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Abstract: This article addresses a thermoelastic problem under varying thermal conductivity with
and without Kirchhoff’s transforms. The temperature increment, displacement, and thermal stresses
in an orthotropic material with spherical cavities are studied. The inner surface of the hole is
constrained and heated by thermal shock. The numerical solutions are derived using the finite
element technique in the setting of the generalized thermoelasticity model with one thermal delay
time. The thermal conductivity of the material is supposed to be temperature-dependent without
Kirchhoff’s transformation. Due to the difficulty of nonlinear formulations, the finite element
approach is used to solve the problem without using Kirchhoff’s transformation. The solution is
determined using the Laplace transform and the eigenvalues technique when employing Kirchhoff’s
transformation in a linear example. Variable thermal conductivity is addressed and compared with
and without Kirchhoff’s transformation. The numerical result for the investigated fields is graphically
represented. According to the numerical analysis results, the varying thermal conductivity provides
a limited speed for the propagations of both mechanical and thermal waves.

Keywords: finite element method; orthotropic medium; spherical hole; thermal relaxation time;
variable thermal conductivity

MSC: 65L60

1. Introduction

Anisotropic media have material characteristics at specific places that differ from
the three perpendicular axes, each of which has a twofold rotationally symmetry in solid
mechanics and materials science. Over the last four decades, several researchers have
shown a strong interest in generalized thermoelastic models, both technically and mathe-
matically. Due to their realistic implications in various fields, such as nuclear engineering,
acoustics, continuum mechanics, high-energy particle accelerators, and aeronautics, these
theories are gaining popularity. In this theorem, the concepts of heat transport and elasticity
are coupled. Many generalizations of the thermoelasticity hypothesis were established
by Lord–Shulman [1]. The Lord–Shulman hypothesis was improved by Dhaliwal and
Sherief [2] in 1980 so that it could account for anisotropic examples.

When temperatures rise, it is possible that the material’s properties may decrease.
In most materials, the thermal conductive K decreases almost linearly with increasing
absolute temperature. A mapping approach (Kirchhoff’s transformation) [3] is applied
to obtain a solution to the problem under varying thermal conductivity in [4]. For a
one-dimensional problem with variable material parameters, [5] used a finite difference
approach. Because it varies with temperature, varying thermal conductivity is critical to
better understand the study of thermal loads of specific materials, primarily semiconduct-
ing devices. The LS theory on generalized magneto-thermoelastics under varying thermal
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conductivity for indefinitely long annular cylinders was examined in [6]. The effect of ther-
mal relaxations on thermal and elastic interactions in an unbounded orthotropic material
with a cylindrical cavity were investigated by Abbas and Abd-alla [7]. Yasein et al. [8]
discussed the effects of varying thermal conductivity in a one-dimension semiconducting
material subjected to photothermal stimulation. Abbas and Zenkour [9] applied the finite
element scheme to study the magnetothermoelastic interactions in unbounded FG ther-
moelasticity cylinders. Sharma et al. [10] discussed the thermal conduction and diffusion
of two-temperature thermo-elastic diffusion plates under variable thermal conductivity.
Hobiny and Abbas [11] studied generalized thermoelastic interaction due to a pulse heat
transfer in two-dimension orthotropic materials. Song et al. [12] investigated the vibrations
of optically activated semiconductors and micro conductors using the extended thermoe-
lastic theorem. Mondal and Sur [13] investigated photothermoelastic wave propagations
and memory response in an orthotropic semiconductor medium with a spherical cavity.
Said [14] used the eigenvalues technique to compare three theories on the problem of
magneto-thermoelasticity spinning medium with varying thermal conductivity. Lata and
Himanshi [15] discussed the fractional effects in an orthotropic magneto-thermoelasticity
rotating solid due to normal forces under the Green–Naghdi model. Singh et al. [16] studied
the magneto-thermoelastic interactions under memory responses due to laser pulse in an
orthotropic material based on the Green–Naghdi model. Many studies are conducted under
the broad thermoelastic models described in the following types of literature [17–41]. In
the scientific literature, exact solutions of the linear or nonlinear governing equations for
the problems of generalized thermoelasticity theories only exist for certain circumstances.
To calculate complex problems, a numerical solution method must be used. Therefore,
the finite-element approach is selected. The technique of weighted residuals produces
the most accurate approximation of linear and nonlinear ordinary and partial differential
equations when applied to the formulation of finite-element equations. Applying this
method involves three steps. The first step is to assume that the general behaviour of the
unknown field variables can be described in a form that satisfies the differential equations
that have been provided. Then, when these approximation functions are substituted into
the differential equations and boundary conditions, it leads to certain inaccuracies that
are referred to as the residual. On average, across the solution domain, this residue must
disappear completely. The next stage, which is the second one, is the integration of time.
It is necessary to use the previous results in order to calculate the time derivatives of the
variables that are unknown. Applying a finite-element solution method to the equations
that have been generated as a consequence of the first and second processes is the third
step in the process as in [42–51].

