Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = nonlinear orthotropic model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5396 KiB  
Article
A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model
by Natalia Pingaro, Martina Buzzetti and Alessandro Gandolfi
Buildings 2025, 15(13), 2226; https://doi.org/10.3390/buildings15132226 - 25 Jun 2025
Viewed by 374
Abstract
A straightforward and versatile numerical approach is proposed for the nonlinear analysis of single and double-curvature masonry structures. The method is designed to broaden accessibility to both experienced and less specialized users. Masonry units are discretized with elastic quadrilateral elements, while mortar joints [...] Read more.
A straightforward and versatile numerical approach is proposed for the nonlinear analysis of single and double-curvature masonry structures. The method is designed to broaden accessibility to both experienced and less specialized users. Masonry units are discretized with elastic quadrilateral elements, while mortar joints are modeled with a combination of elastic orthotropic plate elements or shear panels and elastic perfectly brittle trusses (cutoff bars). This method employs the simplest inelastic finite element available in any commercial software to lump nonlinearities exclusively within the mortar joints. It effectively captures the failure of curved structures under Mode 1 deformation, reproducing the typical collapse mechanism of unreinforced arches and vaults via flexural plastic hinges. The proposed method is benchmarked through three case studies drawn from the literature, each supported by experimental data and numerical results of varying complexity. A comprehensive evaluation of the global force–displacement curves, along with the analysis of the thrust line and the evolution of nonlinearities within the model, demonstrates the effectiveness, reliability, and simplicity of the approach proposed. By bridging the gap between advanced simulation and practical application, the approach provides a robust tool suitable for a wide range of users. This study contributes to a deeper understanding of the behavior of unreinforced curved masonry structures and lays a base for future advancements in the analysis and conservation of historical heritage. Full article
(This article belongs to the Collection Innovation in Structural Analysis and Dynamics for Constructions)
Show Figures

Figure 1

15 pages, 3667 KiB  
Article
Mechanical Behavior of SLS-Printed Parts and Their Structural Simulation
by Tamara van Roo and Conor Jörg Mager
J. Manuf. Mater. Process. 2025, 9(3), 83; https://doi.org/10.3390/jmmp9030083 - 5 Mar 2025
Viewed by 722
Abstract
This study aims to assess the mechanical tensile properties of Polyamide produced via selective laser sintering (SLS). The research focuses on the effects of post-processing, positional dependency, anisotropy, and the repeatability of SLS print jobs on material properties. Understanding this anisotropy is crucial [...] Read more.
This study aims to assess the mechanical tensile properties of Polyamide produced via selective laser sintering (SLS). The research focuses on the effects of post-processing, positional dependency, anisotropy, and the repeatability of SLS print jobs on material properties. Understanding this anisotropy is crucial for reliable component simulation. A design-appropriate simulation method is developed. A total of 27 identical specimens were fabricated in various orientations and positions within the build chamber, repeated across three print jobs, alongside standard specimens for different post-processing treatments and tempering durations. The mechanical tensile properties were evaluated through tensile tests and compared with simulation outcomes. A new material modeling concept was formulated in the finite element (FE) program ANSYS, employing an orthotropic approach based on linear elastic initial deformation. The Hill Yield Criterion was utilized to model the transition to the plastic region, characterized by a nonlinear strain hardening curve. The print direction was integrated into the FE simulation mesh via a local material coordinate system. Surface treatment via glass bead blasting resulted in slight increases in mechanical response, while tempering had a minor influence. Significant anisotropy was observed, with only the z-position in the build chamber affecting mechanical properties. Successful mapping of anisotropy in structural simulations was achieved. This research did not address optimization of the printing process, recyclate effects, powder aging, or fatigue. The findings provide a comprehensive analysis of the mechanical behavior of SLS-printed specimens, serving as a foundation for treatment methodologies and simulation strategy development. Full article
Show Figures

