cell-mediated cytolysis in a regulated environment. Full article
Show Figures

Figure 1

Back to TopTop