This work studies the influence of varying thermal conductivity and thermal relaxation
time in orthotropic media with a spherical cavity. The material’s thermal conductivity is
supposed to be temperature-dependent, which gives the nonlinear and complex problems.
The nonlinear problem (without Kirchhoff’s Transform) has been studied in this work. Due
to the difficulty of nonlinear formulations, the finite element method is used to solve this
problem without using Kirchhoff’s transformations. In addition, Kirchhoff’s transforma-
tions are applied to obtain the linear problem, and then the solution is obtained using the
Laplace transforms and the eigenvalue technique. Variable thermal conductivity has been
addressed and compared with and without Kirchhoff’s transformations. According to the
numerical analysis results, the varying thermal conductivity provides limited speed for the
propagation of both mechanical and thermal waves.

2. Mathematical Model

The basic equations in an orthotropic material in the absence of body forces and
thermal source are presented as [2]:

σij,j = ρ
∂2ui
∂t2 , (1)



Mathematics 2023, 11, 955 3 of 19

∂T,ii

∂t
(KiiT,i),i =

(
∂

∂t
+ τo

∂2

∂t2

) (
ρceT + βiiTo∂uj,j

)
, (2)

σij = cijklekl − βij(T − To)δij, (3)

eij =
1
2
(
ui,j + uj,i

)
, (4)

where T points to the temperature increments, ce points to the specific heat, βij are the
thermal moduli, ρ is the density of mass, Kii are the thermal conductivity components that
are temperature-dependent and variable, ekl are the strain tensor components and cijkl are
the elastic constants, To is the reference temperature, σij are the stresses components and
ui are the components of displacement. Consider an unbounded elastic body involving
spherical cavities occupying the area a ≤ r < ∞, whose states are defined in terms of space
variable r and the time variable t. The only non-vanishing component of displacement
is the radial one ur = u(r, t), which is related to the spherical coordinates (r, θ, ϕ) as in
Figure 1. The nonvanishing strain tensor components are as follows:

err =
∂u
∂r

, eθθ =
u
r

, eϕϕ =
u
r

, (5)
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Figure 1. The diagram of an unbounded medium with a spherical hole.

Substituting for err, eθθ and eϕϕ into the basic equations can be given by

∂σrr

∂r
+

1
r
(
2σrr − σθθ − σϕϕ

)
= ρ

∂2u
∂t2 , (6)

1
r2

∂

∂r

(
r2K(T)

∂T
∂r

)
=

(
∂

∂t
+ τo

∂2

∂t2

)(
ρceT + β11To

∂u
∂r

+ β22To
2u
r

)
, (7)

σrr = c11
∂u
∂r

+ c12
2u
r
− β11T,σθθ = σϕϕ = c12

∂u
∂r

+ (c22 + c23)
u
r
− β22T, (8)

e =
∂u
∂r

+
2u
r

, (9)

In this case, the varying thermal conductivity of orthotropic media that may be chosen
as in [52]