Figure 1

22 pages, 20763 KiB  
Article
A Predictive Multibody Model of Paper Applied to Cash Recycling
by Lorenzo Giorio, Chiara Gastaldi, Cristiana Delprete, Samuele Libetti and Davide Eleuteri
Appl. Sci. 2025, 15(5), 2283; https://doi.org/10.3390/app15052283 - 20 Feb 2025
Viewed by 484
Abstract
Despite the spread of digital payment systems, banknotes still play a vital role in the lives of people, financial institutions, and businesses. Automation is crucial in all cases where a large number of deposits/withdrawals need to be handled. In spite of the large [...] Read more.
Despite the spread of digital payment systems, banknotes still play a vital role in the lives of people, financial institutions, and businesses. Automation is crucial in all cases where a large number of deposits/withdrawals need to be handled. In spite of the large number of cash recyclers worldwide and their continuous evolution, one of the most significant parts of their design, i.e., the interaction with banknotes, is still predominantly based on a lengthy iterative process that includes testing. This has detrimental effects not only on time-to-market but also on the costs and on the willingness to explore multiple design solutions, thus potentially reducing the quality of the final product. The testing phase is made necessary by the lack of an effective and predictive model for the banknote and of its contact with the components of the cash recycler. The purpose of this work is to bridge this gap in the literature by introducing and validating an original multibody model of the banknote-cash recycler system. The proposed approach includes the possibility of including the nonlinear orthotropic paper material curves and of customizing quantities such as paper thickness and friction coefficients at specific locations, with potential applications in optimizing banknote validation, reducing wear in cash handling systems, and improving the design of next-generation cash recyclers. Full article
Show Figures

Figure 1

27 pages, 13706 KiB  
Article
A New CDM-Based Approach for the Nonlinear Numerical Structural Analysis of Flax Fiber Reinforced Plastic
by Rostislav Svidler, Roman Rinberg, Sascha Mueller and Lothar Kroll
Modelling 2025, 6(1), 5; https://doi.org/10.3390/modelling6010005 - 15 Jan 2025
Cited by 1 | Viewed by 1742
Abstract
Fibre-reinforced polymers based on natural fibers, such as flax fibers, exhibit pronounced nonlinear orthotropic material behavior. This presents a significant challenge in finite element analysis (FEA) simulations, as the nonlinear constitutive models available in commercial FEA tools are difficult to apply and fail [...] Read more.
Fibre-reinforced polymers based on natural fibers, such as flax fibers, exhibit pronounced nonlinear orthotropic material behavior. This presents a significant challenge in finite element analysis (FEA) simulations, as the nonlinear constitutive models available in commercial FEA tools are difficult to apply and fail to capture all the material’s specific characteristics. Relying on initial or reduced secant moduli in linear quasi-static analyses of deformations or stress states can result in inaccurate outcomes and overly optimistic strength predictions, particularly in compression-dominated cases. However, with appropriate modifications, classical laminate theory (CLT) can be adapted for nonlinear analysis. This involves iteratively updating the components of the stiffness matrix for the unidirectional (UD) ply during the calculation process based on the current strain state and stress interactions. This study presents and discusses a computational algorithm for the FEA software ABAQUS/CAE 2019, which incorporates material-related orthotropic nonlinearities and stress-dependent interactions within the CLT framework. The algorithm represents a single-scale material model at the meso level (UD ply) and is based on the concept of orthotropic elasto-damage within the framework of continuum damage mechanics (CDM) theory. Numerical implementation is achieved through a user-defined field (USDFLD) subroutine, accompanied by a pre-processing Python script for managing experimental data, computing data fields, and calculating parameters. As shown below, this type of implementation appears justified compared to a user material subroutine (UMAT) subroutine in terms of computational efficiency and practicality. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Figure 1

18 pages, 6953 KiB  
Article
Modelling of High-Velocity Impact on Woven Carbon Fibre-Reinforced Plastic Laminate
by Nenad Djordjevic, Rade Vignjevic, Kevin Hughes and Tom De Vuyst
Appl. Sci. 2025, 15(2), 555; https://doi.org/10.3390/app15020555 - 8 Jan 2025
Viewed by 1033
Abstract
This paper describes a constitutive model for progressive damage in carbon fibre-reinforced composites (CFRPs), developed in the framework of thermodynamics and coupled with a vector equation of state. This made the constitutive model capable of modelling shock wave propagation within orthotropic materials. Damage [...] Read more.
This paper describes a constitutive model for progressive damage in carbon fibre-reinforced composites (CFRPs), developed in the framework of thermodynamics and coupled with a vector equation of state. This made the constitutive model capable of modelling shock wave propagation within orthotropic materials. Damage is incorporated in the model by using reduction in the principal material stiffness based on the effective stress concept and the hypothesis of strain energy equivalence. Damage evolution was defined in terms of a modified Tuler–Bucher criteria. The constitutive model was implemented into Lawrence Livermore National Laboratory (LLNL) DYNA3D nonlinear hydrocode. Simulation results were validated against post-impact experimental data of spherical projectile impact on an aerospace-grade woven CFRP composite panel. Two plate thicknesses were considered and a range of impact velocities above the ballistic limit of the plates, ranging from 194 m/s to 1219 m/s. Other than for the size of the delamination zone in the minor material direction, the discrepancy between the experiments and numerical results for damage and delamination in the CFRP target plates was within 8%. Full article
Show Figures