K(T) = Ko(1 + KnT), (10)

where Ko are the thermal conductivity when T = To and Kn ≤ 0 identifies the negative
parameter.
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3. Application

The initial condition can be given by:

u(r, 0) = 0,
∂u(r, 0)

∂t
= 0, T(r, 0) = 0,

∂T(r, 0)
∂t

= 0, (11)

whereas the following constitute the requirements of the boundaries:

u(a, t) = 0, T(a, t) = TsH(t), (12)

where H(t) is the Heaviside function and Ts is constant. Consequently, the nondimension-
ality of variables may be stated as follows:

T∗ =
T − To

To
, (r∗, u∗) = µc(r, u), (t∗, τ∗o ) = ωc2(t, τo), (σ∗rr, σ∗θθ) =

(σrr, σθθ ,)
c11

, (13)

where µ = ρce
Ko

and c =
√

c11
ρ . Equation (13)’s non-dimensional governing equations are

written as (after the superscript * has been removed for appropriateness)

∂2u
∂r2 +

2
r

∂u
∂r
− 2(s3 − s1)u

r2 − s2
∂T
∂r

+
2(s4 − s2)

r
T =

∂2u
∂t2 , (14)

(1 + KnT)
∂2T
∂r2 + Kn

(
∂T
∂r

)2
+

2(1 + KnT)
r

∂T
∂r

=

(
∂

∂t
+ τo

∂2

∂t2

)(
T + ε1

∂u
∂r

+ ε2
2u
r

)
, (15)

σrr =
∂u
∂r

+ 2s1
u
r
− s2T,σθθ = σϕϕ = s1

∂u
∂r

+ s3
u
r
− s4T, (16)

where s1 = c12
c11

, s2 = To β11
c11

, s3 = (c22+c23)
c11

, s4 = To β22
c11

, ε1 = β11
ρce

, ε2 = β22
ρce

.

4. Numerical Scheme

The standard techniques may be used to generate the finite element method (FEM) for
thermoelasticity problems. The finite element scheme is the preferred method for complex
systems in numerous domains since it is a powerful and most sophisticated way to obtain
numerical solutions to complicated problems. The solutions of the governing relations (14)
and (15) under the boundary condition (12) and the use of the initial condition (11) are
obtained using a finite element diagram. The displacement u and the temperature T are
linked to the corresponding nodal values in finite element techniques by

u = ∑n
j=1 Njuj(t), T = ∑n

j=1 NjTj(t), (17)

where n refers to the number of nodes per element, and N refers to the shape functions. For
the unknown displacement u and the unknown temperature T, the same shape function is
used in Galerkin methods to approximate the corresponding test functions.

δu = ∑n
j=1 Njδuj, δT = ∑n

j=1 NjδTj, (18)

We assume that the master elements local coordinates fall between [1 and −1]. In this
situation, one-dimension quadratic components are used, and they are written as follows:

N1 = 1
2
(
χ2 + χ

)
, N1 = 1− χ2, N3 = 1

2
(
χ2 − χ

)
, (19)

The weak formulation of finite element method that correspond to the nonlinear
formulations (14) and (15) may be written by:∫ L

a
δu
(

∂2u
∂t2 −

2
r

∂u
∂r

+
2(s3 − s1)u

r2 + s2
∂T
∂r
− 2(s4 − s2)

r
T
)

dr+
∫ L

a

∂δu
∂r

(
∂u
∂r

)
dr = δu

(
∂u
∂r

)L

a
, (20)



Mathematics 2023, 11, 955 5 of 19

∫ L

a
δT
(
(

∂

∂t
+ τo

∂2

∂t2 )(T + ε1
∂u
∂r

+ ε2
2u
r
)− 2(1 + KnT)

r
∂T
∂r

)
dr +

∫ L

a

∂δT
∂r

(
(1 + KnT)

∂T
∂r

)
dr = δT

(
(1 + KnT)

∂T
∂r

)L

a
. (21)

Implicit approaches can be employed to determine the time derivatives of unknown
variables. For example, the time derivatives of the unknown variables must be determined
using the Newmark time integration method or the central finite difference method by time
step 0.0001 [53]. The grid size was changed until the values of the fields under examination
were stable. Further increasing the mesh size over 25,000 elements has no discernible effect
on the results. Therefore, for this investigation, a grid size of 25,000 was chosen.

5. Special Cases and the Validation of the Numerical Approach

Analytical solutions for homogeneous and isotropic material are being provided
to validate the finite element approach. Moreover, when Kn = 0, the analytical and
numerical solutions are compared with each other to validate the numerical solutions. For
homogeneous and isotropic material c11 = c22 = λ + 2µ, c12 = c23 = λ, β11 = β22 = γ
and Kn = 0. As a consequence of this, Equations (14)–(16) with the initial and boundary
conditions may be expressed as follows:

∂2u
∂r2 +

2
r

∂u
∂r
− 2u

r2 − a2
∂T
∂r

=
∂2u
∂t2 , (22)

∂2T
∂r2 +

2
r

∂T
∂r

=

(
∂

∂t
+ τo

∂2

∂t2

)(
T + ε1

(
∂u
∂r

+
2u
r

))
, (23)

σrr =
∂u
∂r

+ 2a1
u
r
− a2T,σθθ = σϕϕ = a1

∂u
∂r

+ (1 + a1)
u
r
− a2T, (24)

u(r, 0) = 0,
∂u(r, 0)

∂t
= 0, T(r, 0) = 0,

∂T(r, 0)
∂t

= 0, (25)

T(a, t) = Ts H(t), u(a, t) = 0, (26)

where a1 = λ
λ+2µ , a2 = Toγ

λ+2µ , ε = γ
ρce

. Applying Laplace transforms in order to find
solutions to Equations (22)–(26):

f (x, s) = L[ f (x, t)] =
∞∫

0

f (x, t)e−stdt. (27)

As a consequence of this, we can deduce the following:

d2u
dr2 +

2
r

du
dr
− 2u

r2 = s2u + a2
dT
dr

, (28)

d2T
dr2 +

2
r

dT
dr

=
(

s + s2τo

)(
T + ε1

(
du
dr

+
2u
r

))
, (29)

σrr =
du
dr

+ 2a1
u
r
− a2T,σθθ = σϕϕ = a1

du
dr

+ (1 + a1)
u
r
− a2T, (30)

T(a, s) =
Ts

s
, u(a, s) = 0, (31)

Using Equation (28) with the differentiating Equation (29) with respect to r, we obtain

d2

dr2

(
dT
dr

)
+

2
r

d
dr

(
dT
dr

)
− 2

r2

(
dT
dr

)
=
(

s + s2τo

)(
ε1s2u + (1 + a2ε1)

dT
dr

)
(32)

It is possible to write Equations (28) and (32) in the form of a vector–matrix differential
equation as follows:

DV = AV, (33)
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where d2

dr2 + 2
r

d
dr −

2
r2 , V =

(
u dT

dr

)T
and A =

(
a11 a12
a21 a22

)
, a11 = s2, a12 = a2,

a21 = ε1s2(s + s2τo
)

and a22 = (1 + a2ε1)
(
s + s2τo

)
,

The using of eigenvalue approach [54,55] to solve the Equation (33), the characteristic
relation of matrix A can be written as

a11a22 − a12a21 − (a11 + a22)ζ + ζ2 = 0, (34)

where ζ = ζ1, ζ = ζ2 are the roots of the characteristic Equation (34) which have the
corresponding eigenvectors X1 = a12 and X2 = ζ − a11. Thus, the solution of Equation (34)
can be expressed by

u(r, s) = r−1/2U1 A1 I3/2

(
r
√

ζ1

)
+ r−1/2U2 A2 I3/2

(
r
√

ζ2

)
, (35)

T(r, s) =
T1√
rζ1

A1 I1/2

(
r
√

ζ1

)
+

T2√
rζ2

A2 I1/2

(
r
√

ζ2

)
(36)

where A1 and A2 are constants that can be calculated from the boundary condition of
the problem, and I3/2, I1/2 are the modified of Bessel’s functions with order 3

2 and 1
2,

respectively. It is possible to use the Stehfest [56] method as a numerical inversion technique
in order to obtain the final solutions of temperature, displacement and stresses distributions.