Figure 1

23 pages, 11776 KiB  
Article
Modeling Analysis of Complex Deformation of Woven Coating Film during the Cyclic Tensile Process
by Li Cai, Zhengyan Zhang, Deng’an Cai, Guangming Zhou and Xinwei Wang
Polymers 2024, 16(12), 1623; https://doi.org/10.3390/polym16121623 - 7 Jun 2024
Viewed by 1330
Abstract
It is difficult for the existing Burgers model to accurately depict the off-axis cyclic drawing process of woven coatings. In this paper, the mechanical deformation of woven PVC (polyvinyl chloride)-coated film at different temperatures is investigated. One-dimensional (1D) and two-dimensional (2D) constitutive models [...] Read more.
It is difficult for the existing Burgers model to accurately depict the off-axis cyclic drawing process of woven coatings. In this paper, the mechanical deformation of woven PVC (polyvinyl chloride)-coated film at different temperatures is investigated. One-dimensional (1D) and two-dimensional (2D) constitutive models were established to characterize cyclic deformation processes. The 1D model is an improved Burgers model. The effects of the time dependence of the viscosity coefficient and the ratio of elastic to viscous deformation are considered simultaneously. The accuracy of the 1D model for predicting the cyclic nonlinear deformation at different temperatures and loading rates is improved. The 2D model is a nonlinear orthotropic model using polynomials. On the basis of the single-objective genetic algorithm, the inverse algorithm is used to obtain the shear polynomial coefficients in the tension phase and the shear modulus in the unloading phase, which circumvents performing the difficult shear test. UMAT subroutines of off-axis stretching and off-axis cyclic stretching are written separately. The intelligent inverse algorithm program consists of a single-objective genetic algorithm program, a finite element parametric modelling program, and a UMAT subroutine. The simulation results are compared with the off-axis cyclic tensile test data to validate the effectiveness and accuracy of the proposed 2D model for the analysis of the woven PVC-coated films in the tension–shear coupling state. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymeric Composites)
Show Figures

Figure 1

22 pages, 8403 KiB  
Article
Seismic Upgrade of an Existing Reinforced Concrete Building Using Steel Plate Shear Walls (SPSW)
by Niki Balkamou and George Papagiannopoulos
Appl. Sci. 2024, 14(1), 443; https://doi.org/10.3390/app14010443 - 3 Jan 2024
Cited by 2 | Viewed by 2763
Abstract
Steel Plate Shear Walls (SPSW) provide significant lateral load capacity and can be utilized in the seismic retrofit and upgrade of existing reinforced concrete (r/c) buildings. In this study, the application of SPSW to retrofit a r/c building designed according to older seismic [...] Read more.
Steel Plate Shear Walls (SPSW) provide significant lateral load capacity and can be utilized in the seismic retrofit and upgrade of existing reinforced concrete (r/c) buildings. In this study, the application of SPSW to retrofit a r/c building designed according to older seismic provisions is presented. Three different options to model SPSW are utilized, i.e., by equivalent braces, by finite elements, and by membrane elements, seeking not only to appropriately simulate the actual behavior of the SPSW but also to achieve the desired seismic behavior of the retrofitted building. Specific seismic response indices, including plastic hinge formations, are derived by non-linear time-history analyses in order to assess the seismic behavior of the retrofitted r/c building. Inspection of the results provided by non-linear analyses in conjunction with the different modeling options of the SPSW leads to the conclusion that the model with the membrane elements exhibits the best performance, implying that for the seismic retrofit and upgrade of existing r/c buildings, the use of membrane elements to model the SPSW is recommended. Full article
(This article belongs to the Special Issue Seismic Assessment and Design of Structures: Volume 2)
Show Figures

Figure 1

15 pages, 33182 KiB  
Article
Numerical and Experimental Study into Paper Compression Test
by Leszek Czechowski, Paweł Pełczyński, Maria Bieńkowska and Włodzimierz Szewczyk
Materials 2023, 16(24), 7513; https://doi.org/10.3390/ma16247513 - 5 Dec 2023
Viewed by 1401
Abstract
The study aims to present the results of paper compression under an axial load. Different heights of samples subjected to compression were taken into account. The main goal of the analysis was to determine experimentally the maximum compression load. In addition, numerical models [...] Read more.
The study aims to present the results of paper compression under an axial load. Different heights of samples subjected to compression were taken into account. The main goal of the analysis was to determine experimentally the maximum compression load. In addition, numerical models based on the finite element method (FEM) were validated to refer to empirical results. The performed numerical simulations were founded on Green–Lagrangian nonlinear equations for large displacements and strains. The progressive failure of the compressed orthotropic material after exceeding maximum stresses was based on Hill’s anisotropy theory. Nonlinear calculations were conducted by using a typical Newton–Raphson algorithm for achieving a sequence convergence. The accuracy of the developed model was confirmed experimentally in compression tests. The technique of analysing the shape of the compressed paper sample on the basis of images recorded during the measurement was used. The obtained test results are directly applicable in practice, especially in the calculation of the mechanical properties of corrugated cardboard and in determining the load capacity of cardboard packaging. Knowing the maximum compressive stress that packaging paper can withstand allows packaging to be properly designed and its strength assessed in the context of the transport and storage of goods. Full article
Show Figures

Figure 1

7 pages, 3142 KiB  
Proceeding Paper
Efficacy of FRP Hooping in Masonry Domes: A Simple Numerical Approach
by Alessandro Gandolfi, Natalia Pingaro and Gabriele Milani
Eng. Proc. 2023, 53(1), 46; https://doi.org/10.3390/IOCBD2023-15936 - 9 Nov 2023
Cited by 1 | Viewed by 1069
Abstract
A simple numerical approach to predict the efficacy of FRP hooping in historical masonry domes is presented. The dome is modelled with 8-noded elastic hexahedron elements connected by 1D trusses/springs on meridians and on parallels, where all the non-linearity takes place. The aim [...] Read more.
A simple numerical approach to predict the efficacy of FRP hooping in historical masonry domes is presented. The dome is modelled with 8-noded elastic hexahedron elements connected by 1D trusses/springs on meridians and on parallels, where all the non-linearity takes place. The aim is to simulate the nonlinear behaviour of domes through every FE commercial software equipped only with non-linear 1D elements, namely point contacts and cutoff bars. The constitutive behaviour of the trusses is assumed to be either perfectly brittle or perfectly ductile. A possible orthotropic behaviour and the no-tension material case can be reproduced. External retrofitting is simulated using trusses with an elastic perfectly ductile behaviour, assuming a perfect bond between the substrate and the reinforcement and imposing an ultimate strength for the trusses, which takes into account the possible debonding/delamination from the substrate in a conventional way. The Italian code CNR DT200 and the existing specialized literature are used as references. The models are benchmarked on a masonry dome reinforced with three hooping FRP strips and experimentally tested at the University Architecture Institute of Venice IUAV, Italy. The procedure is validated through extensive comparisons with available experimental data and numerical results obtained in the literature with a variety of different models. Through the extensive comparisons that were made and discussed, the robustness and simplicity of the procedure are proven. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Buildings)
Show Figures

Figure 1

53 pages, 1751 KiB  
Article
Generalized Finsler Geometry and the Anisotropic Tearing of Skin
by John D. Clayton
Symmetry 2023, 15(10), 1828; https://doi.org/10.3390/sym15101828 - 26 Sep 2023
Cited by 3 | Viewed by 1994
Abstract
A continuum mechanical theory with foundations in generalized Finsler geometry describes the complex anisotropic behavior of skin. A fiber bundle approach, encompassing total spaces with assigned linear and nonlinear connections, geometrically characterizes evolving configurations of a deformable body with the microstructure. An internal [...] Read more.
A continuum mechanical theory with foundations in generalized Finsler geometry describes the complex anisotropic behavior of skin. A fiber bundle approach, encompassing total spaces with assigned linear and nonlinear connections, geometrically characterizes evolving configurations of a deformable body with the microstructure. An internal state vector is introduced on each configuration, describing subscale physics. A generalized Finsler metric depends on the position and the state vector, where the latter dependence allows for both the direction (i.e., as in Finsler geometry) and magnitude. Equilibrium equations are derived using a variational method, extending concepts of finite-strain hyperelasticity coupled to phase-field mechanics to generalized Finsler space. For application to skin tearing, state vector components represent microscopic damage processes (e.g., fiber rearrangements and ruptures) in different directions with respect to intrinsic orientations (e.g., parallel or perpendicular to Langer’s lines). Nonlinear potentials, motivated from soft-tissue mechanics and phase-field fracture theories, are assigned with orthotropic material symmetry pertinent to properties of skin. Governing equations are derived for one- and two-dimensional base manifolds. Analytical solutions capture experimental force-stretch data, toughness, and observations on evolving microstructure, in a more geometrically and physically descriptive way than prior phenomenological models. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2023)
Show Figures