6. Numerical Outcomes and Discussions
Numerical results for a single crystal of magnesium medium using the following

physical parameters are computed to demonstrate the theoretical findings derived in the
previous sections [57]:

c11 = 5.974× 1010(N)
(
m−2), β11 = β22 = 2.68× 106(N)

(
m−2)(k−1

)
, To = 298(k), a = 1,

c22 = 6.17× 1010(N)
(
m−2), Ko = 170 (W)

(
m−1)(k−1

)
, c12 = 2.624× 1010(N)

(
m−2),

ρ = 1470(kg)
(
m−3), ce = 1040 (J)

(
kg−1

)(
k−1

)
, τo = 0.05, t = 0.25,

c23 = 2.17× 1010(N)
(
m−2).

Figures 2–21 show the calculated physical values (numerical) under generalized
thermoelastic theory with one thermal delay time based on the previous set of parameters.
The computation is carried out for the time t = 0.25. The temperature variations, radial
displacement, and the variation in the radial and shear stress distributions along the radial
distances r under variable thermal conductivity are determined numerically. Figure 2 shows
the variation in temperature along the radial distance r. It is clear that the temperature
has maximums value T = 1 at the internal surface of hole a = 1 to accept the boundary
condition of the problem, and then steadily falls when the radial distance r is increased to
close to zero. Figure 3 shows the variations in radial displacement via the radial distances.
It is seen that the radial displacement starts at zero, which meets the boundary condition of
the problem, and lowers steadily up to peak values before decreasing to near zero. Figure 4
depicts the variations of radial stress σrr versus the radial distances r. The radial stress
has maximum negative values before gradually diminishing to near zero. The variations
in shear stress σθθ along the radial distance r are displayed in Figure 5. It is noted that
it has negative maximums before steadily rising to zero. Under the variable thermal
conductivity, there are big significant variances in the values of all considering variables,
according to the results. The varying thermal conductivity has a remarkable impact on the
values of all considering variables, as predicted. Figures 6–9 show the impact of thermal
delay time in all physical quantities, whereas Figures 10–13 show the variation of physical
quintettes along the distance for different time values. The variations in temperature, the
radial displacement, the radial stress and the shear stress under comparisons between
the isotropic and orthotropic materials under varying thermal conductivity and with one
relaxation time are shown in Figures 14–17. The analytical results for isotropic elastic
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material have been presented to verify that the suggested approach is accurate as in
Figures 14–17. Additionally, the variations of temperature, the radial displacement, the
radial stress and the shear stress under the comparisons between the elastic and orthotropic
materials under varying thermal conductivity and with one relaxation time are shown in
Figures 18–21. Finally, based on the numerical results, it is possible to infer that utilizing
a generalized thermoelastic theory under the changing thermal conductivity is a major
phenomenon with a considerable effect on the physical quantity distributions.
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7. Conclusions

This work presents a mathematical analysis of the effect of variable thermal conductiv-
ity in an orthotropic medium including a spherical hole. The distributions of temperature,
radial displacement, radial stress, and shear stress in a thermoelastic orthotropic medium
with one thermal relaxation time have been given. To provide a numerical solution for
nonlinear equations, the finite element technique is used. It was discovered that the vary-
ing thermal conductivity has significant effects and influences how various physical field
components behave as they deform. The effects of thermal delay time are presented. It
was shown that the deformation behaviour of different components of physical fields is
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significantly affected by the thermal relaxation time. The impact of time is shown. It was
shown that time has a considerable impact on the deformation behavior of several physical
field components. There are comparisons shown between the orthotropic and isotropic
materials. To verify that the suggested approach is accurate, numerical solutions and
analytical solutions have been compared for isotropic elastic material.
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