Figure 1

23 pages, 11376 KiB  
Article
A Coupled Nonlinear Viscoelastic–Viscoplastic Thermomechanical Model for Polymeric Lithium-Ion Battery Separators
by Royal Chibuzor Ihuaenyi, Jie Deng, Chulheung Bae and Xinran Xiao
Batteries 2023, 9(9), 475; https://doi.org/10.3390/batteries9090475 - 20 Sep 2023
Cited by 1 | Viewed by 1947
Abstract
One of the major concerns in ensuring lithium-ion battery (LIB) safety in abuse scenarios is the structural integrity of the battery separator. This paper presents a coupled viscoelastic–viscoplastic model for predicting the thermomechanical response of polymeric battery separators in abuse scenarios under combined [...] Read more.
One of the major concerns in ensuring lithium-ion battery (LIB) safety in abuse scenarios is the structural integrity of the battery separator. This paper presents a coupled viscoelastic–viscoplastic model for predicting the thermomechanical response of polymeric battery separators in abuse scenarios under combined mechanical and thermal loadings. The viscoplastic model is developed based on a rheological framework that considers the mechanisms involved in the initial yielding, change in viscosity, strain softening and strain hardening of polymeric separators. The viscoplastic model is then coupled with a previously developed orthotropic nonlinear thermoviscoelastic model to predict the thermomechanical response of polymeric separators before the onset of failure. The model parameters are determined for Celgard®2400, a polypropylene (PP) separator, and the model is implemented in the LS-DYNA® finite element (FE) package as a user-defined subroutine. Punch test simulations are employed to verify the model predictions under biaxial stress states. Simulations of uniaxial tensile stress–strain responses at different strain rates and temperatures are compared with experimental data to validate the model predictions. The model predictions of the material anisotropy, rate and temperature dependence agree well with experimental observations. Full article
Show Figures

Figure 1

26 pages, 4038 KiB  
Article
Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model
by Mostafa Sadeghian, Arvydas Palevicius and Giedrius Janusas
Micromachines 2023, 14(9), 1790; https://doi.org/10.3390/mi14091790 - 19 Sep 2023
Cited by 5 | Viewed by 1461
Abstract
This article presents the nonlinear investigation of the thermal and mechanical buckling of orthotropic annular/circular single-layer/bilayer nanoplate with the Pasternak and Winkler elastic foundations based on the nonlocal strain gradient theory. The stability equations of the graphene plate are derived using higher-order shear [...] Read more.
This article presents the nonlinear investigation of the thermal and mechanical buckling of orthotropic annular/circular single-layer/bilayer nanoplate with the Pasternak and Winkler elastic foundations based on the nonlocal strain gradient theory. The stability equations of the graphene plate are derived using higher-order shear deformation theory (HSDT) and first-order shear deformation theory (FSDT) considering nonlinear von Karman strains. Furthermore, this paper analyses the nonlinear thermal and mechanical buckling of the orthotropic bilayer annular/circular nanoplate. HSDT provides an appropriate distribution for shear stress in the thickness direction, removes the limitation of the FSDT, and provides proper precision without using a shear correction coefficient. To solve the stability equations, the differential quadratic method (DQM) is employed. Additionally, for validation, the results are checked with available papers. The effects of strain gradient coefficient, nonlocal parameter, boundary conditions, elastic foundations, and geometric dimensions are studied on the results of the nondimensional buckling loads. Finally, an equation is proposed in which the thermal buckling results can be obtained from mechanical results (or vice versa). Full article
(This article belongs to the Special Issue N/MEMS Intelligent Structures: Design, Manufacturing, and Control)
Show Figures

Figure 1

19 pages, 9684 KiB  
Article
Generalized Thermoelastic Interaction in Orthotropic Media under Variable Thermal Conductivity Using the Finite Element Method
by Aatef Hobiny and Ibrahim Abbas
Mathematics 2023, 11(4), 955; https://doi.org/10.3390/math11040955 - 13 Feb 2023
Cited by 2 | Viewed by 1864
Abstract
This article addresses a thermoelastic problem under varying thermal conductivity with and without Kirchhoff’s transforms. The temperature increment, displacement, and thermal stresses in an orthotropic material with spherical cavities are studied. The inner surface of the hole is constrained and heated by thermal [...] Read more.
This article addresses a thermoelastic problem under varying thermal conductivity with and without Kirchhoff’s transforms. The temperature increment, displacement, and thermal stresses in an orthotropic material with spherical cavities are studied. The inner surface of the hole is constrained and heated by thermal shock. The numerical solutions are derived using the finite element technique in the setting of the generalized thermoelasticity model with one thermal delay time. The thermal conductivity of the material is supposed to be temperature-dependent without Kirchhoff’s transformation. Due to the difficulty of nonlinear formulations, the finite element approach is used to solve the problem without using Kirchhoff’s transformation. The solution is determined using the Laplace transform and the eigenvalues technique when employing Kirchhoff’s transformation in a linear example. Variable thermal conductivity is addressed and compared with and without Kirchhoff’s transformation. The numerical result for the investigated fields is graphically represented. According to the numerical analysis results, the varying thermal conductivity provides a limited speed for the propagations of both mechanical and thermal waves. Full article
(This article belongs to the Special Issue Recent Advances in Finite Element Methods with Applications)
Show Figures

Figure 1

12 pages, 2419 KiB  
Article
Thermal Conductivity Study of an Orthotropic Medium Containing a Cylindrical Cavity
by Ibrahim Abbas, Marin Marin, Aatef Hobiny and Sorin Vlase
Symmetry 2022, 14(11), 2387; https://doi.org/10.3390/sym14112387 - 11 Nov 2022
Cited by 4 | Viewed by 1539
Abstract
An interesting feature that appears in the thermoelastic interaction in an orthotropic material containing cylindrical cavities is addressed in this study. For this purpose, the Finite Element Method is applied to analyze a generalized thermoelasticity theory with a relaxation time. For the development [...] Read more.
An interesting feature that appears in the thermoelastic interaction in an orthotropic material containing cylindrical cavities is addressed in this study. For this purpose, the Finite Element Method is applied to analyze a generalized thermoelasticity theory with a relaxation time. For the development of the model, a thermal conductivity that is dependent on the temperature of the orthotropic medium was considered. The boundary condition for the internal surface of a cylindrical hollow is defined by the thermal shocks and the traction on the free surface. The nonlinear formulations of thermoelastic based on thermal relaxation time in orthotropic mediums are abbreviated using the Finite Element Method. The nonlinear equations without Kirchhoff’s transformations are presented. The results are graphically represented to demonstrate how changing thermal conductivity affects all physical values. Full article
(This article belongs to the Special Issue Symmetry: Recent Developments in Engineering Science and Applications)
Show Figures

Figure 1

13 pages, 2962 KiB  
Article
Buckling Analysis of a Large Shelter with Composites
by Sheldon Wang and Jianyao Mou
Materials 2021, 14(23), 7196; https://doi.org/10.3390/ma14237196 - 25 Nov 2021
Cited by 1 | Viewed by 1953
Abstract
We present here linear and nonlinear finite element analyses of a newly designed deployable rapid assembly shelter (DRASH J) manufactured by DHS Systems. The structural analysis is carried out in three stages. Firstly, single composite tubes (struts) under three-point bending are modeled with [...] Read more.
We present here linear and nonlinear finite element analyses of a newly designed deployable rapid assembly shelter (DRASH J) manufactured by DHS Systems. The structural analysis is carried out in three stages. Firstly, single composite tubes (struts) under three-point bending are modeled with five layers of orthotropic materials in three different orientations and the simulation results are compared with the actual test data for validation. Secondly, a comprehensive structural model for the entire shelter is constructed with the consideration of two types of strut scissor points, namely natural and forced scissor (crossing) points, as well as partial-fixed hub joints, which allow rotations along individual hub slots (grooves). Finally, a simplified structural model is created by introducing fixed joints for the scissor points as well as rigid links for the hubs. With sufficient verifications with experiments and different modeling methods, linear and nonlinear finite element analyses are then carried out for both the comprehensive and simplified shelter models. Based on the simulation results, we are able to identify a few critical issues pertaining to proper design and modifications of such shelter systems, such as various end wall supports pertaining to the overall structural stability. Full article
(This article belongs to the Special Issue Research on Mechanical Properties of Construction Materials)
Show Figures

Figure 1

Back to TopTop